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Abstract—In this paper we propose a direct coupling of re-
newable generation with deferrable demand in order to mitigate
the unpredictable and non-controllable fluctuation of renewable
power supply. We cast our problem in the form of a stochastic
dynamic program and we characterize the value function of
the problem in order to develop efficient solution methods. We
develop and compare two algorithms for optimally supplying
renewable power to time-flexible electricity loads in the presence
of a spot market, backward dynamic programming and approx-
imate dynamic programming. We describe how our proposition
compares to price responsive demand in terms capacity gains
and energy market revenues for renewable generators, and we
determine the optimal capacity of deferrable demand which can
be reliably coupled to renewable generation.

I. INTRODUCTION

Renewable power is emerging as a mainstream source of

energy supply in power systems. Various policy thrusts are

promoting the advent of renewable power in the United States

and around the world. Twenty four states and the district

of Columbia have set renewable portfolio standards, which

commit electric utilities to procure at least a certain percentage

of their energy from renewable energy sources. California set

the example in 2006 by establishing a renewable portfolio

standard which now requires that the state cover 33% of

its electricity demand from renewable energy sources. In an

effort to coordinate efforts at a national level, the federal

government voted for the American Clean Energy and Security

Act in 2009. Among its various measures, the legislation sets

a 20% renewable electricity standard at the national level, and

requires that US emissions be reduced by 17% compared to

their 2005 levels.These legislative measures signal the deter-

mination of the United States, the lead consumer of energy

globally, to utilize renewable energy at an unprecedented scale.

Integrating large amounts of renewable energy in power

systems presents a host of new technological challenges to

power systems operations. In this paper we focus on exploit-

ing flexibility in electricity consumption in order to balance

renewable energy supply. Renewable energy sources such as

wind power and solar power are supplied in unpredictable and

highly variable rates. We cannot forecast renewable generation

accurately, and even if we could these energy sources are

highly variable. These inherent characteristics of renewable

energy sources place them in a competitive disadvantage

compared to traditional fossil fuel energy sources.

A. The nature of the problem

The scheduling of power system operations is highly com-

plicated by the requirement of maintaining a continuous

balance between the supply and demand of electricity, in

order to prevent instabilities in the grid. The scheduling of

power system resources is already a highly complex task, and

introducing renewable energy sources in significant amounts

further complicates this task.

The unpredictability of renewable power supply may cause

imbalances to the system which require expensive deviations

from day-ahead dispatch schedules. Starting up or shutting

down units to compensate for a sudden change in renewable

power supply may take hours, lead to additional air pollution,

result in wear and the need for frequent maintenance of startup

units, and upset system dispatch due to the minimum genera-

tion capacity of startup units. Such large scale disturbances in

renewable power supply can occur during storms in systems

with large amounts of wind power.

The minute-by-minute variability of renewables imposes a

requirement for primary control, generators which can rapidly

adjust their power output in response to an unanticipated event.

Moreover, secondary control units are necessary which can

back up and dismiss primary control units. Since renewable

supply also tends to vary rapidly and in great magnitude, an

additional backup of ramping generators is necessary.

In a British report by the UK Energy Research Center [1]

the authors assembled a variety of wind power integration

studies with the objective of estimating the costs and impacts

of intermittent generation on the UK electricity network. Over

80% of the studies that the authors examined concluded

that for wind power energy penetration levels above 20% an

investment in system backup in the range of 5-10% of installed

wind capacity is required in order to balance the short term

(seconds to tens of minutes) variability of wind power supply.

The authors conclude that additional conventional capacity to
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maintain system reliability during demand peaks amounts to

15-22% of installed wind power capacity.

The California Independent System Operator published a

report recently [2], which analyzes the integration of 6700

MW in the California grid. According to the study the 3-hour

morning ramp of will increase by 926 MW to 1529 MW due to

the fluctuations of wind generation at the time when morning

demand increases, and the evening ramp will decrease by 427

MW to 984 MW. The regulation capacity requirement will

increase by 170 to 250 MW for regulation up and by 400

to 500 MW for regulation down. The regulation ramping will

increase by ± 15 to ± 25 MW/min. The load following ramps

will increase by ± 30 to ± 40 MW/min.

