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Abstract: We present a contract for integrating renewable energy supply and electricity spot
markets for serving deferrable electric loads in order to mitigate renewable energy intermittency.
The contract which we describe results in a stochastic optimal control problem for minimizing
the cost of serving flexible load. We solve the optimal control problem by using a recombinant
lattice for modeling renewable power supply and electricity spot price uncertainty. We compare
various control policies, and we analyze the sensitivity of our results with respect to various

problem parameters.
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1. INTRODUCTION

The proliferation of renewable energy sources in the United
States is taking place at an unprecedented pace. The
federal government is coordinating these efforts, with state
regulations further advancing renewable energy integra-
tion targets. The American Clean Energy and Security
Act (2009) set a target of sourcing 20% of US electricity
consumption from renewable energy by 2020 and also
set various goals for limiting reliance on nonrenewable
resources. In 2002, the state of California enacted the
Participating Intermittent Resources Program, which fa-
cilitates the integration of renewable energy sources. The
California Renewable Portfolio Standard requires 20% of
energy supply in the state to be sourced from renewable
sources by 2012.

In the California ISO renewable integration report, Loutan
and Hawkins (2007) voiced concerns about the impacts
of large scale renewable energy integration on the ca-
pacity requirements and ramping requirements of load
following and regulation services. These increased reserve
requirements represent a significant barrier for the large
scale integration of renewable power. An alternative to
the costly investment in backup generation capacity is
to exploit the flexibility of electricity demand. In close
analogy to the policy coordination that is taking place for
renewable energy integration, demand-side management
is also being coordinated both at the federal level and
in individual states. The American Clean Energy and
Security Act (2009) has allocated $3.4 billion in order
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to spawn the development and deployment of the nec-
essary technology to enable active management of elec-
tricity demand. Anticipating the importance of demand-
side flexibility, the California electricity market rules have
been adapted in order to accommodate the participation
of demand resources through the recent Market Redesign
and Technology Upgrade of 2007. Two of the major state
utilities, San Diego Gas and Electric and Pacific Gas and
Electric, are deploying smart metering throughout their
respective service areas.

The most efficient approach for exploiting demand-side
flexibility would be to establish real-time pricing at the
retail level, a possibility which is discussed by Borenstein
et al. (2002). However, there is strong political opposition
to this approach as it exposes retail consumers to the
volatility of elctricity prices. In an alternative approach,
which is described by Hirst and Kirby (1999) and Kirby
(2003), flexible loads can participate in the ancillary ser-
vices market. An aggregator could bid on behalf of a popu-
lation of loads for providing capacity services to the system
operator and would coordinate load consumption either
through prices or direct control. The technical feasibility
of demand side aggregation for the provision of spinning re-
serve has been studied in practice by Eto (2007). However,
it is necessary to define market products that correspond
to the types of ancillary services that loads can actually
offer, which raises the need for reform in existing electricity
markets.

In this paper we analyze a direct contractual agreement
between deferrable loads and renewable generators. In the
proposed contract, loads request a certain quantity of
energy within a deadline. An aggregator is then responsible
for serving these requests within their deadlines by relying
primarily on renewable resources and, to a limited extent,



on the real-time market. The proposed contract closely
matches dynamic scheduling, as described in Hirst and
Kirby (1997), whereby demand and supply resources from
different control areas coordinate their schedules in order
to produce zero net output to the remaining system. Dy-
namic scheduling is currently implemented in the Electric
Reliability Council of Texas.

The specification of demand flexibility in terms of requests
for a fixed amount of energy within a fixed time horizon
is a natural description for a wide variety of flexible
energy needs, such as EV charging, water pumping, and
various residential consumptions. There is also a natural
complementarity between coupling renewable resources
with deferrable requests. Due to the fact that renewable
power supply is more predictable over a certain time
horizon than in any given moment in time, it is easier
to fulfill requests that extend over a time window. In
addition, the contract relieves the system operator from
the obligation of procuring reserves for protecting against
intermittent renewable supply since renewable resources
appear "behind the meter” . The significant capital savings
that stem from avoided investment in backup reserves
can be shared with deferrable loads in order to incent
their flexible behavior. Although the coupled system may
resort to the spot market to a limited extent, the coupling
contract effectively transfers the risk of renewable power
variability from the system operator to deferrable loads.

A disadvantage of the proposed approach is that the bilat-
eral commitment between loads and renewable generators
results in trading inefficiencies. Coupling also reduces the
effect geographical smoothing in renewable energy supply.
Moreover, the contract requires direct load control by the
aggregator, which might be undesirable to consumers.

