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Abstract—Intentional Controlled Islanding (ICI) and Black
Start Allocation (BSA) are two examples of problems in the
power systems literature that have been formulated as Mixed
Integer Programs (MIPs) and allow reconfiguration of the power
system topology. A key consideration in both of these problems
is that each island that appears after a reconfiguration must
have at least one energized generator. In this paper, we examine
three alternative MIP formulations for this restriction, show their
equivalence, and prove that two of them are stronger in terms
of their linear programming relaxation than the formulation
most commonly used in the power systems literature. Since the
time to solve MIPs can vary significantly between equivalent
formulations, we also present computational experiments on
IEEE test systems for the ICI and BSA problems. We observe that
a polynomially separable, exponential in size, strong formulation
yields the best performance for the BSA problem and exhibits
a comparable performance to a linear in size, weak formulation
for the ICI problem.
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I. INTRODUCTION

Mixed integer programming (MIP) formulations, i.e. opti-

mization models that involve integer as well as real variables,

are becoming ubiquitous in power systems applications (unit

commitment, power system restoration, capacity expansion

planning, optimal islanding). The main reasons for their pop-

ularity are that they offer broad modeling capabilities and that

specialized commercial MIP solvers have improved signifi-

cantly over the past years, making MIPs tractable for many

practical applications. In these applications, binary variables

are used to represent commitment, scheduling, time depen-

dencies, component energization, as well as to approximate

nonlinear curves with piecewise linear functions. Two of the

problems that have been formulated as MIPs in power systems

are Intentional Controlled Islanding (ICI) and Black Start

Allocation (BSA).

ICI is a measure employed to prevent cascading power

system outage by splitting the grid into smaller, stable and

easily controllable islands via switching off lines [1]–[16]. One

straightforward approach to model the problem is to represent
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the switching decisions with binary variables and formulate

an optimization problem [1]–[11]. The optimization objective

and constraints embody the requirements that the splitting

should satisfy, such as minimum power flow disruption, size

and capacity of the resulting islands and isolating or grouping

generators in coherent sets.

The BSA for Power System Restoration (PSR) prob-

lem [17]–[27] aims to allocate Black Start (BS) resources in

the grid in an efficient way, in order to ensure a successful

restoration of the power system after an outage. The problem

is often modeled as a MIP, with binary decisions representing

the BSA and the restoration of generators/lines/buses of the

system [17]–[24]. The optimization objective is to maximize

the energization of the system components over a time horizon,

or to minimize the load shedding for critical loads, whereas the

various constraints ensure that the allocation and restoration

plans are feasible.

Both of the aforementioned problems, and possibly others,

allow the switching of lines of the power system. It is therefore

often necessary to include a constraint to ensure that at all

times each island has at least one generator to set up the

voltage. More abstractly, the constraint ensures that a graph is

partitioned into connected subgraphs, each of which contains

a special type of node. In the power systems context, this node

is one with an energized generator or corresponding to a set

of coherent generators. We will refer to this constraint as the

island energization (IE) constraint. An example of a system

state that violates this requirement is depicted in Figure 1.

Network commodity flow formulations have been used to

explicitly enforce this requirement [1], [2], [6], [8], [10], [11],

[18]–[20] and this is currently the most common approach for

power systems applications.

A similar requirement appears in other contexts as well.

For instance, in [28], the authors propose three formulations

to obtain a connected subgraph that includes a set of terminal

nodes in a graph, and provide computational results to test the

comparative performance and strength of the different formu-

lations. In their problem, they must select a single connected

subgraph that includes certain terminal nodes, whereas we

can select multiple connected subgraphs (islands) that must

contain at least one generator. While projections of the two

problems can be shown to be equivalent using the appropriate

network transformations, one of their formulations restricts

the connected subgraphs to be trees. For similar reasons,

our problem also differs from the Steiner Tree problem and

multiple generalizations of it (such as the Prize Collecting

Steiner Tree Problem [29]), because these problems restrict
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their connected subgraphs to be trees, whereas our islands

can include cycles. Furthermore, all the previous formulations

utilize only edge and/or node binary variables. On the other

hand, we use binary variables for edges, nodes and terminal

nodes, since all of these variables have a physical meaning for

power systems applications (buses, branches, generators). As a

result, the feasible region we describe in our problem includes

the feasible regions for most other problems discussed above.

The motivation for studying equivalent reformulations of

the same set of constraints is that, despite the continuous im-

provements of MIP solvers, the solution times highly depend

on the problem formulation employed. As a result, equivalent

reformulations of the same requirement can lead to very

different solver performances. For a minimization problem,

the lower bounds found by the solvers of a MIP are based on

solving successive continuous relaxations of the problem, i.e.

optimization problems that relax the integrality requirement

of some variables. Therefore, equivalent reformulations of the

problem with tighter continuous relaxations can lead to better

lower bounds and hence a smaller B&B tree. Unfortunately,

tighter formulations usually come at the expense of more vari-

ables and/or constraints. As a result, there is a computational

trade-off between the use of different formulations that has to

be resolved based on theoretical and computational results for

every particular problem.

