MATHEMATICS OF OPERATIONS RESEARCH
Vol. 9, No. 1, February 1984
Printed in U.S.A.

A NEWTON-TYPE ALGORITHM FOR THE SOLUTION
OF THE IMPLICIT PROGRAMMING PROBLEM*

C. D. FEINSTEIN{ anD S. S. OREN}

A second-order algorithm is presented for the solution of the implicit programming
problem. The implicit programming problem is a mathematical programming problem that
has as its solution the optimal steady-states of an optimal control problem defined on an
infinite horizon. The algorithm is shown to be a variant of Newtons method for solving a
fixed-point problem defined implicitly by the implicit programming problem. Local and global
convergence properties of the algorithm are briefly discussed.

1. Introduction. A very popular and useful model of economic dynamics is
provided by the optimal control problem with discounting, formulated on an infinite
time horizon ([3]-{5], [14]-[16]):

minimize J; we""’l(x, u)dt (1a)
subject to X (1) = f(x(t),u(t)); (1b)
x(0)=xo; (1c)

(x(t),u(t)) e XX UCR"XR™" foreach t€{0, o). (1d)

The variable x € R" is the state variable and the variable ¥ € R™ is the control
variable. The set U C R™ may depend on x(#) and ¢, explicitly. In that case, we shall
write U = U(x,), where U(x, 1) is a set-valued mapping from X X [0, o) into 2%", the
set of all subsets of R”. The cost function / is real-valued and the system dynamics is
described by the function f that takes values in R”. The scalar p is the discount rate.

The analysis of problem (1) indicates the special role that certain state-control pairs,
referred to as optimal steady-states, play in the structure of the optimal trajectory of
the dynamic model. In particular, it can be shown that, under certain convexity
assumptions, the optimal dynamic trajectory converges to a unique point, say (x*,u*),
which belongs to the null space of the system dynamics function f (thus, the
terminology “steady-state”) [15]. This result is known in the economics literature as the
“turnpike” property of the optimal trajectory ([4], [16]). It can also be shown that this
particular optimal steady-state may be thought of as a constant dynamic trajectory
that is optimal in the class of trajectories with initial conditions equal to the state-
component of the optimal steady-state, i.e., if xo = x* in (Ic). In general, the optimal
steady-state will not be unique. In such a case, the collection of optimal steady-states
may be viewed as attractors for various dynamic trajectories: the optimal steady-state
to which the dynamic trajectory converges is determined by the initial conditions (1c).

Given the importance of such steady-states in the analysis of the dynamic problem,
it would be quite valuable to be able to find them without having to solve the full

*Received June 26, 1981; revised July 30, 1982.

AMS 1980 Subject Classification. Primary: 49D15, Secondary: 93CI5.

OR/MS Index 1978 Subject Classification. Primary: 642 Programming /nonlinear /algorithms.
Key words. Infinite-horizon control, implicit programming problem, Newton’s method.

T University of Santa Clara.

¥University of California, Berkeley.

75
0364-765X /84,/0901 /0075801.25

Copyright © 1984, The Institute of Management Sciences /Operations Research Society of America

76 C.D. FEINSTEIN & S. S. OREN

dynamic problem. It is natural to seek a characterization of the optimal steady-states
in terms of a static optimization problem. The static problem that characterizes the
optimal steady-states has been formulated by Feinstein and Luenberger [6], and is
called the implicit programming problem. The implicit programming problem, since it
combines both static and dynamic elements, differs significantly in structure compared
with the standard mathematical programming problem. Because of this structural
difference, a new algorithmic approach is required for the solution of the implicit
programming problem. In this paper, we present such an algorithm. The algorithm is a
second-order method, essentially Newton’s method, applied to a system of equations.
However, since the equations are defined implicitly by the first-order necessary
conditions of the implicit programming problem, Newton’s method takes a form which
may be conveniently referred to as a “horizontal” Newton method. This terminology is
chosen to contrast with the standard “vertical” Newton method, as we shall depict in
Figures 1 and 2 below.