Various systems absorb large amounts of hydroelectric

power. During the months that snow melts and hydroelectric

power supply increases and must be absorbed, the addi-

tional generation of renewable energy causes an over-supply

problem. It is also possible that renewable energy supply

increase during the night and abate during daytime, hence

renewable generation is negatively correlated with electricity

consumption.

B. The Effects of the Problem

The costs associated with renewable power integration result

from the offset of variability by stand-by generators and the

requirement for investments on system backup. These costs

are captured by market tariffs and may be allocated to the

whole market or directly to renewable generators, depending

on market regulations. Research and experience indicate that

integration costs range between 0 and 7$/MWh [3], [4]. The

UK study mentioned above [1] placed an estimate of no more

than 5 British pounds for wind power integration. Another

recent study conducted by Enernex for wind power integration

in Minnesota [5] concludes that the cost of additional reserves

and costs related to variability and day-ahead forecast errors

will result in an additional $2.11 (15% penetration) to $4.41

(25% penetration) per MWh of delivered wind power. In a

similar vein, the CAISO report [2] has predicted an expected

increase in 10-minute real time energy prices due to wind fore-

casting errors which become comparable to load forecasting

errors.

Renewable energy may be discarded during hours of excess

renewable power supply if power systems cannot reliably

absorb this supply [3], [6]. During early spring the California

system operator either spills water supplies from hydroelectric

dams or discards wind power [2]. Wind power is also discarded

under normal operating conditions in California whenever

forecasting underestimates the amount of wind power supply

to the system and the excess power cannot be sold. In Texas

the system operator discards wind power during load pick-up

for reliability reasons [7].

Though the integration of renewable energy is increasing,

an integration level beyond 20% is not perceived as eco-

nomical (integration levels count 20% in Denmark, 9% in

Spain, 7% in Germany, and California is aiming for 33%

by 2030). Assuming capital costs for renewable power will

continue to decline in the future, one of the major challenges

for the large scale integration of renewable energy will be

its variability. Currently renewable generators operate under

favorable regulations in many markets. A number of system

operators in Europe (Denmark, Greece) and the United States

(PJM, NYISO, CAISO, Ontario IMO) accept wind generation

on a priority basis [8]. It is clear that this preferential treatment

has its limitations. Large scale renewable power integration

cannot rely on regulatory support alone, but will also require

technological improvements. The utilization of demand side

flexibility creates an excellent opportunity for addressing this

problem.

C. Demand side flexibility

Across the full spectrum of residential, commercial and

industrial consumption, a significant proportion of the power

that we generate is supplied to loads which are time flexible,

deferrable for a few minutes or hours at little or no cost.

Examples abound: electric vehicles, heating, ventilation, air

conditioning, thermostats, refrigeration, agricultural pumping,

controllable lighting. These time flexible demand side re-

sources could adapt their energy consumption according to

the fluctuation of renewable power supply in order to counter-

balance the resulting supply variations and enable large scale

integration of renewable energy without significant impacts on

grid operations.

With the appropriate communications and control infras-

tructure is in place, flexible loads can be manipulated as

controllable resources by the system operator, in much the

same way that generators are actively controlled today [9].

In the same fashion that generators communicate a set of

operating characteristics to the system operator (marginal

cost, minimum and maximum generation limits, minimum

and maximum ramping limits, minimum up and down time)

which then determines their dispatch such that the cost of

operating the system is minimized, loads could also declare

certain parameters to the system operator which characterize

their flexibility, such as their required energy demand and a

deadline by which this demand should be met. These load

resources can then be dispatched in a least-cost fashion, such

that their demand is met within their designated deadline. Due

to the fact that resources such as wind and solar power operate

at near zero marginal cost, renewable energy sources are an

excellent candidate for fulfilling such flexible energy requests.

In order to address the problems raised above, we propose a

paradigm whereby the demand of flexible consumers is regu-

lated by a central scheduler which receives requests for energy

consumption within a certain deadline, and decides how the

available renewable resources are allocated to consumers. The

scheduler commits to satisfy consumers by their deadlines, if

necessary by resorting to an electricity spot market in order to

procure energy at the last minute. This gives rise to a stochastic

optimal control problem.



II. ALGORITHMS

In this section we define the stochastic dynamic program-

ming problem at hand, certain properties of the value function

and two dynamic programming algorithms for solving the

problem. We then compare the performance of these algo-

rithms in terms of computation time and performance.