For coupling contracts to work, renewables must be ex-
posed to some of the risk they impose on the system. This
can be achieved by forcing renewable suppliers to bid in the
day-ahead market with a penalty for deviation, by remov-
ing feed-in tariffs, or by exposing renewable suppliers to
the risk of spilling excess wind. In Denmark, for instance,
renewable suppliers receive feed-in tariffs but they are also
exposed to the risk of spilling excess renewables.

The model is formulated in section 2. In section 3 we
present simulation results.

2. MODEL

In this section we formulate the optimal control problem
that a renewable power supplier faces under our proposed
contract. The supplier has the task of serving a flexible
consumer from a freely available renewable resource which
is backed up by a spot market for electricity. Wind gen-
eration and the spot price of electricity are driven by two
correlated mean-reverting Ornstein-Uhlenbeck processes.
The aggregator procures energy from the spot market
with the objective to minimize the cost of unserved en-
ergy and expenditures in the spot market. We solve the
optimal control problem by using dynamic programming.
In particular, we use recombinant lattices for modeling
the electricity prices and wind power supply, following the
methodology which is outlined in Deng and Oren (2003)
and Deng and Oren (2005).

2.1 Price and wind models

We consider 8 day types in our analysis, which repre-
sent weekdays and weekends for each season. We use the
Weibull distribution for modeling wind power generation,
and the lognormal distribution for modeling prices. Both
processes are driven by an underlying first-order autore-
gressive process which obeys the following dynamic model:
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where n§ and n} are the noise terms of the wind and price
models respectively, w; and ws are independent standard
normal random variables, At is the time step, ° and *
represent the average trends of the wind and price noise
respectively, the variance terms ¢° and o capture the
effect of random shocks, k° and x* model the rate at
which the processes return to their mean value and p is
a correlation coefficient which couples the evolution of the
two processes.

Wind power supply is strongly influenced by seasonal and
diurnal effects. Most and Keles (2009) discuss the need
to remove these deterministic effects from the data in
order to obtain the residual process which can be used for
calibrating the parameters of the mean-reverting process.
The seasonal and diurnal patterns of wind generation
are captured by u7, the average value of hourly wind
production for each day type. We assume that the ratio
i—% follows the Weibull distribution with parameters k, A.

Following Eq. 1 of Torres et al. (1984), section 2.1 of
Torres et al. (2005) and Eq. 2 of Morales et al. (2010) for
transforming Weibull-distributed data to Gaussian data,
as well as the nonparametric transformation that is used in
Egs. 8, 9 of Callaway (2010), we use the inverse transform
sampling method to obtain wind power, s;, as a function
of the underlying noise, n{, and the real-time price signal
\¢ as a function of ny:

5= piexp(kHoglog(1— N(n)))  (3)
Ae = 7 exp(ny)), (4)

where s; is the value of wind generation, \; is the real
time electricity price, u§ and u are the average values
of hourly wind production and hourly real-time electricity
prices respectively, and N(+) is the cumulative distribution
function of the normal distribution.

2.2 Problem Formulation

The dynamic optimization problem has a three-dimensional
state vector, xy = (A, $¢,7¢), where ); is the spot price of
electricity, s; is the amount of wind which is freely available
and 7; represents the remaining quantity of demand. The
residual energy 7, evolves according to ri41 = 1 — u At
where u;, our control, is the amount of power supplied to
the consumer in period t. We model the two-dimensional
stochastic process (A, s;) with a trinomial recombinant
lattice model. In particular, the dynamics of the underly-
ing process are assumed to obey the following:
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Each state j is visited with a probability p?(n', n;) which

depends on the current state. The transition probabilities
are defined in Deng and Oren (2005).

J=2

The use of a recombinant lattice is motivated by compu-
tational efficiency. Note from the dynamics of Egs. 5 that
a given point in the state space in period ¢ + 1 can be
visited by various points in the state space in period t. In
effect, it is shown in Deng and Oren (2003) that the size
of the state space grows quadratically in the horizon of
the problem, which is to be contrasted to an exponential
growth in the size of the state space when a trinomial
lattice does not recombine. As a result, we are able to
control the growth of the state space, and this enables us
to solve the optimal control problem using the dynamic
programming algorithm. Deng and Oren (2003) also prove
that the transition probabilities and state space can be
constructed such that, as At converges to zero, the discrete
process converges in distribution to the continuous time
mean reverting Ornstein-Uhlenbeck process.

In order to calibrate the wind model parameters, we used
the 2006 National Renewable Energy Laboratory (NREL)
database for an integration level of 14,143 MW in Califor-
nia. The upper frame of Fig. 1 shows the sample cumula-
tive distribution function of the trinomial wind generation
model overlaid on the sample cumulative density function
of the wind dataset. The lower frame of Fig. 1 shows the
cumulative distribution function of the electricity price
lattice model.