2. The implicit programming problem. The implicit programming problem, which
has as its solutions the set of optimal steady-states for the dynamic problem (1) (see [6]
for this result), is (where 8 is the zero vector)

minimize /(x,u) (2a)
subjectto f(x,u) — p(x — x*) =40 (2b)
(x,u) € X X U(x) CR" X R™ (2¢)

The unique structural feature of the implicit programming problem is contained in
the constraint (2b). The term x* indicates the value of the x-component of the solution
to problem (2). Thus, the constraint of the problem is defined implicitly by the solution
to the problem itself.

The most natural way to interpret the implicit programming problem is that it
actually defines a mapping from R” to R” X R™. To highlight this interpretation, let us
replace x* in the constraint (2b) with a parameter ¢ € R". As ¢ varies over R”, a family
of nonlinear programming problems is created. Moreover, for any ¢, the problem

minimize /(x,u) (3a)
subjectto f(x,u) — p(x — c) =4, (3b)
x€EX, ueU(x) (3¢)

defines a mapping that takes ¢ € R” into the solution of problem (3), (x*(¢), u*(c)).
The implicit programming problem (2) may then be written

minicmize I(x*(c),u*(c)) (4a)
subjectto x*(c)=rc, (4b)
c € X, (4¢)

where the minimization is taken over the fixed-points of the mapping ¢ — x*(c). The
fact that this mapping is defined implicitly by the mathematical programming problem
(3) suggests the terminology “Implicit Programming Problem.” One would expect the
minimization defined by (4) to be over a discrete set (although there is a possibility of
degeneracy in the data of the problem, in which case the fixed-points of the mapping
form a continuum). Indeed, the discrete nature of the “feasible” set for (4) indicates
that what is of primary importance in the analysis of the implicit programming
problem is the set of local solutions, i.e., all the fixed-points of the implicit mapping
defined by (3). This is consistent with the dynamic problem from which the implicit

_—

NEWTON-TYPE ALGORITHM FOR SOLUTION OF IMPLICIT PROGRAMMING PROBLEM 71

programming problem is derived: the local solutions are the attractors of the collection
of the optimal dynamic trajectories. We will designate such points as feasible points for
the implicit programming problem (2). It is clear that every feasible point of the
implicit programming problem (i.e., a fixed-point of the implicit mapping) is a
steady-state of the dynamic system X% = f(x,u), since the term p(x — c¢) in the con-
straint (3b) vanishes identically at the solution x*(c) whenever x*(c) = c.

A natural candidate for determining the solution of the implicit programming
problem is the method of successive approximations, often used for fixed-point
calculations. Here, the sequence of approximations {x;,,u,, } is determined recur-
sively by solving the mathematical programming problems

minitzxize I(Xpy 15 Upe1) (5a)
X+ s U+ 1
subject to f(Xp41>Us1) — P(Xesr — Xi) =0 (5b)

where x, is the solution of the immediately prior problem in the sequence. Unfortu-
nately, the sequence of approximations may not converge, as can be demonstrated in
the example where: / =4(x2/4 - 2u?%); f=1x+u—-1;p=1.

The structural reason for such failure is that problem (5) need not be a contraction
mapping on the (x,u,\)-space, where A represents the Lagrange multiplier. However,
the structure of problem (3) contains other features that may be exploited to guide the
iterations. We proceed to produce an algorithm that incorporates such information.

3. Derivation of the proposed algorithm. The algorithm we develop can be viewed
as a way to generate a sequence of parameters {c,} that identify a sequence of
problems in the family (3). The sequence of parameters is selected so that the sequence
of solutions {x¥} = {x*(c,)) converges to an element in the feasible set of the implicit
programming problem, {c¢: x*(¢) = c¢}.

The idea underlying the algorithm is straightforward. Suppose we choose a value of
the parameter c, that generates a solution to problem (3) such that x} # x*(c;). Thus
the point (x#, u¥) is not feasible for the implicit programming problem. We can change
¢, letting ¢, = ¢, + Ac. This will induce perturbations in the solution (Ax, Au, AX),
which are obtained by solving (3) for ¢, , ;.

