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Co-Optimization of Generation Unit Commitment
and Transmission Switching With N-1 Reliability
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Abstract—Currently, there is a national push for a smarter elec-
tric grid, one that is more controllable and flexible. The full control
of transmission assets are not currently built into electric network
optimization models. Optimal transmission switching is a straight-
forward way to leverage grid controllability: to make better use
of the existing system and meet growing demand with existing in-
frastructure. Previous papers have shown that optimizing the net-
work topology improves the dispatch of electrical networks. Such
optimal topology dispatch can be categorized as a smart grid ap-
plication where there is a co-optimization of both generators and
transmission topology. In this paper we present a co-optimization
formulation of the generation unit commitment and transmission
switching problem while ensuring N-1 reliability. We show that the
optimal topology of the network can vary from hour to hour. We
also show that optimizing the topology can change the optimal unit
commitment schedule. This problem is large and computationally
complex even for medium sized systems. We present decomposition
and computational approaches to solving this problem. Results are
presented for the IEEE RTS 96 test case.

Index Terms—Generation unit commitment, integer program-
ming, power generation dispatch, power system economics, power
system reliability, power transmission control, power transmission
economics.

NOMENCLATURE

Indices

Operating state; indicates the no
contingency state (steady-state); is a
single contingency state.

Generator.

Set of generators at node .

Transmission element (line or transformer).

Set of transmission assets with as the “to”
node.

Set of transmission assets with as the
“from” node.
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, Nodes.

Time period.

Parameters

Electrical susceptance of transmission
element .

Production cost for generator .

Startup cost for generator .

Shutdown cost for generator .

Real power load at node for period .

, Minimum down time and min up time
for generator .

Big M value for transmission element .

Binary parameter that is 0 when the
element is the contingency and ,
1 otherwise.

, Max and min capacity of generator .

, Max and min rating of transmission
element , state .

Maximum ramp up rate for generator .

Maximum ramp down rate for generator
.

Maximum shutdown ramp rate for
generator .

Maximum startup ramp rate for
generator .

Number of periods.

, Max and min bus voltage angle.

Variables

Real power supply from generator at node
for state and period .

Real power flow from node to for
transmission element , state , and period .

Binary unit commitment variable for
generator and period (0 offline/down, 1
online/operational).

Startup variable for generator and period (1
for startup, 0 otherwise).

Shutdown variable for generator and period
(1 for shutdown, 0 otherwise).
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Binary variable for transmission element and
period (0 open/not in service, 1 closed/in
service).

Voltage angle at node for state and period .

I. INTRODUCTION

T HE physics that govern electrical networks make them
unique. It is possible to remove a link and improve the

efficiency of the system. Traditionally, transmission networks
for bulk power flow have been modeled as static, except during
times of forced outages or maintenance. This traditional view
does not describe them as assets that operators have the ability
to control. However, switching transmission lines is a common
practice with a mature technology; circuit breakers can open and
close transmission lines.

System operators can and do change the topology of sys-
tems to improve system performance. Operators switch trans-
mission elements to improve voltage profiles or increase transfer
capacity [1]. For example, it is an accepted practice to open
light-loaded transmission lines at night for better voltages pro-
files [2]. The Northeast Power Coordinating Council includes
“switch out internal transmission lines” in the list of possible
actions to avoid abnormal voltage conditions [3], [4]. In PJM,
Special Protection Schemes (SPSs) allow the operator to dis-
connect a line during normal operations but return it to service
during a contingency. These decisions are made under a set of
prescribed rules by the operator, rather than included in the op-
timization formulation.

Transmission switching has been explored as a control
method for problems such as over or under voltage situations,
line overloading [5]–[7], loss and/or cost reduction [8], [9],
system security [10], or a combination of these [11]–[13].
Numerous SPSs address specific instances of switching during
emergency conditions. Some SPSs open lines during emer-
gency conditions, demonstrating that it can be beneficial to
change the topology during emergency conditions. In this paper
we present the concept of co-optimizing the network topology
along with unit commitment.

Optimal transmission switching for economic benefit in a
market context was investigated by O’Neill et al. [14]. Fisher
et al. [15] and Hedman et al. [16] present and analyze the op-
timal transmission switching problem on the IEEE 118-bus test
case and showed that co-optimizing the generation and the net-
work topology can result in substantial savings. Transmission
switching is not by definition incompatible with reliable net-
work operations. Hedman et al. [17] demonstrated that trans-
mission switching can be beneficial even while ensuring an N-1
reliable network.