The main contributions of this work are the following:

1) We present three different formulations of the IE con-

straint using binary variables for generators, buses and

branches: a single-commodity flow formulation F1 and

a multi-commodity flow formulation F2 based on ex-

isting ideas in power systems, and a new, exponential

in size, cut-set formulation F3. We show that they

are all equivalent, that the Linear Programming (LP)

relaxation of F2 is stronger than that of F1, and that

the LP relaxations of F2 and F3 are equally strong.

We propose a polynomial time separation algorithm to

identify a violated constraint of the LP relaxation of the

exponential in size, strong formulation F3.

2) We present a new formulation for the variant of the

optimal ICI problem considered in [1]. Our formulation

has fewer variables and constraints and exhibits a better

computational performance for the instances examined.

3) We demonstrate through computational experiments

that: (i) For both problems (ICI and BSA), the size of

F2 makes it impractical to use in realistic applications,

despite its strength. (ii) For the optimal BSA problem,

formulation F3 is significantly better (at least one order

of magnitude faster) than F1 in the instances considered.

(ii) For the optimal ICI problem, F3 performs no bet-

ter than F1 because of the computational overhead of

separating the constraints of F3.

The practical importance of the work can be summarized as

follows. In an optimization problem for which the IE require-

ment is valid (as is the case for the ICI and BSA problems

examined in the paper), an improvement in the computational

time of the problem can be achieved by adding or substituting

the existing formulation with the strong formulation F3 (or

Fig. 1: A small power system with four buses, three branches and one
generator. Red color indicates an energized component, whereas black color
indicates de-energized components. Note that nodes 1 and 2 and branch (1, 2)
form an energized island without any generator, hence this is an infeasible
topology that violates the IE constraint.

the concise formulation F1).

The rest of this paper is organized as follows: section

II describes the requirement that the IE constraint imposes;

section III sets up the notation for the paper; section IV

gives the equivalent reformulations; section V proves all

the theoretical results of the paper; section VI presents the

computational experiments; and section VII draws conclusions

based on the results. The full formulations of the two power

systems problems considered are provided in the Appendix.

II. MOTIVATION

The power system restoration (PSR) problem, which is

solved for a given allocation of BS units in the system,

aims to gradually restore a power system to an operational

state after a complete or partial outage. The optimal ICI

problem deals with temporarily reconfiguring the grid, by

switching lines on and off, as a measure to improve the system

security. Both problems involve a series of stepwise actions

(usually switchings of lines and generators), while the system

moves through a number of different states. Each state can be

captured through the status of every bus, line or generator (on

or off, i.e. energized or de-energized), as well as through other

system characteristics (power flows, generation, etc).

Every step of the process in both problems should respect

the island energization (IE) constraint. This requirement may

be obvious to the experts that actually perform the switching

operations to reconfigure the grid, but when an optimization

model is employed to determine a switching plan, the IE

constraint has to be imposed. If the ac power flow equations

are utilized to model the power system in the optimization

model, the IE constraint is implicitly imposed. However, in

order to achieve tractability or obtain optimality guarantees,

the power flow equations are often relaxed or substituted with

approximations and relaxations in the power systems literature

which can violate the IE constraint. In such cases, the IE

constraint must be explicitly imposed, as in [1], [2], [6], [8],

[10], [11], [18]–[20].

The IE constraint formulations we examine in this paper are

valid for distribution systems as well. However, for distribution

systems one can exploit the graph structure even more, due to

the mostly radial nature of the system. As a result, for these

systems, there already exist specialized constraints that impose

the connectivity requirement, such as the ones used in [30]–

[33]. These formulations are specific for distribution systems

and do not work for general networks. Our formulations are

tailored for general networks, aiming to allow cycles, which

are common in transmission systems.
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III. NOTATION

Let (N,E) be the directed graph derived from the physical

graph of the power system, where buses correspond to nodes

(set N ) and branches to directed edges (set E). The direction

of the edges is defined by arbitrarily picking a “From Node”

and “To Node” for every system branch, as is common in

power systems literature. Let G be the set of all generators

and G(i) the set of generators that are connected to bus

i ∈ N . Let ui denote the energization state of bus i ∈ N
(where ui = 1 indicates an energized bus, whereas ui = 0
indicates a de-energized bus), uij denote the energization

state of branch (ij) ∈ E (uij = 1 indicates an energized

branch) and ug the energization state of generator g ∈ G
(ug = 1 indicates an energized generator). The energization

state of the system is completely described by the binary

vector u ∈ B
|N |×|E|×|G|. We also use auxiliary variables

f , corresponding to energization network flows (not power

flows), in the definition of the single- and multi-commodity

flow formulations. Finally, if S is a subset of the nodes S ⊆ N ,

the undirected cut-set δ(S) is defined as the set that contains

all the edges in E with one node in S and one node not in S,

regardless of the direction of the edge.