If we knew how x*(c) varies with c, then we could select Ac such that x*(c, + Ac)
= ¢, + Ac, determining a feasible point. Of course, in general we cannot express x*(c)
analytically, but we can specify Ac to satisfy the fixed-point condition to first order.
Assuming V_x*(¢), the gradient of the solution with respect to the parameter, exists,
we may select Ac to satisfy the first-order fixed-point condition

x*(¢) + V.x*(c)Ac = ¢, + Ac. (6)

The question of the behavior of the mapping x*(c) is a sensitivity issue and has been
studied by various authors. We state a result, given by Fiacco [7], that indicates that
the mapping x*(c) is continuously differentiable in a neighborhood of the parameter ¢,
when the second-order sufficiency and regularity conditions for (3) are satisfied at
(xt i, B = (x*(6), u*(c). A (cy)).

We define the Lagrangian for problem (3) as

L(x, u,A;c) = I(x,u) + }\T[f(x, u) —p(x — ck)].

THEOREM 1. Suppose the functions | and f are twice continuously differentiable in a
neighborhood of the point (x¥,u}). Then (x},u}) is a local minimum of (6) with ¢ = ¢, if

78 C. D. FEINSTEIN & S. S. OREN
there exists a Lagrange multiplier N} such that
VoeurL(x2,ut At sc)=0, or
VIt u) + MV S ut) = ol] =0,
VI(x) + N[V SOk)] = 6,
f(xE ut) —p(xt — &)= 9, and (R
V2 L (xE uf NEsck)is positive-definite over the subspace

M= (&) [VefOxtup) = ol JE+ [V Sk) In =0 (8e)

Further, if (x},u?) is a regular point of the constraints (3b) (i.e., the n X n+m
matrix [V, f(x¥, uf) — p(l |®)] is rank n, where (1 |®) is an n X n identity matrix
adjoined with an n X m zero matrix), then for c in a neighborhood of ¢, there exists a
unique once continuously differentiable function (x*(c), u*(c), A*(c)) satisfying the second-
order sufficiency conditions for a local minimum of (3) for all ¢ in this neighborhood, and
such that (x¥,uf AF) = (x*(cp), u*(cy), A*(ce)-

Proof. See [7, Theorem 2.1]. &

Thus, if the second-order sufficiency conditions are satisfied at a regular point of the
constraints, the solution to (3) along with the Lagrange multiplier are locally, continu-
ously differentiable functions of the parameter c. This result indicates that the
approach of selecting the perturbation Ac to satisfy the first-order fixed-point condi-
tion (6) is well defined. Solving (6) for the perturbation Ac, assuming the indicated
inverse exists, we have the iteration: set ¢, ,, = ¢, + Ac, where

Ac= —[I- Y x*(c)]™ (6 = x*(c)):)

In order to implement this iteration, we require an expression for V.x*(c;) in terms
of the functions / and f. The theorem above indicates that for ¢ in a neighborhood of
C» (x*(c), u*(c),A*(c)) satisfies the first-order necessary conditions (8(b), (c), (d)). Let
us represent these equations concisely as F(x,u,A,c) = 8. Hence in a neighborhood of
c, there holds

F(x*(c), u*(c),A*(c)) = 0. (10)

The Jacobian matrix of system (10) is the (n+ m + n) X (n + m + n) symmetric
matrix

[0F/3(x,u,\)] = _ Yk ! [Veuf = T1O)] (11)
|

C)

where (I|®) is an n X n identity matrix adjoined with an n X m zero matrix and ©
denotes an n X n zero matrix. If the second-order conditions (8¢) hold at a regular
point, then the Jacobian matrix is nonsingular [12, p. 231} and the implicit functions
(x*(c), u*(c),A*(c)) are continuously differentiable. (This follows from the implicit
function Theorem [1], and is the essence of the argument used to prove the theorem