New transmission infrastructure can be expensive and hard
to site [18]. Therefore, optimal use of the existing system and
optimal expansion should be a priority. The US Energy Policy
Act of 2005 includes a directive for federal agencies to “en-
courage…deployment of advanced transmission technologies,”
including “optimized transmission line configuration.”1 This re-
search is also in line with FERC Order 890—to improve the
economic operations of the electric transmission grid. It also

1See Sec. 1223.a.5 of the US Energy Policy Act of 2005.

addresses the items listed in Title 13 “Smart Grid” of the En-
ergy Independence and Security Act of 2007: 1) “increased use
of…controls technology to improve reliability, stability, and ef-
ficiency of the grid” and 2) “dynamic optimization of grid op-
erations and resources.”

Optimal transmission switching is a promising option be-
cause it uses existing hardware to achieve important and timely
goals: increased grid flexibility and efficiency. In this paper, we
examine the potential for switching to increase the economic
efficiency of power system dispatch by co-optimizing transmis-
sion switching decisions and the system dispatch model. This
creates an N-1 DCOPF multi-period generation unit commit-
ment transmission switching model.

The paper is organized as follows. Section II discusses the
model formulation, including a discussion on transmission
switching, unit commitment, minimum up and down time
constraints, etc. Section III discusses how the general model is
modified for computational testing. A multi-period generation
unit commitment optimal transmission switching model with
N-1 contingency constraints is difficult to solve and, therefore,
we discuss in Section III how we decompose and solve this
optimization problem. Section IV presents a network overview
and the results and analysis for the RTS 96 system. Section V
discusses possible future work and Section VI concludes this
paper.

II. MODEL FORMULATION

This optimization problem is formulated as a mixed integer
programming (MIP) problem. The use of MIP within the elec-
tric industry is growing; PJM has switched from Lagrangian re-
laxation (LR) to MIP for their generation unit commitment soft-
ware [19] and for their real-time market look-ahead [1]. These
changes are estimated to save PJM over 150 million dollars per
year [1], [19]. Furthermore, most U.S. ISOs are testing and plan-
ning to switch to MIP in the near future [20].

A. N-1 DCOPF Optimal Transmission Switching and
Generation Unit Commitment Formulation

The direct current optimal power flow (DCOPF) is a com-
monly used linear approximation of the alternating current op-
timal power flow (ACOPF). Fisher et al. [15] showed how the
traditional DCOPF can incorporate transmission switching into
the formulation. Within this paper, we are ensuring that the
system is N-1 compliant, i.e., the system can survive the loss
of any single network component (generator or transmission el-
ement) in the system, except radial lines. This formulation also
incorporates generation unit commitment in order to analyze
how transmission switching affects unit commitment and vice
versa.

The objective of the optimization problem is to minimize total
cost, which includes the generator production costs in the no
contingency case, the startup costs, and the shutdown costs (1).
Since the demand is perfectly inelastic, minimizing the total cost
is the same as maximizing the total social welfare. This objective
is valid for systems where generation dispatch is a centralized
process in which all operating costs are known. For systems
where dispatch is determined by a centralized grid operator who
takes bids, we optimize the bid surplus. In further discussion, we
assume that bids are marginal costs.
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The constraints represent the traditional power flow con-
straints that follow Kirchhoff’s Laws, except for the modifi-
cations made to incorporate transmission switching. This is
a lossless model, which allows us to use only one variable
to represent a transmission element’s power flow. Therefore,
the node balance constraints, (3), account for flows to bus
(injections) and flows from bus (withdrawals). If this were
a lossy model, losses may increase or decrease (see [9]) as a
result of transmission switching. The objective is to minimize
the total cost so even if losses increase, transmission switching
can still be of value by decreasing the total cost. Constraints
(4), (5a), and (5b) are modified to incorporate the decision to
have a transmission element closed or open in the network.
Injections into a bus are positive (generator supply, power flow
to bus ) and withdrawals are negative (load, power flow from
bus ); see (1)–(16) at the bottom of the page.

B. Contingency Modeling

Each decision variable has a new value for each state , ex-
cept for and the variables associated with the unit commit-
ment formulation: , , and . State represents the

no-contingency, steady-state variables and constraints whereas
all other states represent single generator or (non-radial) trans-
mission contingencies.

We introduce a binary parameter for state and element
. represents the loss of transmission element

; represents the loss of generator . For ,
for all as this state reflects steady-state operations.

There are (transmission element or generator) contingencies.
For

(17)

(18)

(19)

The binary parameter forces the transmission element’s
flow to be zero within (4) when the transmission element is the
contingency; the use of in (6) forces a generator’s supply
to be zero when the generator is the contingency.

(1)

(2)

(3a)

(3b)

(4)

(5a)

(5b)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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C. Transmission Switching Modeling

Constraints (5a) and (5b) ensure that if a transmission ele-
ment is opened, these constraints are satisfied no matter what
the values are for the corresponding bus angles. The transmis-
sion element is considered opened if it is the contingency, i.e.,

, or it is chosen to be opened as a result of transmis-
sion switching, i.e., .

