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Abstract 
An algorithm is being presented for a special class of unconstrained minimization problems. The 
algorithm exploits the special structure of the Hessian in the problems under consideration, It is 
based on applying Bertsekas' I-1] Scaled Partial Conjugate Gradient method with respect to a metric 
that is updated by the Rank One update, using gradients obtained in the preceeding steps. Two 
classes of problems are-presented having the structure assumed in designing the proposed algorithm. 
In both cases the algorithm uses only first derivative information. Furthermore, it possesses 
quadratic termination in considerably fewer steps than the number of variables. 

I. Introduction 

Variable Metric algorithms are considered to be the most advanced methods for solving 

unconstrained minimization problems of the form: rain f(x) where xCR n and fEC 2. The basic 

recursion in these algorithms is analog to the one used in Newton Raphson method having the form: 

Xk+ 1 = x k - a k D k g  k (1)  

In this recursion x k denotes the k th approximation to the minimum, gk is the gradient at x k, 

a k is a stepsize parameter selected to ensure some convergence criteria, while D k is an nxn 

matrix approximating the inverse Hessian I'V2f(x)'l "1. The approximations D k are inferred from 

the gradients at previous iterations and updated as new gradients become available so as to satisfy the 

"quasi Newton condition" 

Dk(gk-gk_ 1) = Xk-Xk. 1 . (2) 
The main motivation underlying such procedures is to capture the second order convergence 

properties of Newton's method while avoiding the expensive calculation of second derivatives. 

The first Variable Metric algorithm was invented by Davidon [4,1 and further  developed and 

simplified by Fletcher and Powell 1-5,1. Since then a vast literature has been published on this 

subject. Many of these contributions propose alternative updating procedures for D k and contain 

computational results comparing the various computational schemes. However, practically all the 

theoretical and computational work in this area has been directed toward solving small problems in 

which the number of variables rarely exceeds fifty. 

It is evident even from the above brief description of Variable Metric methods, that the use of 

such algorithms for large scale problems is limited by the computational and stOrage requirement 

involved in maintaining D k. In such cases it becomes advantageous to use Conjugate Gradient  

algorithms such as Fletcher Reeves I'6,1 method. These algorithms are usually slower than variable 

metric methods as they lack the memory features of the later techniques. On the other hand, 

conjugate gradient methods have the advantage of generating the search directions directly, avoiding 

the need to store and update an nxn matrix which becomes prohibitive for large n. 

The above considerations are relevant as long as no structural information about f(x) is 

being utilized. Fortunately, in many of the large scale problem the objective function has some 

special structure. The expense involved in solving such problems, and computational feasibility 

considerations, justify the development of special purpose algorithms that exploit the special 

structure of the objective function. One of the central themes of large scale mathematical 
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programming has been to develop such special purpose algorithms. This approach, however, has not 

influenced yet the development of Variable Metric type algorithms for large scale problems, 

This paper attempts to follow the aforementioned theme of large scale mathematical 

programming and proposes an algorithm for a special class of unconstrained minimization 

problems. More specifically, we focus on problems where the Hessian matrix V2f(x) = M+R 

where M is a block diagonal matrix with blocks of dimension m or less and R is a matrix of  

rank r, with m and r significantly lower than the dimension of x. Such functions arise for 

instance from a special class of  control problems or in solving certain resource allocation problems 

by penalty or multiplier methods. Bertsekas 1-1] who addressed the aforementioned class of optimal 

control problems, proposed an algorithm in which the directions of search are generated using 

Fletcher Reeves I'6] algorithm with respect to the metric M "1 restarted every r+ l  steps. The 

matrix M -1, is evaluated in this method at the beginning of each cycle from second derivative 

information. Bertsekas has shown that  this algorithm converges superlinearly and for a quadratic 

function it terminates in one cycle (i.e. r + l  steps). 

The algorithm proposed in this paper relates to Bertsekas [1]  method in the sense that 

Variable Metric algorithms relate to Newton's method. The search direction at each step are 

generated using Fletcher Reeves' ['6] algorithm with respect to a metric D, restarted every r , l  

steps. The nxn matrix D is an approximation to the matrix M "1 updated by the Broyden's 1"2] 

Rank-One updating formula using the gradients computed at each step. Since M "1 is block 

diagonal we force D to have the same structure which enables us to update and store each block 

individually. Consequently, for a quadratic function, D=M "l  after at most m steps implying 

"quadratic termination" in significantly fewer steps than n. 

