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Abstract—In this paper we present a stochastic model for
multi-area wind production that is used for planning reserves
in transmission-constrained systems with large amounts of inte-
grated renewable power supply. The stochastic model accounts
for the inter-temporal and spatial dependencies of multi-area
wind power production. Results are presented for a case study
of the California power system.
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I. INTRODUCTION

The large-scale integration of renewable power supply in
power systems has recently motivated researchers to consider
stochastic unit commitment policies for committing reserves
in order to guarantee the reliable operation of the grid. Such
studies include the work of Ruiz et al. [1], Wang et al. [2],
Constantinescu et al. [3], Tuohy et al. [4], Morales et al. [5],
Bouffard et al. [6] and Papavasiliou et al. [7]. Stochastic unit
commitment models explicitly account for uncertainty in the
formulation of the unit commitment problem and therefore
have the potential to outperform ad-hoc deterministic reserve
rules that are used in practice. The formulation of the stochas-
tic unit commitment problem requires explicit modeling of the
uncertain parameters in the unit commitment problem in terms
of a few appropriately weighted representative scenarios.

Uncertainty in power system operations can be categorized
between discrete and continuous disturbances. Discrete distur-
bances refer to the failure of equipment such as generators
and transmission lines. Continuous disturbances include pa-
rameters of the unit commitment problem that vary smoothly
such as electricity demand and renewable power production.

Transmission constraints strongly affect the optimal rule
for allocating reserves in each area of the network. In order
to account for transmission constraints, operators often use
ad-hoc import constraints for determining locational reserve
requirements. Import constraints can be categorized between
‘bubble’ constraints and inter-tie constraints. ‘Bubble’ con-
straints limit the total amount of power that can flow into
a load pocket in order to ensure that the unit commitment
schedule reserves sufficient transfer capability on the lines in
order to protect against the possibility of generation capacity
failure within the load pocket. On the other hand, inter-tie

constraints limit the amount of power that can flow over inter-
ties in order to protect the system against the failure of major
corridors that bring significant amounts of power from outside
the system. Both types of constraints are formulated on an ad-
hoc basis, in the sense that there is no formal methodology for
determining the set of lines belonging to an import constraint
and the limit on the amount of power that can flow on the
import set. The complexity of committing reserves in the
presence of transmission constraints has been demonstrated
by various authors, including Arroyo and Galiana [8], Galiana
et al. [9] and Bouffard et al. [10]. Beyond their influence on
reserve requirements, transmission constraints also affect the
cost of operating the system. This is due both to the fact that
transmission constraints reduce the flexibility of dispatching
conventional generators in the system, and also due to the fact
that they result in the waste of renewable energy supply.

The inclusion of transmission constraints in the unit com-
mitment model necessitates the development of a multi-area
wind production model. Moreover, in order to assess the
impact of wind power production on power system oper-
ations over an entire year, it is necessary to account for
the non-stationary (seasonal and diurnal) patterns of wind
power production. This paper presents a multi-area stochastic
wind production model that captures the seasonal and diurnal
patterns of wind power production, accounts for the temporal
and spatial correlations of the original data set and accurately
reproduces the marginal distribution of wind power production
at each location of the network. Moreover, the proposed model
is applied to a detailed dataset of the California wind power
resources corresponding to the 2012 and 2020 Renewable
Portfolio Standards. The remainder of the paper is structured
as follows. In Section II we summarize relevant literature and
present the methodology for calibrating the multi-area wind
production model and for simulating the process. In Section
III we present a case study of the California power system. In
Section IV we summarize the conclusions of our study.

II. METHODOLOGY

The nonlinear dependence of wind power production on
wind speed raises challenges in the statistical modeling of
wind power production. It is therefore common in the wind



power modeling literature to model wind speed and use a
static power curve to calculate the corresponding wind power
production.

The task of modeling wind speed consists of removing
seasonal and daily patterns from wind speed data, fitting the re-
sulting process to a parametric or non-parametric distribution,
and fitting an appropriate time series model to the underlying
noise in order to capture the strong temporal correlation of
wind speed time series. Early work on wind power modeling
was performed by Brown et al. [11]. The authors list various
parametric distributions for fitting wind speed data, such as the
Weibull, inverse Gaussian and exponential distribution. The
authors use an exponential function to transform their data
to an approximately Gaussian data set. They remove hourly
means and estimate the order of an appropriate autoregressive
model and they use the Yule-Walker equations [12] to estimate
the parameters of the autoregressive model. Torres et al. [13]
follow the same methodology as Brown et al. [11]. The authors
use autoregressive moving average models and find that these
more general models provide a more satisfactory fit.

Transmission constraints have recently prompted re-
searchers to develop multi-area wind production models.
Moreover, diurnal and seasonal patterns of wind power pro-
duction need to be accounted for in order to assess the impact
of wind integration on power system operations over an entire
year. In recent work, Morales et al. [14] develop a multi-area
wind speed model by using a noise vector that drives a vector
autoregressive process. In order to simplify the calibration of
the model, the authors assume a diagonal matrix of autore-
gressive coefficients, which implies that spatial correlations
among wind speed in various locations are captured fully by
the underlying noise vector. The calibration and simulation
model that we use extends the approach of Morales et al.
[14] in order to account for seasonal and diurnal wind speed
patterns.