In (5a) and (5b), is often called the “big M” value where
is large enough to make the constraint nonbinding. must

be a large number greater than or equal to .
When either or , is zero and the
value of ensures that (5a) and (5b) are satisfied regardless
of the difference in the bus angles. Without this adjustment to
the power flow equations, the buses that were connected to this
opened transmission element would be forced to have the same
bus angle. With this adjustment, the solution corresponds to the
case when the transmission element is open in the network, as
desired.

ACOPF formulations include constraints on the angle dif-
ference between two connected buses; these constraints ensure
angle stability. However, in a DCOPF model, an angle differ-
ence constraint would be redundant vis-a-vis the line flow ca-
pacity constraint, (4). Restricting the angle difference between
connected buses is the same as placing a bound on the power
flow on that line (in our formulation, in (5a) and (5b)).
Thus, it is unnecessary to include both bus angle difference con-
straints and power flow constraints in a DCOPF formulation; in-
stead, the power flow constraint can implicitly contain the limit
on angle difference. If the physical limit on the angle difference
is below a line’s rated flow capacity, then the capacity limits can
be adjusted to enforce the angle constraints. In the formulation
presented here, we employ limits on each bus angle (2) since
it is not redundant and it conveniently provides a lower bound
on .

The chosen min and max bus angle values are radians.
It is computationally better for to be as small as possible,
which would be . A similar MIP
optimization model (see [21]) is used for transmission expan-
sion in which a shortest path problem is formulated to determine
the minimum value. By using this technique, depends
on the available paths between buses. Using this technique with
a transmission switching model like ours would substantially in-
crease solution difficulty. Transmission switching may remove
previous paths between buses; thus, this technique would re-
quire to be a variable rather than a parameter. As a result, it
is conducive to model the bus angle constraints by (2), making
it possible to define as we previously stated.

All solutions from the N-1 DCOPF transmission switching
problem must satisfy strict N-1 standards. For any contingency,
the line capacity limits are defined by rate C, or the emergency
rating; otherwise, the capacity limits are equal to the steady-
state, no contingency limits. We assume that when there is a
transmission contingency, the generator dispatch levels do not
change, which is the reason for the formulation presented in
(3a). When there is a generator contingency, all of the online
generators are allowed to adjust their output while satisfying
(6) and ramping constraints (12) and (13) in order to survive
the contingency. This associated re-dispatch cost is not included

in the objective because the re-dispatch occurs in real time,
whereas this model determines the short-term forward dispatch
of the system. Since the probability of an outage is small, we are
concerned with feasibility of surviving a contingency, not the
cost. For further discussion on the N-1 DCOPF optimal trans-
mission switching formulation, see [17].

D. Generation Unit Commitment

Generators are assumed to have linear generation costs,
startup costs, and shutdown costs (1). We also assume that
generators have minimum and maximum operating levels [see
(6)], minimum up and down time constraints [see (8) and (9)],
and ramp rate constraints [see (10)–(13)].

The generator’s state is represented by a unit commitment
variable , which equals one (or zero) when the unit is on (or
off). Offline generators cannot respond during a contingency.
The startup binary variable is . When the unit is turned on
in period , ; otherwise, . The shutdown binary
variable, , equals one only when the unit is off in period and
on for period . By incorporating the startup and shutdown
variables, we have the relationship in (7). This constraint can
be found in papers that were published over 40 years ago [22].
Based on our chosen formulation, we are able to relax the inte-
grality constraints of the startup and shutdown variables, which
we discuss in Section II-E. Thus, the variables are modeled
as binary variables [see (16)], while the and variables
are modeled as continuous variables [see (14) and (15)].

E. Startup and Shutdown Binary Variables

Generator startup and shutdown variables represent binary
states. However, by carefully formulating the constraints it is
possible to model them as continuous variables. By including
the set of constraints (7), (20), and (21), the startup and shut-
down variables take on binary solutions when the unit com-
mitment variables are feasible—specifically, when the vari-
ables are binary. This ensures that all feasible solutions for the
startup and shutdown variables are binary even if they are mod-
eled as continuous variables. Constraints (20) and (21) are valid
inequalities that are dominated by (7)–(9), thereby not requiring
(20) and (21) to be explicitly listed in the formulation. In other
words, (7)–(9) are tighter inequalities and they always satisfy
(20) and (21). Therefore, our formulation ensures that all fea-
sible solutions for the startup and shutdown variables are binary
even though they are modeled as continuous variables

(20)

(21)