A. Problem Formulation

Consider a renewable power supplier which has entered

an agreement to supply a certain amount of energy to a

customer within a certain deadline. The renewable resource

supplier has a contractual obligation to fully satisfy customer

demand, either through renewable energy supply or through

spot market purchases. The objective is to determine the

optimal spot market strategy for the supplier, i.e. when it is

worth procuring energy from the spot market in order to satisfy

residual demand, and how much energy should be procured at

each period.

Our problem has a three-dimensional state vector, xt =
(λt, st, rt), where λt is the spot price of the resource, st is the

amount of resource which is freely available and rt represents

the remaining quantity of demand. In what follows we will

also use the notation xt(i) to denote the i-th coordinate of

the state vector for period t. Hence, λt = xt(1), st = xt(2)
and rt = xt(3). The residual energy rt evolves according

to rt+1 = rt − ut, where ut, our control, is the amount

of power supplied to the consumer in period t. We assume

that the two-dimensional stochastic process (λt, wt) can be

described by a non-stationary Markov transition probability

matrix, Pt[λt+1 = λ′, st+1 = s′|λt = λ, st = s], which we

denote generically as pt(x, x′), where x denotes the current

period state vector and x′ denotes the state vector of the next

period.

The objective is to minimize the following expected cost:

min
μt(xt)

E[
N−1∑

t=1

λt(μt(xt) − st)+]Δt, (1)

where μt(x) represents the rate at which the resource is

supplied and N is the number of periods. The state vector is

associated with the following initial and terminal conditions:

r1 = R, rN = 0, where R is the amount of demand to be

satisfied. The control ut cannot exceed an upper bound on the

rate of supply, ut ≤ C. Each interval of the problem has a

duration of Δt units of time.

Although the problem has been cast from the point of

view of a renewable power supplier, one can consider the

same problem facing a smart switch installed in any flexible

energy consuming device (e.g. a pool pump or a refrigerator)

which responds to renewable energy signals. Moreover, we

present here the problem of a single customer, but the same

problem applies for the case of multiple customers with

identical quantities of energy demand R, deadlines N , and

rate constraints C.

B. Backward Dynamic Programming

The backward dynamic programming algorithm is given by

the following equation:

Jt(x) = max
u∈Ut(x)

{g(x, u) +
∑

y∈St+1

pt(x, y)Jt+1(y)} (2)

where Jt(x) is the value function of period t, g(x, u) = λ(u−
s)+Δt is the cost incurred at each period, Ut(x) is the feasible

region of actions for period t, and St is the feasible region of

the state vector at period t. Backward dynamic programming

can yield the optimal policy in principle, however in the worst

case it can require as many as N · |S|2 · |U | operations [10],

where |S| is the cardinality of the state space, and |U | is the

cardinality of the action space, assuming the state and action

spaces have equal cardinality for each period.

C. Structure of the Value Function

We now present two results about the structure of the value

function in the case where the action and state space are con-

tinuous, which assist us in the development of an approximate

dynamic programming algorithm for this problem. For the case

of continuous action and state spaces, our actions are con-

strained in the following interval: Ut(xt) = [at(xt), bt(xt)],
where bt(xt) = C ∧ rt and at(xt) = bt(xt) ∧ (rt − C(N −
t − 1))+.

Proposition 1: The value function Jt(x) is convex in r =
x(3) for all t.

Proof:
We will prove the argument by induction, starting from

period N − 1. We know that

JN−1(xN−1) = λN−1(rN−1 − sN−1)+Δt, (3)

so the hypothesis holds for N − 1.

Now suppose that the hypothesis is true for all k up to

k ≥ t + 1. Consider the Q-factor at period t, Qt(xt, u):

Qt(xt, u) = λt(u− st)+Δt+EJt+1(λt+1, st+1, rt −u). (4)

We now use various convexity preservation arguments from

[11]. Since Jt+1(λ, s, r) is convex in r and r−u is convex in

(r, u), Vt+1(λ, s, r − u) is convex in (r, u). The expectation

operator preserves convexity so EJt+1(λt+1, st+1, rt − u) is

convex in (r, u). λ(u − s)+Δt is also convex in (r, u). Since

we are minimizing a convex function in (r, u) over u, with

u constrained in the convex set Ut(xt), the resulting function

Jt(xt) is convex in r and the desired result follows.