A. Calibration

Given a multi-area data set ykt, where k indexes location
and t indexes time, the first step of the calibration procedure
is to remove diurnal and seasonal patterns. We normalize the
data by subtracting the hourly mean and dividing by the hourly
standard deviation in order to obtain a stationary data set
ySkt for each location. Systematic patterns can be monthly,
seasonal, or may even vary between weekdays and weekends
as is the case for load data. In each case, the appropriate
portion of the data set should be chosen for estimating the
mean and variance. In the present study, the data is partitioned
by month.

We next filter the data set in order to obtain an approxi-
mately Gaussian stationary data set yGS

kt . Brown et al. [11],
Torres et al. [13] and Morales et al. [14] use this approach for
transforming Weibull-distributed wind speed data to Gaussian
data, and Callaway [15] uses a non-parametric transformation.
In the single-area wind integration study of Papavasiliou et
al. [7], the authors find that the inverse Gaussian distribution
provides a satisfactory fit for the data set. For the multi-

area wind integration study presented in this paper, no single
parametric distribution provides a close fit for the observed
data in all locations, therefore we fit an empirical distribution
F̂k(·) to the data of each location k.

The resulting time series yGS
kt can be modeled by an

autoregressive model:

yGS
k,t+1 =

p∑
j=0

φ̂kjy
GS
k,t−j + ω̂kt, (1)

where ω̂kt is the estimated noise and φ̂kj , j ∈ {1, . . . , p}, are
the estimated coefficients of the autoregressive model. The
calibration process is summarized in the following steps:

Step (a). Remove systematic seasonal and diurnal effects:

ySkt =
ykt − µ̂kmt

σ̂kmt
, (2)

where ykt is the data, ySkt is the transformed stationary
data, and µ̂kmt and σ̂kmt are the sample mean and standard
deviation respectively for location k, epoch (e.g. month or
season) m and hour t.

Step (b). Transform the data in order to obtain a Gaussian
stationary data set:

yGS
kt = N−1(F̂k(ySkt)), (3)

where yGS
kt is the transformed stationary data that follows a

Gaussian distribution, N−1(·) is the inverse of the cumulative
distribution function of the normal distribution and F̂k is the
cumulative function of the (parametric or non-parametric) fit
for the data in location k.

Step (c). Use the Yule-Walker equations [12] to estimate the
autoregressive parameters φ̂kj and covariance matrix Σ̂ of the
residual noise obtained from Eq. (1).

B. Simulation

In order to simulate multi-area wind power production, we
assume that the process is driven by an autoregressive ‘noise’
vector. For K locations and p periods of lag the model is:

Yk,t+1 =

p∑
j=0

φkjYk,t−j + ωkt, (4)

where Φ = (φkj), k ∈ {1, . . . ,K}, j ∈ {1, · · · , p}, is the ma-
trix of autoregressive parameters and (ωkt), k ∈ {1, · · · ,K},
are independent, identically distributed, multivariate Gaussian
random variables with mean 0 and covariance matrix Σ. The
simulation of the multi-area process can then be summarized
in the following steps:

Step (a). Generate autoregressive noise of order p by using
the estimated autoregressive parameters and variance.

Y GS
k,t+1 =

p∑
j=0

φ̂kjY
GS
k,t−j + ωkt, (5)



Fig. 1. A schematic of the WECC model.

TABLE I
CURRENT AND PROJECTED CAPACITY OF WIND POWER INSTALLATIONS

(MW).

County Existing Moderate Deep
Altamont 954 954 1,086
Clark - - 1,500
Imperial - - 2,075
Solano 348 848 1,149
Tehachapi 1,346 4,886 8,333
Total 2,766 6,688 14,143

where ωkt = (L̂ω)k, ω are independent standard normal
random vectors with K entries, L̂ is the Cholesky factorization
of Σ̂ and Y GS

kt is the Gaussian stationary autoregressive
process for location k.

Step (b). Transform the resulting process such that it obeys
the non-Gaussian distribution of the original stationary data:

Y S
kt = F̂−1

k (N(Y GS
kt )) (6)

where Y S
kt is the stationary, non-Gaussian process, N(·) is the

cumulative distribution function of the normal distribution and
F̂−1
k is the inverse of the cumulative function of the data for

each location.
Step (c). Transform Y S

kt by its seasonal and hourly mean
and variance:

Ykt = σ̂kmtY
S
kt + µ̂kmt, (7)

where Ykt is the resulting process that is non-stationary and
distributed according to the original data for each location.

Step (d). Use an approximation P̂k(·) of the aggregate power
curve for each location to simulate wind power production:

Pkt = P̂k(Ykt), (8)

where Pkt is the simulated wind power production process for
each location.