The objective of the optimal control problem is to mini-
mize the following expected cost:
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where ¢;(x) represents the rate at which the resource is
supplied and N is the number of periods. The state vector
has the following initial condition: 7y = R, where R is
the amount of energy demand to be satisfied. The control
u; cannot exceed an upper bound on the rate of supply,
us < Cp. In the case where power is supplied to n electric
vehicle batteries, C), equals nC, where C is be the nominal
rating of an electric vehicle battery. We also limit the
amount of energy that can be procured in the real-time
electricity market at each period to C,, by introducing
the constraint u; — s; < C,,, in order to transfer the risk
of wind power variability from the system operator to
the aggregator. Since the coupled system may rely only
up to Cp, on system reserves, there is a possibility that
residual demand may not be fully satisfied. Unsatisfied

Table 1. Locations and capacity of wind power

County 14143 MW | Existing MW
Tehachapi 6459 722
Clark 1500 -
Solano 583.45 327
San Gorgonio | 528 624
San Diego 1527 -
Humboldt 218.2 -
Imperial 547.9 -
Altamont 14 954
Monterey - 118
Pacheco - 21
1
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Fig. 1. Probability density function of wind output (top)
and real time electricity prices (bottom) for deep wind
integration case.

energy incurs a penalty p. Finally, we denote as K the
nameplate capacity of renewable power resource.

3. RESULTS
3.1 Data

As we mentioned in section 2.1, we have estimated param-
eters for eight day types, corresponding to weekdays and
weekends of each season. The wind data used in this study
is sourced from the NREL 2006 western wind database.
The locations of the wind generation sites that are used
for the study represent an integration target of 14,143
MW, based on the data presented in the CAISO report
by Loutan and Hawkins (2007) and the 2010 California
generation interconnection queue in CAISO (2010). There
is a total of 2,648 MW of wind power currently connected
in the California system. The locations of the wind sites
are presented in table 1. Wind data was sampled from
the NREL database according to the locations that are
described in table 1.



We solve the problem for 24 hourly intervals. We consider 6
levels of charge for the control problem. The baseline level
of wind integration is K = 14,143 MW, corresponding to
the 33% California renewable integration target, and the
baseline capacity constraint of consumers is C}, = 15,000
MW. We also impose a limit of C,,, = 2,000 MW in spot
market participation. We have chosen C,, to be a small
fraction of C), in order to test our intuition that deferrable
energy requests couple well with renewable power supply
over an extended time horizon. If the coupled system were
required to resort primarily to the real time market in
order to perform adequately, then there is little reason to
consider coupling contracts as a means of utilizing demand
flexibility to absorb renewable supply fluctuations. The
baseline level of total energy demand is R = 80,000 MWh,
which is 80 percent of the average daily wind output in
the 33% wind integration target. The requests span over
24 hours. If we assume that a typical electric vehicle has
a power rating of 3.6 kW and a mileage of 0.25 kWh per
mile, the baseline demand model roughly represents the
electricity demand of 4.167 million electric vehicles which
travel 96 miles per vehicle per day. The cost of unserved
energy in the baseline is p = 5,000 $/MWh. This value is
selected as an estimate of the average cost of not serving
flexible energy requests for vehicle charging.

3.2 Relative performance of policies

We now compare the performance of the dynamic pro-
gramming policy, the clairvoyant policy which has advance
knowledge of the outcome in each realization, a naive
charging policy whereby consumers are served as fast as
possible, and a model predictive control policy. The model
predictive controller applies the optimal solution in step k
to the optimal control problem that results if the stochastic
processes were to follow their unperturbed dynamics for
the remaining horizon.

The real-time market expenses of all policies are compared
in table 2 for the baseline scenario. The second column
represents the cost of the clairvoyant policy in bold type.
The other columns present the relative performance of the
other three policies with respect to the clairvoyant policy.
The results are then averaged according to the frequency
of each day type, and the relative real-time market costs
of each policy are presented in both dollar figures as well
as a percentage of the cost of the clairvoyant policy in
the last two rows of the table. The overall performance
of all policies, including the penalty of unserved energy, is
compared in table 3. As in table 2, the results are presented
relative to the clairvoyant policy. We observe that although
model predictive control performs better than the naive
policy in terms of real-time market expenditures, overall
it performs worse than the naive policy due to the fact
that it incurs high penalties for unserved energy.

3.3 Sensitivity on load capacity (Cp)

The sensitivity of the results on the capacity of the load
are presented in Fig. 2. The first frame describes the
relative real-time market expenses of the three policies.
Beyond C,, = 10,000 MW the system is not achieving any
significant gains by further increasing load capacity, since
it is relatively infrequent that wind generation exceeds

Table 2. Cost of procuring electricity from the
real-time market (baseline scenario).