Proposition 2: Suppose that there are finitely many random

outcomes in each period. Then the value function in period t,
Jt(x), is piecewise affine convex in r:

Jt(λ, s, r) = ∨n(t)
i=1 (ai(t)r + bi(t)) (5)

for some constants ai(t), bi(t), i = 1, .., n(t).
Proof:



Again, we will prove the argument by induction. From

equation 3 the induction hypothesis holds for period N − 1.

Suppose that the hypothesis holds for all periods up to period

t + 1 and denote Ωt as the set of random outcomes in period

t. Then for period t we have from the Bellman equation:

Jt(λ, s, r) = min
u∈Ut(xt)

{λ(u − s)+Δt

+
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u) + bi(t))}

= λ(u∗ − s)+Δt

+
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u) + bi(t))

=
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u∗) + bi(t)

+λ(u∗ − s)+Δt)
(6)

where u∗ is the minimizer of the right hand side, which

must exist since we are minimizing a convex function over

a line segment. Now the result follows from the fact that the

weighted sum of piecewise linear convex curves is a piecewise

linear convex curve.

D. Approximate Dynamic Programming

In order to scale our control policy to more complex

conditions with multiple loads, random arrival and departure

times, and random energy requests, we develop an approxi-

mate dynamic programming algorithm which can perform ad-

equately in this simple problem. Although backward dynamic

programming is perfectly adequate for solving this problem,

it will become computationally intractable to consider the

more complex conditions which we described, but backward

dynamic can still be useful in providing a benchmark to

compare our approximate algorithm for this simple instance

of the problem.

We will approximate the Q-factors of the problem [12] with

a set of basis functions, Q(x, u) =
∑

k∈K rkφk(x, u), where

K is the set of basis functions, φk(x, u) are the basis functions

and rk are the weights of the bases.

We have selected the basis functions for this problem as

follows: φ1(x, u) = 1 is the constant function. φ2(x, u) =
(x(3)−u−(N−t)C)+ is the amount of remaining energy that

would need to be fulfilled if we were to charge at a rate u for

the current period and charge at full rate after that. φ3(x, u) =
x(1)(u− x(2))+Δt is the cost incurred at the current period,

g(x, u). We have also created one basis function for each

state and the time index, φ4(x, u) = k, φ5(x, u) = x(1),
φ6(x, u) = x(2), φ7(x, u) = x(3). Finally, we have created a

set of basis functions which can be used to create a piecewise

linear approximation of the Q-factors in the third coordinate of

the state space, φk+8(x, u) = (r−u−kC)+, k = {0, ..., 14}.

This is motivated by the result which we have proven about

the structure of the value function.

We will implement the SARSA algorithm [12] for this

problem with a linear approximation for the Q-factors and a

temporal difference algorithm for the update of the basis func-

tion weights. For the learning rate of the basis function weights

we have chosen a step-size of γ(t) = 10, 000/(10, 000+t−1),
scaled appropriately [13]. We are also using Boltzmann explo-

ration in order to facilitate the exploration of the state space,

with a Boltz exploration constant of β = 10−4. The SARSA

algorithm consists of the following steps:

• Select control ut with probability

exp(−β
∑

k rkφk(xt, ut))∑
u∈Ut(xt)

exp(−β
∑

k rkφk(xt, ut))
.

• Given a state/action pair (xt, ut), generate a new state

xt+1 according to the transition distribution pt(xt, xt+1).
• Update the basis weights,

rk = rk + γ(t)φk(xt, ut)(g(xt, ut)
+

∑

k∈K

rkφk(xt+1, ut+1) −
∑

k∈K

rkφk(xt, ut) (7)

E. Data

In order to calibrate our stochastic model, we have used

wind data from the National Renewable Energy Laboratory

database for 10-minute wind generation at a typical site in

the Techahapi region, and 10-minute settlement average pries

from the Oasis database for the dates between September 1,

2006, and November 30, 2006.

The wind generation data is based on the output of a park

of ten Vestas V90 3 MW wind generators. In particular, we

used the hysteresis-corrected SCORE data, as explained in the

NREL website1.