Note that with the equality constraint (7), there is no require-
ment to have both startup and shutdown variables within
the formulation. Our initial formulation includes both startup
and shutdown variables so that the construct of the constraints
can be clearly understood. However, since only one of these sets
of variables is required, it is possible to choose a formulation
with either the and variables or the and variables. To
formulate the problem with only and (or and ) variables,
(7) can be used to replace wherever is present. Con-
straint (7) is then replaced with (7’) if the variables are kept;
(7) would be replaced by (7’’) if the variables are kept. If the
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formulation is reduced to include only the and ( and )
variables, the guarantee that all feasible solutions for are
binary still holds; thus, can still be modeled as continuous
variables

'

''

F. Minimum Up and Down Time Constraints

MIP formulations can be compared based on computational
results and/or compared by analyzing which formulation pro-
vides a tighter representation of the minimal convex set of the
MIP problem. In this section, we compare formulations based
on which formulation provides a tighter polyhedral represen-
tation. For information on valid inequalities, facets, and the
convex hull, refer to [23].

The minimum up and down time constraints, (8) and (9),
employ the turn on/off facet defining valid inequalities [24].
Hedman et al. [25] investigated the use of valid inequalities and
facets for the minimum up and down time constraints associ-
ated with the generation unit commitment problem and showed
how valid inequalities for the unit commitment problem can be
analyzed and improved. It also showed how constraints in alter-
native formulations, [26] and [27], can be improved.

With the facets in [24] and other trivial inequalities, we are
able to generate the convex hull of the , projection, i.e., the
minimal convex set of the , projection is completely rep-
resented by linear inequalities within our formulation. Many
papers on unit commitment formulations do not employ facet
defining valid inequalities for their minimum up and down time
constraints.

A recent paper on tighter unit commitment formulations,
[28], which uses only unit commitment, , variables within
their formulation, does not use facet defining valid inequalities
for the minimum up and down time constraints. However,
[29] has proven that their inequalities, which only involve
variables, are facets for the projection; with their facets they
are able to define the convex hull for the projection from the
overall unit commitment problem. Thus, the formulation from
[29] provides a tighter formulation than what is presented in
[28]. We use the facets defined in [24], which are the facets that
create the convex hull for the , projection. The inequalities
from [29] are not facets for the , projection so the facets
from [24] produce a tighter polyhedral representation than the
inequalities from [29] when startup variables, , are included.

One complicating factor with the facets listed in [29] is
the number of constraints that are required. To deal with this
problem, [29] proposed an efficient separation algorithm. An-
other option is to introduce startup and/or shutdown variables
and then use the facets for the , projection listed in [24].
Adding these binary variables is computationally conducive
since they can be modeled as continuous variables and it is then
possible to include the facets defined in [24], which are not
problematic to generate. By adding these continuous variables,
it is then possible to generate the convex hull (minimal convex
set) of the , projection; additional discussion as well as com-
putational results showing the performance of the minimum

up and down time formulation used in this paper can be found
in [24].

G. Ramp Rate Constraints

We include intertemporal ramp rate constraints, (10) and (11)
(see [30]) as well as ramp rate contingency constraints, (12)
and (13). Constraints (10) and (11) allow for the inclusion of
startup and shutdown ramp rates, which may be different than
the ramp rates under continuous operation. Since startup and/or
shutdown variables are included in this formulation, it is prefer-
able to use (10) and (11) over other formulations such as (10’)
and (11’) below (see [28]), because (10) and (11) are stronger
valid inequalities than (10’) and (11’). It can be easily verified
that the right-hand side of (10) and (11) can be strictly less than
the right-hand side of (10’) and (11’) thereby providing a tighter
bound on the variables. Since the startup and shutdown vari-
ables can be modeled as continuous variables as previously dis-
cussed, it is preferable to use these stronger inequalities

'

'

Since generators receive their unit commitment schedule well
in advance, they can determine the appropriate time to start
ramping up (or down) their unit when they turn it on (or off)
in order to meet their obligated output. However, this flexibility
may be limited due to their minimum up and down time con-
straints or current operations. It is therefore possible for the
maximum startup (or shutdown) ramp rate to be equal to the
unit’s . We test this model on the RTS 96 system, which
does not define startup or shutdown ramp rates. We therefore
assume that the maximum startup and shutdown ramp rates are
equal to the unit’s .

H. Reserve Requirements

Reserve requirements, such as spinning and non-spinning re-
serve, are typically included in unit commitment models. We do
not include them within our model since we are explicitly en-
forcing N-1. The primary purpose of spinning and non-spinning
reserve is to ensure there is enough capacity online to survive
a contingency; these constraints are used as proxies to enforce
N-1 since it is typically too computationally challenging to ex-
plicitly list every contingency.

Since our primary purpose is to examine the potential of this
concept, co-optimizing the generation and network topology, in
order to get more accurate results we chose to study a more com-
plex and robust problem where N-1 is enforced versus using
proxy (reserve) constraints. There is also the issue that reserve
constraints are constructed based on the network configuration,
e.g., zones. There is the question as to whether reserve con-
straints can still achieve the necessary reliability level if the net-
work topology changes. These proxy constraints may work for
the original topology but they may not work for the new network
configuration; simple theoretical examples can demonstrate this
as a possibility. By explicitly enforcing N-1 versus using reserve
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constraints, this is a much harder problem to solve, which we
discuss in Section III.