Following is an outline for the remainder of this paper. In section 2 we present the 

theoretical foundation and a conceptual outline of the proposed algorithm. In Sections 3 and 4 we 

specialize the algorithm to a class of resource allocation problems and to the optimal control 

problems considered by Bertsekas. Section 5 contains the conclusions and some remarks on the 

proposed method. 

2. Theoretical Foundation and the Conceptual Algorithm 

The Fletcher Reeves 1-6] conjugate gradient algorithm can be described as follows: 

with an initial point x 0 and 

Xk+ 1 = x k + akd k 
where 

a k = arg min f(xk+adk) 

dk = "gk + flk-ldk-1 

do = -go, 

and 

Starting 

(3) 

(4) 

(5) 

ilk-1 = II gk 112/11 gk-1 112 (6) 

It is shown in Luenberger I-7] that if f(x) is a positive definite quadratic function and V2f(x) 

has s distinct eigenvalues then the above procedure converges to the minimum of f(x) in at most 

s steps. When V2f(x) -- M+R where M is positive definite and R has rank r we can define 

y = Mlhx. Then, 

Vyf(M-½y) -- M-½g k (7) 
and 

Vy2f(M-½y) = M-½Vx2f(x)M-½ : I+M-I/2RM -1/~ (8) 

Clearly Vy2f(M-I&y) has only, r+l distinct eigenvalues. Thus, applying Fletcher Reeves algorithm 

after changing the variables from x to y will yield the minimum in at most r+l  steps. The 
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above change of variables can be implementd implicitly by writing eq. (3) to (6) for Yk and then 

substituting Yk = Mt•Xk - The resulting algorithm is similar to the original one, but now 

d0=-M-lg 0 and for k>0: 

d k = - M - l g k  + ~k_ldk.1  (9) 
with 

•k-1 -- (gk' M ' l g k  ) / (gk - l 'M- lgk -1 )  (10). 
The above algorithm can be generalized to non quadratic functions by restarting it every r+ l  steps 

with M -1 evaluated at the beginning of each cycle and kept fixed during the entire cycle. 

The above implementation which has been proposed by Bertsekas [1]  results in superlinear 

convergence but requires the evaluation and inversion of the second derivative matrices composing 

M at the beginning of each cycle. The alternative approach proposed in this paper avoids the need 

for second derivative information as well as matrix inversions. In our implementation the matrix 

M "1 is substituted by an approximation D inferred from gradients generated in preceeding 

iterations and updated successively as new gradients become available. 

The following theorem states the properties of Broyden's [2]  Rank-One updating formula that 

forms the basis for the proposed algorithm. 

Theorem 1 

Let H be a positive definite symmetric nxn matrix and {r 0 ..... rn_l} and {v 0 ..... Vn_l} 

sequences o f  linearly independent vectors such that v k = Hr k for k = 0 ... n-1. Let D k be nxn 

matrices such that 

Dk÷ 1 = D k ÷ (r k - DkV k) (r k - DkVk)' / (r k - DkVk)'V k (11) 

and D O is an arbitrary nxn positive semi-definite symmetric matrix. Then, Dk÷ I vj -- rj for 

j<k. 
The above theorem is well known (see for example Luenberger [7])  and its proof will hence 

be ommited, in particular the theorem implies that D n = H -1 ; i.e., the n th approximation will be 

identical to H "1 regardless of the initial approximation D 0. 

In the specific problem under consideration, assuming the function is quadratic, we have 

(M+R)Pk=q k where Pk = Xk-Xk-1 and qk- -gk-gk-1 .  Consequently, 

MPk = qk -- qk " RPk (12)  
We shall assume that either Rp k is available or qk can be obtained directly. In view of (12) and 

Theorem 1 we can then obtain M -1 by repeated application of (11) with Pk and qk taking the 

role of r k and v k respectively. This would require, however, n updates and considerable storage. 

The computational and storage requirement can be radically reduced by exploiting the fact that M 

is block diagonal. If we partition the vectors Pk and qk into n segments corresponding to the 

blocks in M then eq. (12) can be written as 

Mipi k = ~i k i = 1 ..... h (13) 

where M i is the i th block and pi k, ~i k are the corresponding segments of Pk and qk" 

Consequently, we can use (11) to obtain each block (Mi) -1 individually. Following this procedure 

enables us to obtain M -1 using only m pairs of vectors (Pk,qk) where m is the dimension of the 

largest block in M. 