Cost (8) | A Cost ($) | A Cost ($) | A Cost ($)

Clair Naive MPC Dyn Prog

WinterWD 164,420 1,325,680 165,580 241,640
SpringWD 85,289 952,011 111,611 167,471
SummerWD | 2,157,500 976,100 467,400 321,900
FallWD 1,001,900 1,348,500 599,000 462,000
WinterWE 169,250 | 1,453,850 177,570 265,280
SpringWE 06,988 | 1,102,712 150,912 177,532
SummerWE | 1,770,200 | 1,093,100 455,700 305,600
FallWE 1,132,200 | 1,612,000 693,500 511,800
Total 835,086 | 1,197,671 345,474 303,053
improv. (%) 1434 114 36.3

Table 3. Relative performance of policies (base-
line scenario).

Cost (8) | A Cost ($) | A Cost ($) | A Cost ($)

Clair Naive MPC Dyn Prog

Market 835,086 1,976,671 345,474 303,053
Unserved 436,161 0 1,433,482 12,500
Total 1,271,247 1,197,671 1,778,956 315,553
improv. (%) 94.21 139.9 248

this level. The second frame presents the percentage of
wind that is shed on average. The naive policy places
an upper bound on the amount of wind shedding, while
the clairvoyant policy places a lower bound since it relies
on wind power as much as possible. The last frame
presents the mix that is used for serving load for the
case of the dynamic programming policy. As C,, increases,
spot market procurements are replaced by freely available
wind power supply. It is notable that unserved energy is
negligible even for C), = 5,000 MW.

3.4 Sensitivity on wind power capacity (K )

In Fig. 3 we present the sensitivity analysis results for
varying K. We note that there is a significant amount of
wind shedding for high K, with the naive policy becoming
highly inefficient due to the fact that it is not taking
advantage of the excess supply of wind. We also note that
there is a significant amount of unserved energy for the
case of low K. The first frame shows that all policies incur
almost the same cost at the real-time market, because it
is almost always optimal to buy as much as possible from
the real-time market.

3.5 Sensitivity analysis on spot market participation (C,)

The sensitivity analysis on the degree of spot market
participation is shown in Fig. 4. From the first frame
we observe that despite the fact that C, increases, the
performance of the clairvoyant does not improve relative
to the performance of the dynamic programming policy.
As C), increases, the naive policy becomes remarkably
inefficient due to exposure in the spot market. In the
second frame we note that as C),, increases the naive policy
procures more power from the market and uses less wind.
In the last frame we observe that for C,, = 1,000 MW a
notable amount of load is unserved, while as C,,, increases
wind is replaced by market procurements and unserved
energy diminishes.
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Fig. 2. Sensitivity results for varying C,,.
3.6 Sensitivity on cost of unserved energy (p)

In Fig. 5 we present the results of the sensitivity analysis
on p. In this figure we present dollar amounts of real-
time market expenses, instead of expenses relative to the
dynamic programming policy. The naive policy remains
insensitive to p, whereas the dynamic programming policy
incurs greater expenses in the real-time market as p
increases. The real-time market expenses of the clairvoyant
policy are insensitive to p. We do not present sensitivity
results on the amount of wind shedding, and the mix
which is used to satisfy demand since these results are
insensitive to p. It is noted that for the minimum price
of unserved energy, p = 1,000 $/MWh, the clairvoyant
policy deliberately leaves load unserved for some of the
day types as this is more economical than buying from
the market during periods of high prices, whereas for
higher values of p the clairvoyant policy never leaves load
unserved unless the other constraints in the problem force
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such an outcome. Moreover, for p = 1,000 $/MWh the
dynamic programming policy has 348 MWh of unserved
load, approximately three times greater than the amount
of unserved load for p = 5,000 $/MWh, which is equal to
112 MWh.

4. CONCLUSION

We have proposed a contract for utilizing renewable gener-
ation to mitigate the impacts of renewable power variabil-
ity and unpredictability. The contract transfers the risk of
not serving load from the system operator to consumers,
and results in an optimal control problem in which an
aggregator seeks to optimize the extent to which loads
are backed up by a volatile spot market for electricity.
We compare four policies for serving flexible loads, the
dynamic programming policy, the clairvoyant policy, a
naive policy and a model predictive control policy. For
the baseline scenario we find that the model predictive
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control policy incurs lower real-time market costs than
the naive policy, however it is not able to outperform the
naive charging policy overall, due to large penalties for
unserved load. We also present sensitivity results on real-
time market expenditures, wind power utilization, and the
optimal mix for serving energy requests with respect to
various problem parameters.
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