The wind generation data ranges from 0 to 30 MW, and

the price data ranges from -20$\MWh to 180$\MWh. For

the derivation of the probability transition matrix, price values

below -20$\MWh and above 180$\MWh are assumed to be

equal to -20$\MWh and 180$\MWh, respectively. Given that

such prices did not occur frequently in our dataset, this mod-

eling assumption does not affect the derived stochastic model

significantly. The transition probability matrix is derived by

sampling the conditional probability of transitioning from one

price-wind combination to any other price-wind combination

for each 10-minute interval of the day. For the greatest possible

resolution that we explored, 10 wind states and 10 price states,

there are 100 wind-price combinations, and a sample of 91

transitions.

F. Aggregating States and Actions

As we described in section II-B, computation time is

sensitive to the size of the state and action spaces. There

is a tradeoff involved in aggregating states and actions: by

aggregating we sacrifice in terms of the performance of the

optimal solution in order to achieve faster computation of the

optimal policy. Aggregation implies that we may be making

decisions of lower quality due to the fact that we are not able to

finely distinguish between different values of wind power and

1http://www.nrel.gov/wind/integrationdatasets/western/methodology.html
#output



TABLE I
COST PERFORMANCE AND COMPUTATION TIME FOR VARIOUS LEVELS OF

STATE AND ACTION SPACE AGGREGATIONS.

|U | Nw Np |S| Sol. time (s) Cost ($) St. dev. ($)
10 10 10 89,200 812.365 11,600 8,251
5 5 5 9,925 199.399 12,137 8,365
2 5 5 2,500 72.915 12,601 8,131
2 3 3 900 42.904 12,791 8,228

market prices, or even if we are able to distinguish between

states, we may not be able to differentiate our control. This

tradeoff is presented in table I. In the experiments that we have

run to derive this table, we assume that the maximum control

is 30 MW, and we are set to fulfill a total demand of 2970

MW-10min. Wind ranges between 0 and 30 MW, and prices

range between -20 and 180$/MWh. The results derived in the

table are derived from testing the algorithm against the actual

91-day sample of data.

As expected, we observe that as we increase the granularity

of our state and action space the computation time increases

and the performance of the algorithm improves. The variance

in the performance of the algorithm does not vary significantly

and is not monotonically increasing in the level of aggregation,

as one might expect. In fact, the maximum and minimum of

cost performance varies between $200 and $36,138 and is

similar for all levels of aggregation. This very large difference

stems from the very different nature of the wind and price

outcomes in different days, and increasing the granularity of

the state and action spaces does not help improve performance

for a given sample outcome of wind and prices. The most

surprising and practically relevant conclusion from this table

is that aggregation results in a surprisingly low deterioration

of performance. Comparing the first and last row of the table

we observe that the solution time increases 19-fold from 43

seconds to about 13.5 minutes, yet the cost decreases by

merely 9.31%.

An action state consisting of 2 elements, U = {0, C},

reduces to a switching control where we either turn the load

on at its nominal consumption level or turn it off. Most loads

can only be operated at an on-off state anyways, and we can

conclude from this table that there are minor impacts on our

performance by restricting attention to a switching control.

G. Comparison of Algorithm Performance

In table II we present the performance of the approxi-

mate dynamic programming algorithm for the same problem

instances as those which are presented in table I. The ap-

proximate dynamic programming algorithm requires the same

amount of time for all cases, since we are keeping the number

of iterations fixed at 50,000. For the case where we are

solving for 10 actions and 100 combinations of price and

wind, the approximate dynamic programming algorithm is

16.7% suboptimal, although it runs in less than 1/3 of the time

that the backward dynamic programming algorithm requires.

It turns out that increasing the number of iterations does not

improve the performance of the algorithm, and the loss in

TABLE II
PERFORMANCE OF SARSA ALGORITHM FOR VARIOUS LEVELS OF STATE

AND ACTION SPACE AGGREGATIONS.

|U | Nw Np Sol. time (s) Cost ($) St. dev. ($)
10 10 10 242.576 13,539 10,649
5 5 5 239.944 12,368 8,162
2 5 5 238.224 12,703 8,190
2 3 3 238.109 13,114 9,345

performance can therefore be attributed to the selection of the

basis functions. Nevertheless, for higher levels of aggregation

the algorithm performs very close to optimal. This reassures

us that if we are willing to aggregate the action and state

space sufficiently, then we have made a good selection of

basis functions, which provides starting ground for scaling

the algorithm to more complex versions of the problem, e.g.

with random arrival and departure times or random quantities

of energy demand. Such variations of the problem cannot, in

general, be solved by the backward dynamic programming

algorithm efficiently, and are best dealt with by approximate

dynamic programming techniques. This is work which we

wish to explore further in future research.