In the remainder of this section we outline a conceptual algorithm based on the above 

observations. The algorithm is designed to minimize an unconstrained function f(x) whose 

Hessian V2f(x) = M+R where M is a symmetric block diagonal matrix consisting of h blocks 

having dimensions m i (i = 1 ..... h), while R has rank no greater than r. We use the notation x i 
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to denote the segment of  the vector x corresponding to M i. Thus, x = (x 1, x 2 ....  x h) and xiER mi. 

Algorithm 1. 

Start with an initial point  x 0 = (x l  0, x20 .. . .  xh0 ) and h positive defini te  symmetric  

mixm i matrices DI0 

Step 1: Obtain 

Step 2: Compute  

where a k 
Step 3: Obtain 

Step 4: 

for  i = 1 .. . . .  h. 

go =~Tf(x0) and set dl0 = -D10gl0 for  i=l  ..... h 

Xk+ 1 = x k + akd  k 
minimize f (xk+adk)  with respect to a 

gk+l  = Vf(Xk+l )  

Pk = Xk+l " Xk 

qk = gk+l  - gk - RPk 
For i = 1 ..... h compute 

V~k = P'k " Dlkqlk 

Dlk+l  = DIk if Vek'ql k < 0 

Step 5: 

Step 6: 

(14) 

(15) 
(16) 

) 
Dik+l  = Di k + vikvik'/Vik'qi k otherwise 

If  k<r, compute for  i~-I .. . . .  h 

d lk+l  = -D t0g lk÷ l  + ~kdtk , 
where 

h h 
/]k = ( Z g i k + l ' D 0 i g ! k + l )  / ~'~jgik'D0igki • 

i=l i--1 
Then increment  k by 1 and go to Step 2. 

If k--r, reset k to 0, set x 0 = Xr+ 1 , a n d  Dt 0 = D l r + l f o r  i=l ..... h, 

then go to Step 1. 

(17) 

(18) 

(19) 

(20) 

We note that though the matrices Dik are updated on each iteration, the matrices used in the 
calculation of flk are kept fixed during a cycle• This is required in order not  to destroy the 

conjugency of  the search direction that  is needed to assure quadratic terminat ion,  i t  should be also 

in Step 4 we do not update Dik unless the denomina tor  in the rank one correction term noted that  

is positive• This  rule is a crude stabil ization device included just to indicate the need for  some 

device that will assure positive def ini tness  of the Dik matrices. In implement ing Algori thm 1, one 

can use any of  the stabilization approaches proposed in the li terature for  the Rank-One  update. 

Such approaches have been suggested for  instance by Murtagh and Sargent 18] and more recently by 

Cul lum and Brayton 1,3]. 

3. A Resource Allocation Problem 
We now consider the class of  resource allocation problem having the form 

h 

rain f(x) = ~i=l fi(xi) t 
subject to (21) 

A x = b  

where x = (x 1, x 2 . . . .  xh), xER n, xiER mi, bERr and A is an rxn matrix. 

in this problem the objective funct ion is partially separable in the sense that the decision 

vector x can be part i t ioned into segments each of  which affects only one term in the objective 

funct ion.  All the decision variables, however, are related through a relatively small number  of l inear 
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constraints. This would be a typical formulation in a multiperiod resource allocation problem in 
which the variables have to satisfy some linear resource or budget constraints. 

One possible approach for solving this type of problem is using a multiplier or penalty 
function method. Such an approach involves the repeated unconstrained minimization of a penalty 
or penalized Lagrangian function having the form 

I I  

L(x)  = " ~ f l i ( x  i)  + ,o, IJ A x  - b II 2 ( 2 2 )  
i=l 

or 
h 

L(x)  = ] ~  fi(x i )+~ . 'Ax  + p  I I A x -  b l l  2 (23) 
i=l 

For either of the functions (22) or (23), the Hessian is: 
V2L(x) = V2f(x) + 2/~A'A 

V2f(x), however, is block diagonalwith the i th block being V2fi(xi). We thus have The matrix 

V2fi(xi ) the structure assumed in the design of Algorithm 1 with M i = and R = 2ftAA. 
Consequently, the penalty or penalized Lagrangian function given by (22) or (23) can be minimized 
using Algorithm 1 restarted every r+l  steps (i.e., number of constraints plus one). 

4. A Class of Optimal Control Problems 
We address now the class of optimal control problems considered by Bertsekas [1]. These 

problems have the form 
N-1 

SubjeCtx i+l J(uOto ..... uN) = G(xN) + k=O ~ i  li(ui)l x 0 ) (24) 

= Ai xi + fi(u i) = 0, ..... N-l ;  given. 