NEWTON-TYPE ALGORITHM FOR SOLUTION OF IMPLICIT PROGRAMMING PROBLEM 79

guated above.) Hence taking the gradient of (10):
[V x*(e) |
[3F/(x. M) || Vour(e) | +[3F/dc] =0 where (12a)
1'?._.:";- [c)
C)
0F/dc]=|© | (12b)
(8d) [] pl
Hence,
V.x*(c) K
V.u*(c) | = —[3F/d (x,u,A)]"l e | (12c)
Xn+m VA*(c) ol
» matrix -
exists a If we partition the inverse Jacobian matrix
2 second- Fo| F W
wod, and 9F/d PN N Y et 15 My T 3 13
[oF/xuM] "= (13)
where F;, is an (n+ m) X (n+ m) matrix and F, = F 7, then (12¢) yields the
expression for the gradient of the implicit mapping:
int of the . V.x*(c)= —p[I]|O])F);. (14)
continu- o
that the The iteration (9) then becomes
nt condi- -1
G =G~ I+p[I|O]|F & — X*(c) | 15
indicated =6~ [1+0[1|0]F] " [c (c)] (15)
In particular, if [Vi,uLp(x,:‘, u¥,AY)] is nonsingular, we have
-1 T
©) Fi=[V2,L,] [Veuf—p(11©)]
. -1 .
) in terms x[[Vx,,,f— p(110)][V2.L,] [Vauf— p(II@)]T] : (16)
srhood of
,(d)). Let It is worth noting that the method of successive approximations would set Ac
srhood of = Cpp1 — € = x*(¢x) — ¢, which one should compare with (15).
To summarize, the proposed algorithm can be conceptually expressed as:
Algorithm 1.
Step 1. Choose ¢y, and set k = 0.
Step 2. Solve the mathematical programming problem
minimize [(x ,u4;,)
subject to f(x;,u) — p(x, — ¢,) = 8.
Step 3. If xf¥ = ¢, stop. Otherwise, find
Gr1=CtAC=¢Cy1 =0 _[1+P[1|®]F|2]—|[Ck - x]
rix and © (where F,, is given by (13)).
a regular Step 4. Increment k by one and return to Step 2.
functions

ie implicit 4. Horizontal and vertical iterations for fixed-point problems. One recognizes the
€ theorem iteration (9) as Newton’s method applied to the equation ¢ — x*(¢) = 8. However, the

80 C. D. FEINSTEIN & S. S. OREN

fact that the mapping x*(c) is known only implicitly alters the manner in which
Newton’s method operates. Consider the problem of solving the (scalar) equation
f(x) = 0. This is equivalent to finding a fixed-point of the function g(x) = f(x) + x.
The Newton iteration for this problem is given by (’ denotes differentiation):

Xewr =% — [1= g()] 7' (0 — g(x0))-

For each step of the iteration, we require x,, g(x,), and g'(x;). Suppose that it is
difficult to obtain g(x,) for some reason. Then an alternate approach to this problem
may be attempted. Let us introduce a parameter, ¢, and consider the equation
glx(c)] = c. A fixed-point of g is then a fixed point of the implicit function x(c). (The
function g is analogous to the mathematical programming problem (3), and x(c) is
analogous to the solution of that problem.)

Consider the Newton iteration for solution of the (scalar) equation ¢ — x(¢) =0,
given by

Cra1 = Cx "[. - x’(ck)]_l(ck = x(¢c))

which, in terms of g, becomes

Cerr = 6= [&[x(c)] = 117" gL x(c) (e — x(c0))-

This iteration eliminates the need to evaluate g[x(c,)] since, by the definition of
x(cp), glx(ci)] = c. Instead, the value x(c;) is required. Now x(c,) is found by
inverting g, x(c;) = g~ '(cp).

Generally, this is a difficult problem in itself, since it is typically easier to evaluate a
function than to invert it. However, for the implicit programming problem, it is natural
to consider this approach, since the inversion of g is exactly the process of solving the
mathematical programming problem (3) for ¢ = ¢,.