Spinning reserve may also be used for load forecast error. The
purpose of regulation reserve is for load following and forecast
errors; only when regulation reserve cannot address a forecast
error concern would spinning reserve be called upon to address
forecast errors. Such a secondary requirement for spinning re-
serve would generally not compare to the stringent requirement
of N-1; enforcing N-1 already ensures there is ample online ca-
pacity available to handle load forecast errors.

III. MODEL MODIFICATIONS FOR COMPUTATIONAL TESTING

Our problem formulation is a mixed integer linear program.
The difficulties in solving these specific MIP problems arise in
two independent ways. First, the treatment of multiple time pe-
riods with varying load levels make the problem size very large
due to replications of variables across each load condition. Sec-
ondly, the choice of settings for the binary variables generates a
combinatorial number of different problems, all of which need
to be examined in order to guarantee a global solution.

While the size issues typically result in solution times that
grow at a quantifiable rate, the combinatorial issues are much
harder to quantify and can lead to dramatically variable solu-
tion times. However, relaxing some of the binary restrictions can
lead to (easier) problems whose solutions provide lower bounds
on the optimal solution of the (minimization) mixed integer pro-
gram, while feasible solutions provide an upper bound on its op-
timal solution value. With these two values in hand, a rigorous
optimality gap can be calculated that indicates the percentage
difference between the provided solution and what may be pos-
sible. While reducing this optimality gap to zero is an interesting
academic issue, in practice, a feasible solution with a small opti-
mality gap is typically adequate, particularly when the input data
is not known with certainty. In an operational setting, proving
optimality is less important than improving the current solution;
we focus here on finding the best feasible solution within a given
timeframe.

A. Decomposing the Optimization Problem

Since the generation unit commitment optimal power flow
problem is a very difficult problem to solve, it is a common
practice within the electric industry to decompose it into sub-
problems. We take a similar approach: we separate the problem
into two subproblems, the main problem being the 24-h unit
commitment problem with the N-1 DCOPF formulation without
transmission switching, i.e., all binary variables are fixed to
one. Once this optimization problem is solved, we move to the
secondary subproblems where we fix the unit commitment vari-
ables to their solution values from the first subproblem and then
solve for .

For the RTS 96 test case, none of the ramp rate constraints
are active; thus, this problem can be decomposed into 24 N-1
DCOPF optimal transmission switching subproblems. Solving
each period separately will produce the same optimal solution
as when all periods are solved within one main optimization
problem since the ramp rate constraints are inactive. If there
are active ramp rate constraints, the N-1 DCOPF transmission
switching problem can be decomposed by first initially ignoring

the ramp rate constraints and solving the 24 subproblems. Con-
straint violations are then applied in the next iteration. Any pe-
riods that are linked by active ramp rate constraints are com-
bined into one subproblem and resolved. This method will en-
sure optimality if repeated until no further ramp rate constraints
are active. Another method would be to remove the ramp rate
constraints, solve for the optimal network topologies, fix the bi-
nary solutions, add the ramp rate constraints, and then solve for
the generator dispatch variables to ensure ramp rate constraints
are satisfied. This method would be faster but it will not guar-
antee optimality.

The process of fixing the unit commitment variables, solving
for the transmission switching variables, and then fixing the
transmission switching variables to solve for the new unit com-
mitment variables is repeated. This allows us to see how the
network topology can affect the unit commitment solutions and
vice versa. This process can be repeated until there is no change
in the solution or the solution time window is exhausted. This
approach works well when a good feasible solution is needed in
a limited time; the drawback is that optimality is not guaranteed.

B. Software Options

Relaxing the integrality constraint on all the binary values, or
fixing their values to 0 or 1, results in a linear program (LP).
Such subproblems arise at the root and every node of a branch
and bound tree that is explored by the commercial code we use,
CPLEX; ensuring these solve quickly is critical. The default op-
tions of CPLEX employ the dual simplex method since this is
typically effective for restarting a solution process from a parent
solution in the tree. However, since our problems tend to be
dual degenerate, extremely large numbers of pivots are required
even when the objective function is close to its optimal value.
The barrier method, which has better complexity bounds for
large scale problems, performs much better at solving each sub-
problem and completely mitigates the advantages of the restart
process (see [31]). The crossover process (that moves from an
interior to a basic solution) is also ineffective for similar reasons.
The use of these features can be controlled by an appropriate
option file for CPLEX. Not only does this improve node solu-
tion time, but it also allows us to solve the underlying problem
with fixed unit commitment and transmission switching binary
variables, and thus provides a feasible starting solution for the
decomposition process outlined above.