Here xi£R n denotes the state, u i ER m is the control, A i is an nxn matrix, fi: R m ~  Rn. 

G:R n ~ R and li:Rm ~ R. 
The Hamiltonian for this problem is 

Hi(xi,ui,)~i+l) = li(ui) + h i+l  ' [Aixi + fi(ui)], i = 0 ..... N-1. 

hi denotes here the costate and is defined by the adjoint equations 
hi(u) = Ai'~i+l(u ) . i = 1 ..... N-1 

~N(u) _- aG/~xN(xN(u)) 

(25) 

(26) 

The gradient of the cost functional J with respect to the mN 
is given by 

~H0 DHN'I  1 VJ(u) = (u) . . . . .  ~ , ( u )  
au 0 auN-1 

where 

19H i 

dimensional control vector u 

(27) 

/)1 i af  i 
(u) = ,(u i) + X i+l  (u)' (u i) (28) 

~u i ~u i au  i 

In eq. (28) ~ii/~u i is a row vector denoting the gradient of l i with respect to u i and af i /0ui  is 

the Jacobian of fi with respect to u i. The Hessian of I has the form 
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where 

132H 32G 
V2J = ~ ( U )  + M(u) ...... (u) M(u)' 

0u 2 O(xN) 2 

~2H/~u2(u) is the block diagonal matrix 

(29) 

and 

a2H 
" - - ' ~ u )  -- 

au 2 

a2H0 
~ ( u )  0 
a(uo) 2 

a2H1 

o a(ub 2 (u) o 

~2HN_ 1 
(u 

a(uN-1)2 

i 

M(u) is the nxNm matrix 

~f0 ~fN-2 ~fN-11 
M(u)'= N-I ' - -A1  . . . . .  A N - l - - ,  ~ • 

au 0 au N-2 ~uN-1J 

(30) 

(31) 

In view of this structure of the Hessian, the problem described in (24) can be conceptually solved by 
Algorithm 1 with a cycle length equal to the rank of a2G/O(xN) 2 plus one. Such a procedure, 
however, would be impractical as it requires the evaluation of M(u)[a2G/a(xN)2]M(u) ' at each 

iteration. Fortunately, this can be avoided by replacing (16) with a scheme that evaluates q directly 
as a first order approximation to (O2H/Ou2)Au. 

The first order approximation to the change in VJ(u) due to a change /Xu in the control is 
given by 

~2H 
VJ(u+Au) - VJ(u) = An '  (u) 

au 2 

It 3,..1 q + XI(u÷Au) - 2kl(u)] ' (u 0) . . . . .  FXN(u+Au) - hN(u)] ' (uN) l 
~u0 au N-1 J 

(32) 

Consequently q can be obtained by subtracting the second term in the right hand side of (32) from 
the gradient difference. Due to the special structure of O2H/Ou2 and in view of (27) and (28), eq. 
(32) can be decomposed into N equations of the form 

a2Hi i31 i ~91 i 
Au i' - ( u )  "" (ui+Aui) - '  (u i) 

a(ui) 2 au i au i 

.pfi 1 + hi+l(u+Au) I-'~'(ui+/~ u i) - (u i) , i=0, 1 ..... N-1 (33) 
I~u t au i 
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The right hand side in (33) is then an expression for the segment of q corresponding to the i th 
block in a2H/~)u 2. 

Based on the above considerations we describe now a more specific version of Algorithm 1 

designed for the optimal control problems addressed in this section. In this algorithm we use 
subscripts to denote iteration number and superscripts to denote time period. The rank of the 
matrix a2G//)x N is denoted by r. For convenience, we have also changed the order of steps. 