The two approaches are compared in Figure 1. The intersection of the curve y=g
and the line y = x is the required fixed-point. The standard Newton approach, where
now the initial estimate is denoted ¢, proceeds in a “vertical” manner, as shown. The
implicit approach, beginning from the same point, ¢,, inverts the function g to find
x(c,). The point ¢, is determined by projecting along the direction of the slope
g'[x(c,)] until the line y = x is intersected. Then, g is again inverted to find x(c,.),
and the iteration proceeds in this “horizontal” manner.

It is clear that by reflection through the line y = x, the parameter ¢ may be thought
of as an independent variable that maps into the value x(c). Then this new method
may be depicted in a “vertical” manner, considering the iterate pairs (¢, x(c,)). This is
illustrated in Figure 2, where the space R” X R” of co-ordinate pairs (c, x) is repre-
sented by a two-dimensional diagram, and the graph of the mapping x*, the set
{(c,x): x = x*(c)}, is represented by the curve.

The intersection of the n-plane {(c,x): x = ¢} and the n-surface {(c,x): x = x*(c)}
in the 2n-space R" X R” results typically in a point, denoted by (c*,x*), such that
c* = x*,

As shown in Figure 2, given a point ¢, solve problem (3) to find x}, the value of
x*(¢y). From the point (¢, x*(c;)) project along the gradient V_ x*(c,) until the plane
{(¢,x): x = c} is intersected. This determines c,, ,. The process repeats as shown in
the figure to find ¢, ,,.

The projection (or “step™) along the gradient V x*(c,) is given by

x = x*(c,) = V.x*(c)(¢ —).

— i

NEWTON-TYPE ALGORITHM FOR SOLUTION OF IMPLICIT PROGRAMMING PROBLEM

glc)

gix(c)l

gix(c,)

"VERTICAL"®
MNEWTON STEP

“HORIZONTALY
MNEWTON STEP

"'-..-_-_-_
%, ¢
ck ck;..l X(Ck‘.l) X(Ck) =
FiGURE 1
%
[|
C=x
-
E
I \
I b
Picky
, I \
ket Ty
I Vi
| | I
1
: {c,x)rx=xc)}
Sy (e =

Froune 2, Geometric interpretation of the algorithm

81

82 C. D. FEINSTEIN & S. S. OREN

Adding the intersection condition, x = ¢ = ¢, we have
Crar — X*(cr) = Vex*(c)(Chks1—) OF
[1—9.x*(co)J(cewr — &) = — (& = x*(cx))-

If the matrix [— YV, x*(c,)] is nonsingular, then (17) is identical to (9), the Newton
iteration.

(17

5. Local convergence and globalization of the algorithm. It is straightforward to
show that for a linear-quadratic problem, where /=1(x"Qx + u"Ru), Q >0, R >0,
and f = Ax + Bu + d, Algorithm 1 converges to the solution in one step. This suggests
that for more general problems the algorithm is quadratically convergent, as we shall
prove below. The proposed algorithm generates two sequences, {c,} and {(x},uf,
A)}. We are chiefly concerned with the behavior of the sequence {c;}, since it is the
fixed-point property of the solution that is essential. Clearly, the condition ¢, ; = ¢, is
equivalent to x# = c,. Furthermore, the convergence of the sequence {c,} to a point
c* implies that ¢* — x*(c*) = 4.

In the following theorem, we will show that if the sequence generated by the
algorithm converges, the order of convergence is two, as expected.

TuEOREM 2. Let the sequence {c} of vectors in R" be defined by Algorithm 1.
Suppose that {c,} —> c*, where c* = x*(c*), and assume that [I — V x*(c*)] is nonsingu-
lar. Then, for any norm || - || defined on R,

limsup ||cxe1— c*Il/llex — c*|? < co.
k—>o

PrOOF. Let us expand the quantity ¢ — x*(c) about some ¢; in a small neighbor-
hood of c:

¢ — x*(c) = ¢ — x*(c) + [1 = Vox*(c)](c — &)

—1(c—- ck)T[sz*(c°)](c - &) (18)
where each component of ¢° is a convex combination of the components of ¢ and ¢,
cf =8¢+ (1—8,)(ch);» 1<i<n 0<§ <L