Since the unit commitment problem with fixed transmission
binary variables does not decouple over time, it provides a dis-
tinct computational challenge. CPLEX incorporates a number
of heuristics to determine appropriate binary values at the root
node, which appear to work well in this case. It is important to
ensure CPLEX is configured to look for feasible integer solu-
tions and that cutting plane generation is turned off (since such
cuts are ineffective). Just allowing processing of this nature at
the root node typically takes 20 h on a desktop workstation but
provides a solution for this problem with a 1% or better opti-
mality gap. Note that the long computation time is because we
have a full N-1 DCOPF formulation along with the unit commit-
ment problem. Most unit commitment models do not impose all
N-1 contingencies along with an OPF model. Solving the unit
commitment problem without including an N-1 DCOPF formu-
lation takes only 10 s. In order to better analyze this new concept
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of co-optimization of unit commitment and network topology,
we chose to have a more robust optimization problem.

When solving the transmission switching problem, as in-
dicated in [15], the techniques for closing the optimality gap,
specifically improving the lower bound, are largely ineffective.
To overcome this, further decomposition or parallel computa-
tion is required. We use the multithreaded option of CPLEX,
coupled with options that branch based on pseudo reduced
costs, emphasize finding feasible solutions, and spend signifi-
cant (post processing) time improving the solution determined
by the branch and bound process. While these options are
effective at improving the given starting solution, several of the
resulting transmission switching subproblems have optimality
gaps that are larger than 4% after 20 h of computation on four
processor desktop machines. However, research has shown
that heuristic techniques can find good feasible transmission
switching solutions in reasonable timeframes, [16] and [17].

CPLEX also has an “indicator constraint” option that uses
the value of a (binary) variable to indicate whether or not to in-
clude a specific constraint. The formulation presented for the op-
timal transmission switching problem includes a “big M value,”
which essentially removes the constraints (5a) and (5b) from
the formulation whenever or . We have de-
veloped a formulation that does not include the big M values but
chooses from two sets of constraints based on the chosen value
for . While this mitigates the use of the big M value in con-
straints (5a) and (5b), the computational results are somewhat
mixed due to CPLEX having a restricted set of options to apply
in this problem setting. We remain hopeful that the formulation
will become more attractive as schemes to exploit indicator con-
straints within CPLEX mature.

IV. TEST CASE: IEEE 73-BUS (RTS 96) SYSTEM

A. Network Overview

The IEEE 73-bus network, also known as the three area relia-
bility test system 1996 (RTS 96), was created by a committee of
power systems experts [32]. It is common to make modifications
to the RTS 96 system. In [33] the authors removed line (11–13),
shifted 480 MW of load from bus 14, 15, 19, and 20 to bus 13,
and made other modifications as well. Buses 14, 15, 19, and 20
had an original total load of 820 MW; the new total load is 340
MW. In [34] the authors decrease the thermal capacity of line
(14–16) to 350 MW. For this study, we incorporated the changes
mentioned above from [33] and [34].2 The RTS 96 system has
three identical zones; the modifications are applied to all zones.

Table I provides an overview of the RTS 96 system data. The
generator cost information is an average cost based on the heat
rate data presented in [35] and the fuel cost (Energy Information
Administration, 2007 prices) presented in Table II. The RTS 96
system includes startup costs; shutdown costs are not defined
so they are assumed to be zero. There is seasonal information
for the hydro units within the RTS 96 system, all of which are
assumed capable of producing at their full capacity. Table III

2Modifications in [33] included reducing the total load of several buses. To
determine the new load levels at these buses, we calculated each bus’ initial
percentage of the original total load among these buses and allocated that bus
the same percentage of the new total load.

TABLE I
RTS 96 SYSTEM DATA

TABLE II
FUEL COSTS

TABLE III
PROBLEM SIZE AND PRESOLVE STATISTICS

TABLE IV
HOURLY LOAD PERCENT LEVELS

TABLE V
GENERATION UC AND TRANSMISSION SWITCHING SOLUTIONS

describes the problem size for this study. The RTS 96 system in-
cludes a yearly load curve. Table IV shows the hourly load levels
as percentages of the base load levels. The base load levels are
defined in Bus Data Table-01 from [35] for the RTS 96 system.