III. ECONOMIC ANALYSIS

In this section we discuss the economic implications of di-

rectly coupling renewable generation with deferrable demand

by comparing it to a baseline scenario whereby renewable

generators participate in the market with a reduced capacity

credit and deferrable loads participate in the market with the

objective of minimizing their expenditures.

In order to assess the value of coupling renewable gener-

ation with deferrable loads, we compare it to a case where

both resources respond to price signals without actively coor-

dinating. In the case where renewables and flexible consumers

coordinate their operations wind appears ’behind the meter’ for

the system operator, and the spot market is utilized in order to

correct for unanticipated deviation in the supply of renewable

energy in advance of an emergency shortage in supply, which

is an economic alternative to resorting to backup generation

for supporting renewable power variability.

A. Capacity Credit

As we discussed in the introduction, renewable generators

which funnel their entire production to the grid cause various

operational problems due to the fluctuation of their supply.

In California this deterioration in performance is penalized

by charging renewable generators penalties for deviating from

their forecast production. Such deviation penalties can capture

the impact of renewable power variability on the economic

performance of wind generators, as described also in the

literature by Bathurst et al. [14], Matevosyan and Soder

[15] and Pinson et al. [16]. In other markets, such as PJM,

renewable generators receive partial credit for their available

capacity, reflecting the fact that the system operator cannot

securely rely on the entire capacity of these resources at critical

hours of grid operations, but must instead procure standby

capacity. In this paper we use capacity credit as a metric for



the impact of renewable power variability on the economic

performance of renewable generators.

We assume that capacity earns a credit of 1440$/MW, which

we have calculated by continuous compounding of a $2 million

investment in 1 MW of new capacity at 8% interest rate

for a payback period of 10 years. In the baseline scenario

we assume that renewable generators receive a 30% capacity

credit. In the case where the resources are coupled, renewable

generators earn full capacity credit for the average capacity of

the deferrable loads which they serve. However, it is natural

to expect that the incremental ability of renewable generators

to serve deferrable loads deteriorates as more and more

deferrable capacity is reserved by renewable suppliers, since

renewable generators will need to resort to the spot market

more and more frequently. We model this as a deterioration

of the capacity credit for the coupled system. In particular, we

simulate the performance of the smart charging algorithm for

the entire horizon of the 91 days of sample data, and we count

the average amount of power procured by the algorithm for the

periods of peak demand. Peak demand periods are identified as

those periods of the sample data during which the spot price

of electricity exceeded 350$/MWh. Such an event occurred

45 times in our 91-day data. This average quantity is then

subtracted from the average capacity of the deferrable loads,

and represents the derated capacity of the coupled system.

B. The Value of Coupling

The value of coupling renewable generation to flexible

demand arises from the fact that renewable generators earn

capacity credit in proportion to the capacity of the flexible

loads which are served by the renewable power provider.

In return for this increased credit, renewable generators re-

serve their entire supply for deferrable loads, and assume

the responsibility of providing capacity service to deferrable

loads. The tradeoff, then, for renewable generators is to gain

capacity credit by contracting with deferrable loads which are

sufficiently flexible to be served reliably by smart charging,

versus earning energy revenues by supplying electricity to

the market at reduced capacity credit. The total demand of

deferrable loads which are served determines the balance

between the costs and benefits of coupling. In this section

we determine the total demand of deferrable loads which

maximizes the value of coupling.

By testing our proposition against price responsive demand,

we are essentially comparing to the alternative of pooling all

resources in the market. By coupling the aggregator receives

economic gains by relieving risk from the system operator.

Entering a contract to supply power within a deadline is

much more flexible than the strict reliability criteria applied

by the system operator, which will match any amount of

load capacity, regardless of its flexibility, with a corresponding

capacity of backup.