By (17), the sequence {c;} satisfies
¢ — x*(c) +[1 = V. x*(c))(Ckar —) = 0.
Hence
¢ = x*(c) +[I - Vx*(@c)|(c* —a)=[1— V. x*(c)](e* =)
Thus, substituting (18), with ¢ = c*,
§=[1- Vox*(co) J(c* — Gear) —3(c* — ck)T[sz*(Co)](C* — Ck)-

Since we assume that [/ — V_x*(¢)] is nonsingular at ¢ = ¢*, then by the continuity
assumptions on / and f, ||[1— V. x*@)]™ Y and IlV2x*(c)}l| are bounded in the
neighborhood. (The norms here are operator norms, compatible with the vector norm
chosen for R".) Hence, for some finite K,

2
Nciss — €Il < Klle = c*|I.

In a neighborhood of a fixed-point of the mapping x* the algorithm exhibits

NEWTON-TYPE ALGORITHM FOR SOLUTION OF IMPLICIT PROGRAMMING PROBLEM 83

quadratic convergence, typical of Newton’s method. For an arbitrary initial point, ¢,
however, the algorithm must be modified by a stepsize relaxation scheme to assure that
a sequence is generated that converges to a fixed-point. Specifically, we choose

Chv1= C ¥ Bipr (19)

where B, is a stepsize parameter chosen to ensure global convergence and Py 1s the
solution of

[1 - ch*(ck)]pk = — (& = x*(cy))- (20)
If [1 — V_.x*(c,)} is nonsingular, the modified iteration becomes
1= 6= B[1= Vox*(e)] ™ [= x*(cn)], @1

replacing (9), the Newton iteration.

It is natural to measure progress toward a solution, a fixed point of x*, by the
function

Z(c)=1llc — x*(o)I? (22)

since for a fixed point ¢*, Z(c*)=0, with Z >0 otherwise. Thus, c,,, will be a
superior estimate, compared with ¢, if Z(c,,,) < Z(c,). Since <V_.Z(c,), p> <0, it
follows that (21) is a descent method ([13, 8.2.1}). Since the mapping x* is known only
implicitly, exact line search is impractical for stepsize selection. An alternative ap-
proach is given by the Armijo—Goldstein procedure ([2], [9], [13, p. 491]). Following
this procedure, we choose y > 1 and select

,Bk=max{1,l/y,l/'yz,..)

such that ¢, , = ¢, + B,p, satisfies the Goldstein criterion:

[Z(ex + Betr) — Z(c)/ BV Z(ch), p>] > 0

for some 6 € (0,1), and (V_Z(c;), p;> < 0. This procedure is known to converge to a

stationary point of Z(c) (see [13, 14.2.15], and (8, I1.3.3 and II.3.5]). That is, the
algorithm generates sequences all of whose limit points are in the set

T'={(c,p):<{V.Z(c), p> =0}. (23)

Note, however, that these points are not necessarily fixed-points of the mapping x*.
Since

(VeZ(e)) = (V($lle = x*()I*)s p> = (¢ = x*(e)) [I = Vox*(0)]p, (24)

it follows that a stationary point of Z(c) is either a fixed point of x*, or a point at
which the matrix [/ — V x*(c)] is singular (p # 8 by (20) when c is not a fixed point).
It is easy to test which kind of point is obtained and restart the algorithm if the result
is not a fixed point.

At any iteration, when [/ — V_x*(c,)] is nonsingular, the matrix [/ — V x*(c,)]”
X [I -V _x*(c,)] is a positive-definite approximation to the Hessian. In this case, the
vector p, is uniquely determined by (20):

Pe=— [1 - ch*(ck)] —I(Ck = x*(cy))-

We may then proceed by selectinig 8, by the Armijo—Goldstein rule discussed above.
However, when the matrix [— V_x*(c,)] is near singular, the modified iteration (21)
breaks down, either because the inverse matrix does not exist or because the stepsize S8,

84 C. D. FEINSTEIN & S. S. OREN

approaches zero. To overcome this difficulty, we further modify the algorithm using a
Levenberg-type damping [11]. We replace iteration (21) with

Cev1 = G — [ka + Hk]—][l - ch*(ck)]r(ck = x*(c))s (25)

where H =[I -V x*(c)]"[I — YV x*(c,)] and ¢, >0; ¢ can be chosen to yield
descent ([13, 14.4.6]).