B. Results and Analysis

As previously stated, the main optimization problem that in-
cludes the generation unit commitment with the optimal trans-
mission switching N-1 DCOPF formulation is decomposed into
two subproblems. We first solved a 24-period generation unit
commitment problem with an N-1 DCOPF formulation. For this
solution, all transmission elements are closed, i.e., for
all and .
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TABLE VI
BASE SOLUTION COST, FINAL SOLUTION COST, AND OPTIMALITY GAP

TABLE VII
FIRST GENERATION UNIT COMMITMENT SOLUTION �� SOLUTION

TABLE VIII
FIRST GENERATION UNIT COMMITMENT SOLUTION

The generation unit commitment, N-1 DCOPF subproblem
produces a feasible solution with the objective value at:
$3 245 997; the optimality gap for this subproblem is 0.33%.
This solution will be referred to as the “base solution” and
it is in bold within Table V; the percent savings in Table V
are in reference to the base solution. Table VI shows the base
solution’s objective values for each period.

We then take this generation unit commitment solution,
fix the , , and variables, and then solve the 24
N-1 DCOPF optimal transmission switching problems. By
optimizing the network topology, we receive a solution of
$3 165 824, which results in a 2.5% savings as compared to the
base solution when we do not perform transmission switching;
the optimality gap for this subproblem is 3%.

The first generation unit commitment solution was solved
when all transmission elements were closed. It is possible that
the optimal unit commitment schedule may change once the net-
work topology changes, and vice versa. Thus, we take this first
transmission switching solution, fix all transmission elements to
the resulting values, and then run the unit commitment N-1
DCOPF problem again. The results show that the optimal unit
commitment solution depends on the chosen network topology.

With the first transmission switching solution as the set network
topology, we find a new unit commitment solution with a total
cost of $3 161 354 (see Table V); the subproblem optimality gap
is 0.66%.

The second unit commitment schedule would be more ex-
pensive than the first one if we do not optimize the network
topology. With all transmission elements in service, the total
cost for the second unit commitment solution is $3 272 280,
which is higher than the first unit commitment schedule’s cost
of $3 245 997 when all transmission elements are closed. Once
the topology is changed, a previously more expensive unit com-
mitment schedule is now the preferred schedule.

One key difference between the two generation unit commit-
ment solutions is that the first solution has three peaker units
that are committed for only period 10 (see Table VII). The
second generation unit commitment solution never commits
these units. The total startup cost for the first unit commitment
solution is $56 263 versus the second unit commitment’s total
startup cost of $49 157. The unit commitments are displayed in
Tables VII–XI.

We proceeded by fixing the second unit commitment solution
and resolving the N-1 DCOPF optimal transmission switching
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TABLE IX
SECOND GENERATION UNIT COMMITMENT SOLUTION �� SOLUTION

TABLE X
SECOND GENERATION UNIT COMMITMENT SOLUTION

TABLE XI
GENERATION UNIT COMMITMENT CHANGES BETWEEN SOLUTION 1 AND 2

problem. We received a different solution than the first transmis-
sion switching solution, with a cost of $3 125 185 corresponding
to a percent savings of 3.7% over the base case; the optimality
gap for this subproblem is 1.9%. However, this second trans-
mission switching solution is better than the first transmission
switching solution combined with either the first or the second
unit commitment solution. This means that the first transmis-
sion switching solution was not optimal. The first transmission
switching solution has a 3% optimality gap, indicating that sub-
optimality is a possibility; the second transmission solution con-
firms this to be true.

By decomposing this problem, we found a solution that saves
3.7% with a value of $3 125 185. We obtained a lower bound of
$3 024 989 from the overall unit commitment and transmission
switching optimization problem. The optimality gap is therefore
3.2% for our best found feasible solution. Table V presents a
summary of the solutions.

Table VI shows the individual period objective values for the
base solution, i.e., the first unit commitment solution with the
original network topology (no switching), the final solution, i.e.,
the second unit commitment solution with the second transmis-
sion switching solution, and the subproblem optimality gaps for
the final solution. Though the final solution is cheaper overall,
there are some periods where the costs have increased; these
hours are in bold. The higher costs are a result of choosing a

different unit commitment schedule. This result further empha-
sizes the benefit of co-optimizing the network topology with
unit commitment over multiple periods.

The final solution has an overall savings of 3.7% or over
$120 000 for this single base load day. The RTS 96 test system
does not compare in size to large ISO networks. If the same sav-
ings were achieved for every day of the year, the savings would
be over $44 million for this medium sized IEEE test case.

The most expensive units are roughly $220/MWh. Only three
of these units, units 5, 71, and 72, are ever committed in the base
solution and they are only committed in period 10 (see Table VII).
For the final solution, all of these units are off (see Table X). After
these peaker units, the second most expensive units are roughly
$100/MWh. It may be argued that the large spread in generator
costs drives the savings. As specified, there is only one hour
where these most expensive units were initially dispatched. If we
ignore this single period, the savings from the other 23 periods
still have a total savings of 3.6%. Thus, the spread in costs has an
impact, but a very minor one for this test case. Table XI shows the
changes in unit commitment schedules; this demonstrates how
changing the network topology can alter the unit commitments.