In figure 1 we present the net supply of power for cou-

pling versus utilizing price-responsive demand for one sample

outcome of prices and wind power supply. In the third frame

we show the remaining energy to be fulfilled for both the

Fig. 1. Coupled operations versus price response.

coupled and decoupled case, and in the fourth frame we show

the demand of power from deferrable loads net of the wind

power supply. From the fourth frame we observe that the net

demand profile of the coupled system is much smoother than

the one resulting from price-based response. By observing the

difference in the energy supply patterns in the lower right

frame, we can conclude that the consumption patterns of

the loads differ significantly. In the first periods the coupled

system utilizes wind power, which is abundantly available,

whereas the deferrable loads which simply respond to spot

market prices fail to absorb the excess wind power. Towards

the end of the horizon, the wind generators continue to supply

power in the decoupled case, whereas in the coupled case this

wind is discarded because loads have been fully served.

C. Simulation Results

In table III we see the capacity credit earned by the coupled

system, according to the methodology described in section

III-A. We are simulating a 30 MW wind generator which is

serving varying amounts of deferrable demand. Rather than

specifying the total energy demand, we specify slack,

S =
C · N

R
, (8)

which is a metric of how flexible we are in terms of postponing

charge. Slack is the ratio of the total energy that would be



TABLE III
CAPACITY CREDIT FOR VARIOUS LEVELS OF SLACK.

Slack 2.4 1.8 1.44 1.2 1.03
Capacity served (MW) 12.40 16.56 20.73 24.90 29.06

Capacity required (MW) 0.91 2.43 3.22 4.18 9.88
Capacity credit (MW) 11.49 14.13 17.51 20.72 19.18

TABLE IV
VALUE OF COUPLING (ALL FIGURES IN $/DAY).

Slack 2.4 1.8 1.44 1.2 1.03
Energy rev (B) 12,404 12,404 12,404 12,404 12,404
Energy cost (B) 11,435 15,578 20,054 24,667 31,358

Capacity credit (B) 10,975 10,975 10,975 10,975 10,975
Energy cost (C) 4,114 6,811 9,519 13,479 19,195

Capacity credit (C) 14,007 17,234 21,375 25,264 23,390
Coupling value -2,146 2,884 8,082 12,948 12,147

absorbed by loads if they were to consume at nominal capacity,

over the energy demand that these loads have specified within

the horizon. The closer slack is to one, the less flexibility

in postponing charging, and the opposite is true as slack

increases.

The first line of the table refers to the average capacity of

the deferrable loads which are served and therefore increases

in proportion to R, the second line is the amount of capacity

utilized from the spot market during periods of peak demand -

hence the capacity derating - and the third line is the difference

of the two. We observe that for S = 1.2 the amount of capacity

credit peaks. As deferrable demand increases, the amount of

capacity required from the spot market exceeds the average

amount of deferrable demand which is served.

In table IV we calculate the value of coupling versus pooling

resources in the market. The results are average values from

running a stochastic model with 5 wind states, 5 price states

and 3 actions. We have run 1,000 simulations for each level

of slack.

The first three line of the table refer to the baseline (B)

scenario where we are pooling all resources in the market.

The first line is the revenue earned by wind generators which

supply all of their energy to the market and earn market

prices. This value does not depend on the demand of deferrable

loads, and therefore remains constant. The second line is the

procurement cost of flexible loads, which fulfill their demand

by buying from the spot market during periods of low market

prices. We have derived these figures by solving a stochastic

dynamic program for the loads, which is similar to the problem

formulated in section II-A, with the difference that the cost

per period is g(x, u) = λuΔt, i.e. the cost of procuring

energy from the spot market. The third line is the daily dollar

amount of capacity income earned by wind generators for 30%

capacity credit, at 1,440$/MW. The net value of operating wind

and load resources independently is equal to the sum of the

first and third line net the second line.

The fourth and fifth line of table IV refer to the case of

coupled (C) resources. The fourth line is equal to the solution

of the dynamic program of section II-A, and the fifth line is

equal to the capacity credit which is earned for the amount of

capacity calculated in the third line of table III. The net value

of operating the coupled system is calculated by subtracting

the fourth line from the fifth line. Finally, the value of coupling

which is presented in the last line of table IV is calculated by

subtracting the net value of coupling from the net value of the

decoupled system.