6. Numerical example: A neoclassical economic growth model with wealth effects.
This example was analyzed by Kurz [10], who pointed out the interesting feature that
there exist multiple optimal stationary points, which we consider as multiple local
solutions of the implicit programming problem. In this example, the implicit program-
ming problem is

minimize — U(k,c) (26a)

subject to f(k) — ¢ — pk — p(k — k*) =0, (26b)
0 < c < f(k), (26¢)
k>0

The function U(k,c) is a utility function, defined on capital stock, k, and consump-
tion, ¢. The function f(k) is a production function, and p is the rate of depreciation of
capital. The dynamic optimization problem that serves as a model for economic
growth in the neoclassical model is

maximize fo P PU(k(t), c(1)) dt (27a)
subject to k() = f(k(1)) — c(t) — pk(1), (27b)
k(0) = ko, (27¢)
0 < c(#) < f(k(2)). (27d)

'The formulation of the implicit programming problem (26) follows from the structure
of (27).
As a numerical example, we used the following data:

rrea N NnAar- 3108 . n1 (28a)
f(k) =03 k%% — 001k — c, (28b)
p = 0.3706. (28¢)

The implicit programming problem was solved for this case using an APL imple-
mentation of Algorithm 1. We selected an initial estimate (kg.cd, AY) = (483.80406,
6.1646288 X 1072, 10.572712), which is the solution of the implicit programming
problem with p = 0. Table 1 exhibits the convergence of the algorithm. The left-hand
column is the sequence of parameters, £,, that define the sequence of constraints in the
embedding family of mathematical programming problems, i.e., Jk)—¢c— pk —
p(k —§,)=0.

For comparison we also solved the steady-state Euler-Lagrange equations for the
original dynamic problem directly, using Newton’s method (applied to the appropriate
system of equations). The results are given in Table 2. In this case, Newton’s method
converges, although some experimentation indicated that this latter method was far
more sensitive to choice of initial estimate than the implicit programming problem
algorithm.

-

NEWTON-TYPE ALGORITHM FOR SOLUTION OF IMPLICIT PROGRAMMING PROBLEM 85

TABLE 1
Convergence of the implicit programming algorithm
b ky) A
483.8040589 476.984605 2.570802162 0.1549077676
118.5037391 117.6892059 1.689178917 0.2078491717
51.98681055 51.84351784 1.307771277 0.2486274057
31.81941779 31.78913847 1.116139433 0.2777911069
23.95347608 23.94676563 1.015532527 0.2967806407
20.74255933 20.74128088 0.9671398309 0.3070992571
19.74953863 19.7494127 0.9510251414 0.3107326265
19.62770519 19.62770329 0.9490059023 0.31119529
19.62580904 19.62580904 0.9489744006 0.3112025212
19.62580858 19.62580858 0.9489743930 0.3112025229
TABLE 2

Convergence of Newton’s method
(applied to the first-order necessary conditions)

K} ct Ay
483.8040589 0.006164628772 1057271206
482.2246513 0.01484231429 0.1547823512
478.4632882 0.03547133794 0.1548075365
469.6508584 0.08360944604 0.1553978847
449.6033874 0.1920641418 0.1567757748
406.3939177 0.4203553561 0.1599303372
322.2974402 0.8386270257 0.1669956778
189.3469782 1.392467063 0.1824618190
63.48098920 1591183674 0.2141729336
50.24867151 1.257602871 0.2485340339
28.11336075 1120634220 0.2750105853
25.89316066 1.039494268 0.2910506423
21.16458566 0.9790827962 0.3038530200
20.14351847 0.9576445882 0.3091389635
19.65973872 0.9496093919 0.3110437868
19.62613253 0.9489800748 0.3112011373
19.62580860 0.9489743933 03112025228
19.62580858 0.9489743930 03112025229

After restarting the algorithm, other local solutions were found, for a total of three:

ks 23 A
19.625809 0.94897439 0.31120252
10.971532 0.77182366 0.35963222

6.3785408 0.62684526 0.41601502

These agree with the results reported by Kurz [10, Example 1].