Table XII lists the second transmission switching solution.
Transmission elements that are never opened are not listed in the
table. The results show that the optimal network topology may
vary as network conditions vary and may be part of improved
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TABLE XII
SECOND TRANSMISSION SWITCHING SOLUTION (LINES NOT LISTED ARE ALWAYS CLOSED) �� SOLUTION

TABLE XIII
CHANGES BETWEEN THE FIRST AND SECOND TRANSMISSION SWITCHING SOLUTIONS

planning protocols. The differences between the two transmis-
sion switching solutions are shown in Table XIII.

Transmission switching can have a variety of impacts on
market participants. As the results have shown, it can alter the
optimal unit commitment solution by turning off previously
committed units and committing others. The only conclusion
that is possible from transmission switching is that the total
social welfare will not decrease.

V. DISCUSSION AND FUTURE WORK

Transmission switching has been shown to provide savings
when solving the network with a generation unit commitment
N-1 DCOPF problem. Future research could investigate dy-
namic load patterns to research the effects of transmission
switching in an ac formulation since lines affect reactive power
profiles differently under different loading patterns. There
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is also the need to research the impacts from transmission
switching regarding real time operations including voltage
profiles, reactive power, transient stability, etc. This analysis
is necessary at varying load levels as well since the capac-
itive component of a transmission element is predominant
during low load levels whereas the reactive component is
predominant at higher load levels. Research into whether trans-
mission switching would be beneficial for large scale, practical
networks and whether solutions can be obtained within a rea-
sonable timeframe is needed as well. Further, research could
look into geographic decomposition.

The RTS 96 system is a standard IEEE test case. It is large
enough to provide meaningful results but it is considerably
smaller than the ISO markets. Solving this problem took large,
specialized computer networks and even with this equipment
solving the problems took well over 20 h at each stage. The
transmission switching problem with a fixed generator unit
commitment could be run overnight to find a better transmis-
sion dispatch. For this method to be practically implemented,
research on how to solve this problem faster for larger networks
is needed.

The large computational times do not suggest that this ap-
proach of co-optimizing transmission topology with generation
unit commitment and dispatch is not possible. As previously
mentioned, the main difficulty is that we are combining unit
commitment with a full N-1 DCOPF formulation, something
that is not done in a practical setting. In operational networks,
the operator may use a security constrained unit commit-
ment (SCUC) with multiple stages that may include network
constraints and chosen contingency constraints; however, the
unit commitment stage still does not include a full N-1 OPF
formulation. We wish to study a more robust formulation in
order to obtain stronger, more accurate conclusions. Future
research should investigate how to best decompose this large
optimization problem in the same way unit commitment is
handled within a practical setting today. Furthermore, future
research should consider whether reserve constraints are appro-
priate proxy constraints for N-1 within transmission switching
models.

As more is learned about the network and transmission
switching, operators will know which transmission elements
are candidates for switching so that there is no need to represent
every transmission element within the network with a binary
decision variable reflecting whether the element will be closed
or not. Rather, the operator may be able to focus on a subset
of transmission elements that are key candidates for switching,
which will greatly reduce the number of binary variables in
the optimization problem and, thus, reduce the computational
complexity of the problem.

While the market surplus increases in the solution process,
there is no assurance that the load ends up paying less or the
generators receive more profit under traditional settlement rules
(see [16] and [17]). Revenue adequacy for FTRs is maintained
for the static dc network [36], but not guaranteed if the network
topology changes [37]. Revenue inadequacy as a result of trans-
mission switching is possible even though the market surplus in-
creases. Even if there is revenue inadequacy, since the total sur-
plus is guaranteed not to decrease with transmission switching,
there is the possibility for Pareto improvements for all market

participants. This raises the question about the settlement rules
if revenue inadequacy occurs.

VI. CONCLUSIONS

As computing power and optimization techniques improve,
the multi-trillion dollar electric industry looks for ways to cut
costs by taking advantage of these improvements. Viewing
transmission elements as committable assets in an optimization
framework is relatively new as such analysis was not possible
in the past due to the complexity this added to an already
challenging problem. As computing power increases and soft-
ware improves, potential annual savings may be in the tens of
billion dollars by improving the dispatch and making better
investments.

There are concerns with whether transmission switching will
be a detriment to reliability. We have demonstrated that a net-
work can satisfy N-1 standards while cutting costs by co-opti-
mizing the network topology and the dispatch. We have also
demonstrated that changing the topology of the network can
change the optimal unit commitment schedule and it may reduce
startup costs. This demonstrates that changing the topology can
replace the need to startup a generator. Our work thus far has
shown substantial savings from transmission switching, with
this study showing a $120 000 savings for one day. These find-
ings suggest that further research on transmission switching is
justified for larger networks and with more granular modeling,
such as an ACOPF.
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