We note that the value of coupling peaks at S = 1.2,

which is driven by the fact that capacity credit peaks at the

same level of slack. For the baseline scenario, energy revenues

from selling wind power are offset beyond S = 1.8 by the

expenditures for charging deferrable loads. In the case of

coupling, energy revenues are lost when wind is discarded,

compared to the decoupled case where all wind is supplied to

the market. Finally, we observe that for S = 2.4 the value of

coupling is negative, which implies that the system is better

off by leaving the resources decoupled. This is due to the

fact that coupling results in discarding excessive amounts of

wind power, since deferrable demand is relatively low, and the

resulting capacity gains are not sufficiently large to offset the

opportunity cost of directly supplying energy to the market.

D. Discussion

In this section we point out various assumptions regarding

our analysis and comment on these assumptions. We also

describe future directions of research o on this topic.

Firstly, it is questionable whether capacity credit is a

sufficient metric to identify the gains of coupling. Coupling

renewable energy with deferrable loads not only makes re-

newable capacity appear more reliable but also mitigates a

variety of other problems resulting from renewable generation

profiles which were described in the introduction, such as

ramping and load following requirements. Coupling addresses

these problems too, but this benefit cannot be captured by

capacity credit. Nevertheless, capacity credit is used to reward

generators for their capacity contributions in various power

markets, and therefore seems like an appropriate metric to

be used for our analysis. Using other methods for specifying

the gains of smoothing renewable power output profiles, such

as deviation penalties, is possible, but involves a series of

additional assumptions (e.g. the specific rules pertaining to

deviation penalties) and possibly constrains the analysis to the

cases of specific markets, thereby weakening the generality of

the analysis.

Another strong assumption of our analysis is that we are

rewarding the coupled system the average capacity of the

deferrable loads. This tends to overestimate the value of

coupling, since deferrable loads which respond to spot market

prices tend to consume off peak, rather than spread their

consumption uniformly throughout their consumption horizon.

Hence, in our analysis in section III-B we are capturing not

only the capacity value of coupling but also the capacity

value of load flexibility. This problem could be circumvented

by derating the capacity credit for coupling operations with

deferrable loads, or by estimating the capacity requirements

of deferrable loads through simulation.



In future work we are interested to determine the sensitivity

of our results on the degree of correlation between electricity

prices and wind power availability. In particular, in systems

where wind power is negatively correlated to spot market

prices (which is the case in California), coupling adds value

since deferrable loads absorb power which would otherwise

not be needed, and this can be accurately captured by our

model. The opposite holds true for the opposite case where

renewable generation is positively correlated with spot market

prices. In order to develop a computationally tractable model,

we have been working with recombinant lattices of market

prices and wind power supply, as in [17]. In particular, we

have developed a recombinant model for simulating geometric

Brownian motion which has been calibrated to the data used

in this study, however geometric Brownian motion appears not

to accurately capture the evolution of the processes in our data

set. In future work we will develop a mean-reverting model

such as the one described in [17] which we hope will produce

more accurate results.

IV. CONCLUSION

In this paper we have described a stochastic dynamic

program for optimally supplying energy to deferrable loads in

the presence of a spot market. We have derived properties of

the value function which have guided us in the development of

an approximate dynamic programming algorithm for solving

the problem. We have compared the approximate dynamic

programming algorithm to a backward dynamic programming

algorithm and we have found that the performance of the

approximate algorithm is near optimal for when state and

action spaces are aggregated sufficiently. We have validated

that aggregation does not result in significant performance

losses, and in future work we wish to scale the approximate

algorithm in more complex versions of the problem which

cannot be addressed by backward dynamic programming.

We have determined the economic value of coupling re-

newable generation to flexible demand by comparing the

performance of the coupled system to the alternative of pooling

all resources in the market and using prices as a signal for

coordinating renewable generation and flexible demand. We

have estimated the value of direct coupling by estimating the

capacity credit and energy market expenditures of the coupled

system and comparing them to the case where all resources

are pooled in the market. We have determined the quantity of

deferrable demand which matches optimally to a given level

of renewable generation capacity by maximizing the value of

coupling. In future work we wish to explore the sensitivity

of our results on various assumptions of our study such as

the method for determining capacity credit, as well as certain

model parameters such as the degree of correlation between

market prices and wind power supply.
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