It should be pointed out that comparing the number of iterations in Tables 1 and 2
is not meaningful since each iteration of Algorithm 1 involves an optimization
problem. In this example, and in general, the main advantage of the new algorithm is
its robustness rather than its speed.

7. Conclusions. In this paper, we have presented a variant of Newton’s method
for the solution of the implicit programming problem. The implicit programming

86 C. D. FEINSTEIN & S. S. OREN

problem is formulated so that its solution is the set of optimal steady-states of a
dynamic optimization problem. The algorithm responds to the essential structural
feature of the implicit programming problem: a local solution to the problem is a fixed
point of the mapping defined implicitly by the problem itself. One virtue of the
algorithm is its robustness. In general, we cannot rely on Newton’s method applied to
the steady-state Euler-Lagrange equations to generate the steady-states of the dynamic
problem. This is because the Jacobian matrix of those equations may be singular, in
which case Newton’s method breaks down.

References

[1] Apostol, T. (1960). Mathematical Analysis. Addison-Wesley, Reading, Massachusetts.
[21 Armijo, L. (1966). Minimization of Functions Having Lipschitz-Continuous First Partial Derivatives.
Pacific J. Math. 16 1-3.
3] Arrow, K. J. and Kurz, M. (1970). Public Investment, the Rate of Return, and Optimal Fiscal Policy.
Johns Hopkins Press, Baltimore.
[4] Cass, D. (1966). Optimum Growth in an- Aggregative Model of Capital Accumulation: A Turnpike
Theorem. Econometrica 34 833-850.
and Shell, K., eds. (1976). The Hamiltonian Approach to Dynamic Economics. Academic Press,
New York.
{6] Feinstein, C. D. and Luenberger, D. G. (1981). Analysis of the Asymptotic Behavior of Optimal
Control Trajectories: The Implicit Programming Problem. SIAM J. Control Optim. 19 561-585.
[7) Fiacco, A. V. (1976). Sensitivity Analysis for Nonlinear Programming Using Penalty Methods. Math.
Programming 10 287-311.
[8] Garcia-Palomares, U. (1973). Superlinearly Convergent Quasi-Newton Methods for Non-Linear
Programming. Doctoral dissertation, University of Wisconsin.
[91 Goldstein, A. A. (1965). On Steepest Descent. STAM J. Control 3 147-151.
[10] Kurz, M. (1968). Optimal Economic Growth and Wealth Effects. Internat. Econom. Rev. 9 348-357.
[11] Levenberg, K. (1944). A Method for the Solution of Certain Nonlinear Problems in Least-Squares.
Quart. Appl. Math. 2 164-168.
[12] Luenberger, D. G. (1973). Introduction to Linear and Nonlinear Programming. Addison-Wesley,
Reading, Massachusetts.
{13] Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York.
[14] Ramsey, F. P. (1928). A Mathematical Theory of Saving. Econom. J. 38 543-549.
{15] Rockafellar, R. T. (1976). Saddle Points of Hamiltonian Systems in Convex Lagrange Problems
Having a Non-Zero Discount Rate. Essay IV in The Hamiltonian Approach to Dynamic Economics,
D. Cass and K. Shell, eds. Academic Press, New York.
[16] Samuelson, P..A. (1965). A Catenary Turnpike Theorem Involving Consumption and the Golden
Rule. Amer. Econom. Rev. 55 486-496.

151

FEINSTEIN: DEPARTMENT OF DECISION AND INFORMATION SCIENCES, UNIVERSITY
OF SANTA CLARA, SANTA CLARA, CALIFORNIA 95053

OREN: DEPARTMENT OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH,
UNIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY, CALIFORNIA 94720