Algorithm 2 
Start with a positive definite simetric matrix Di 0 and any ui0 for i=O ..... N-I  

Step 1: Calculate xik, i = 0 ..... N-l ,  using 

xi÷l k=  AiXik + fi(uik ), with X0k = x  0 

and h i  k,  i = 1 . . . . .  N - 1 .  using 

hi k = Ai'hi+l k. with hNk = ~G/~xN(xNi) 

(34) 

(35) 

Step 2: For i -- 0 . . . .  N-I, calculate 

a l  i af i 
" i ' " i ' LI k = (Uk). and F l k = - -  (Uk) 

au k ~u i 

then obtain 
vJi  k -_ Lik + Fik h i+l  k 

(36) 

(37) 

Step 3: If k=O then go to Step 6, otherwise for i = 0 ..... N-l ,  calculate 

Auik : uik - uik_l 

and 

qi k = Li k -Lik_l + (Fik - Fik_l)hi+l k 

vik ffi Auik - Di k qi k 

(38) 

(39) 

(40) 

Step 4: 

Step S: 

Step 6: 

Step 7: 

For i = 0 ..... N - l :  

i f  vt k ' q l  k < 0se t  DI k = D Ik .1  

otherwise Di k = Dik_l + (1/vik'qki) vik vik ' 

If k < r+l, go to Step 6. Otherwise, reset k to 0, 

el0 = Uir+ 1 and vJi 0 = VJir+l for i ffi 0 ..... N-I  

) 
then set Dto = D~r+l , 

For i = 0 ..... N-l ;  if k = 0 set di0 =-Di0vJ i0  , otherwise 

dik = -Di0VJik + ilk-1 dik-1 
where 

N-1 N-1 
i ' " ilk-1 = ( ~ VJik ' DioVJik) / ~ VJ k-1 DIO VJik-1 

i = 0  i •0  

For i -= 0 ..... N=I calculate 

Ulk+l = Ulk + a k dlk 
where a k minimizes J(U0k+ad0 k, u N ' I  +ad N ' I  ~ .... k kJ • 
Then, increment k by 1 and return to Step 1. 

(41) 

(42) 

(43) 

(44) 
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It should be noted that since D10 is replaced only at the end of r+ l  steps the updating 

performed in Step 3 and 4 could be done after the cycle is completed. Such an approach, however, 

would require more storage since then we have to store AUik and qi k for all i~0,..,,N-1 and 
i ~ k--1,...,r+l. For a linear quadratic problem where fi(u i) -- Biui and li(ui)  -- u Riul we have 

qik=RiAui k, Thus, by Theorem 1 it will take m updatings to obtain R i ' l .  Assuming that 

r + l > m ,  the second cycle will be a properly scaled partial conjugate gradient cycle and will thus 

converge to the exact minimum by the end of that cycle. 

5. Conclusions 
General purpose Variable Metric algorithms are impractical for large scale optimization 

problems due to their high computational and storage requirements. These costs, however, can be 

reduced by specializing such algorithms to specific classes of problems and exploiting the special 

structure of such problem to reduce computational and storage requirements. The paper implements 

this philosophy for a class of problems in which the Hessian matrix consist of a sum of a block 

diagonal matrix and a low rank matrix. We use a rank-one updating formula to approximate the 

inverse of the first part of the Hessian. We then use that approximation in a Scaled Partial 

Conjugate Gradient algorithm restarted every r+ l  steps where r is the rank of the second term in 

the Hessian. Due to the block diagonal form of the first part of the Hessian being approximated, the 

block's can be updated and stored individually. This procedure considerably reduces the storage 

requirements by maintaining sparcity. Furthermore for a quadratic problem the approximation 

becomes exact after as many steps as the dimension of the largest blocks. The resulting algorithm 

possesses "quadratic termination" in a number of step significantly lower than the number of 

variables. 

The use of the Rank One update was motivated by the fact that it permits the use of arbitrary 

independent updating vectors. This property is crucial since the search directions in our approach 

are different from the vectors obtained by multiplying the current matrix approximation times the 

gradient. On the other hand, the use of the Rank One formula raises stabilization problems as it 

does not guarantee the positive definitness of the approximations even when applied to a positive 

definite quadratic function. Various stabilization schemes have been proposed in the literature and 

can be used in implementing o u r  approach. Much of the stabilization problems, however, can be 

avoided by using positive definite initial approximations whose eigenvalues are all below the 

eigenvalues of the matrix being approximated. It can be shown (see luenberger I-7] ) that in the 

quadratic case such an initial approximation guarantees that all the rank one correction terms will 

have positive denominators, and hence, the approximations will be positive definite. .  A simple initial 

approximation satisfying the above requirement would be, for  instance, the identity scaled through 

divisimr by an upper bound on the norm of the matrix being approximated. 

We presented two classes of problems leading to the structure under consideration and 

discussed the potential implementation of the proposed approach to these problems. In both cases 

the algorithm uses only first derivatives and doesn't require any matrix inversions. Ntunerical 

experiments, however, with this method are limited so far and it still remains to demonstrate 

practical wdue of the proposed method. 
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