III. RESULTS

We use the multi-area wind production model to study the
impacts of large-scale renewable energy integration in the
California power system. We use a model of the California
ISO with imports from the Western Electricity Coordinating
Council (WECC) that is also used by Yu et al. [16] and is
described in detail by Papavasiliou et al. [7].

A. Data

We use wind speed and wind power production data from
the 2006 data set of the National Renewable Energy Lab-
oratory (NREL) Western Wind and Solar Integration Study
(WWSIS), described by Potter et al. [17]. We study two
wind integration cases. The first represents a moderate energy
integration level for wind power corresponding to the 2012
integration target of California, and the second case represents
a deep integration level corresponding to the 2020 integration
target. Ex post we have estimated that the moderate inte-
gration case corresponds to approximately 7% wind energy
penetration, while the deep integration case corresponds to
approximately 14% wind energy penetration. In the subsequent
analysis we will refer to these cases as moderate and deep
integration respectively.

In order to collect data for each case, we examined the
interconnection queue of the California ISO until 2020 (see
[18]), and placed individual wind generators in our model by
matching the geographical locations of planned wind power
installations with the corresponding wind park data in the
WWSIS data set. In Table I we present the location of existing
wind generation capacity, as well as capacity for the moderate
and deep integration cases.

In Fig. 1 we present a schematic diagram of the WECC
model. The dashed boxes represent load and generation pock-
ets. The thick solid lines represent the import constraints
discussed in the introduction. Each thick solid line intersects a
set of transmission lines over which the total amount of power
cannot exceed a certain limit. The wind generators of Table I
are located in the five buses that are depicted as solid black
circles. In order of appearance from top to bottom, these wind
sites are Solano, Altamont, Tehachapi, Clark and Imperial.

B. Results

In Fig. 2 we present the approximate power curve and the
fit of the complementary cumulative probability distribution
of wind output to the data for the Altamont area for both
integration studies. The corresponding results for Solano and
Tehachapi are presented in Figs. 3, 4 respectively. In Figs. 5,
6 we present results for the deep integration case for Clark
County and Imperial Valley respectively.

As the figures indicate, the primary source of discrepancy in
the model is the approximate power curve. Note that the com-
plementary cumulative probability distribution deviates from
the data only for high wind output levels for the Tehachapi
area, and to a lesser extent for the Solano area. From the power
curve of the Tehachapi area we note that the scatter plot of
wind speed to wind power exhibits a significant spread. This



Fig. 2. In reading order: power curves (left) and complementary cumulative probability distribution of wind output (right) for Altamont for the moderate
(up) and deep (down) integration study.

Fig. 3. In reading order: power curves (left) and complementary cumulative probability distribution of wind output (right) for Solano for the moderate (up)
and deep (down) integration study.



Fig. 4. In reading order: power curves (left) and complementary cumulative probability distribution of wind output (right) for Tehachapi for the moderate
(up) and deep (down) integration study.

Fig. 5. In reading order: power curves (left) and complementary cumulative probability distribution of wind output (right) for Clark County for the deep
integration study.

Fig. 6. In reading order: power curves (left) and complementary cumulative probability distribution of wind output (right) for Imperial Valley for the deep
integration study.



is due to the fact that Tehachapi covers a wide geographic
area with wind parks located in most regions of the area. As
a result, the power curve cannot reproduce the high-power
results observed in the data. In order to alleviate this problem,
we experimented with further partitioning the Tehachapi area
in smaller regions. However, this introduced greater inaccuracy
to the model due to the higher dimensions of the correlation
matrix Σ. As a result, we chose to model five areas as the best
compromise between capturing locational dependencies and
retrieving marginal wind speed distributions at each location.
Similarly, the Solano area exhibits a noticeable spread in
the scatter diagram between wind speed and wind power
production.

The aforementioned drawback is acceptable in the context
of unit commitment studies of wind integration. Wind power
variability affects reserve requirements due to the fact that
wind power production often reaches a near-zero level for
extended periods of time. We note from the complementary
cumulative probability distribution of wind output that the
behavior of wind power production is accurately depicted at
low wind production levels. Wind production ramping also
has the potential of affecting reserve requirements. Our model
accounts for the inter-temporal fluctuations of wind power
supply by isolating monthly and diurnal patterns and by using
a time series model for wind speed.

IV. CONCLUSIONS

We have presented a stochastic model of multi-area wind
production that can be used in stochastic unit commitment
studies of renewable energy integration. We fit a time series
model of wind speed and use a piecewise linear approximation
of the regional power curve to simulate wind power. We
account for monthly and diurnal patterns of wind speed and
use a time series model for reproducing temporal correlation.
We represent spatial correlation by introducing a correlation
matrix in the noise that drives the vector autoregressive pro-
cess. We present simulation results for two wind integration
studies of the California power system that correspond to the
wind integration targets of 2012 and 2020. We observe that
the fitness of the model to the data depends largely on the
accuracy of the piecewise linear approximation of the power
curve. Increasing the number of regions improves the accuracy
of the power curve approximation, at the cost of increasing
the size of the correlation matrix that drives the wind speed
process.
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