IV. FORMULATIONS

In this section, we present three different formulations to

impose the IE constraint. Constraints (1) and (2) are included

in all the formulations.

1) If a generator g ∈ G connected to node i ∈ N is

energized, then the node is considered energized.

ug ≤ ui, g ∈ G(i), i ∈ N (1)

2) If a line is energized, both the nodes at its endpoints are

considered energized.

uij ≤ ui, uij ≤ uj , (ij) ∈ E (2)

A. Single-Commodity Flow Formulation

The first formulation is given by:

F1 ={u ∈ B
|N |×|E|×|G| : ∃fg ∀g ∈ G, fij ∀(ij) ∈ E :

(1), (2), (4a)− (4c)}
(3)

where:

0 ≤ fg ≤ ug, g ∈ G (4a)

− uij ≤ fij ≤ uij , (ij) ∈ E (4b)
∑

j:(ji)∈E

fji −
∑

j:(ij)∈E

fij +
∑

g∈G(i)

fg =
1

|N |
ui, i ∈ N (4c)

A set of auxiliary network flow variables fg , g ∈ G and fij ,

(ij) ∈ E, are employed. An energized node (i.e. ui = 1) will

act as a sink of 1
|N | amount of network flow, captured in the

right hand side of (4c). Network flow can only be generated

from energized generators, due to (4a). Finally, it can only

flow through energized lines due to (4b). This ensures that

there will be a path from any energized node to an energized

generator that uses only energized lines (this is the path that

the network flow follows to move from the energized generator

to the energized node). For example, the topology of Figure 1

is infeasible, since node 1 would act as a source of 1/4 amount

of network flow, but network flow can only be generated at

node 4 by the energized generator g1 and cannot pass through

the de-energized line (2, 4). Note that the size of the sinks

is 1
|N | , so that the topology where a single generator (that

can generate up to 1 unit of network flow) energizes all the

nodes of a (connected) power system belongs in F1. The idea

behind the single-commodity flow formulation is the one most

commonly used in power systems applications [1], [2], [6],

[8], [10], [11], [18]–[20]. The formulation has |G|+ |E| flow

variables and |N |+ |E|+ |G| constraints.

B. Multi-Commodity Flow Formulation

An alternative formulation approach, following the same

logic, would be to consider a different type of flow corre-

sponding to the energization of each node. This would lead to

the following formulation

F2 ={u ∈ B
|N |×|E|×|G| : ∃fk

g ∀k ∈ N ∀g ∈ G,

fk
ij ∀k ∈ N ∀(ij) ∈ E : (1), (2), (6a)− (6d)}

(5)

where:

0 ≤ fk
g ≤ ug, k ∈ N, g ∈ G (6a)

− uij ≤ fk
ij ≤ uij , k ∈ N, (ij) ∈ E (6b)

∑

j:(ji)∈E

fk
ji −

∑

j:(ij)∈E

fk
ij +

∑

g∈G(i)

fk
g = ui,

k ∈ N, i ∈ N : i = k (6c)
∑

j:(ji)∈E

fk
ji −

∑

j:(ij)∈E

fk
ij +

∑

g∈G(i)

fk
g = 0,

k ∈ N, i ∈ N : i 6= k (6d)

The idea behind this formulation is that each node is treated

separately and is associated with its own type of network flow

and constraints. If node k ∈ N is energized, then one or more

of the energized generators will need to generate the type

k network flow, that needs to pass through energized lines.

The only sink for that type of network flow is node k, which

means that the network flow of type k is preserved at every

other node i 6= k. In this case, the normalization of 1
|N | is

not necessary in (6c), since a single energized generator can

generate all |N | types of network flows to energize all the

nodes. This formulation has |N | · (|G|+ |E|) flow variables

and |N | · (|N |+ |E|+ |G|) constraints.

C. Cut-Set Formulation

The third formulation only employs the binary variables.

More specifically,

F3 = {u ∈ B
|N |×|E|×|G| : (1), (2), (8)} (7)

where:
∑

(ij)∈δ(S)

uij +
∑

i∈S

∑

g∈G(i)

ug ≥ un, n ∈ S, S ⊆ N (8)

The idea behind this formulation is that, given any subset S
of the nodes, if any node in that subset is energized (i.e. if un

in the right hand side of (8) is equal to 1 for some n ∈ S),

then an energized generator must be providing the energizing
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flow. Therefore, either one generator within the set S should

be energized (i.e.
∑

i∈S

∑

g∈G(i) ug ≥ 1 in the left hand side

of (8)), so that the energizing flow comes from that generator,

or at least one edge in the cut-set should be energized (i.e.
∑

(ij)∈δ(S) uij ≥ 1 in the left hand side of (8)), so that the

energizing flow comes from a generator outside the set S. For

example, the topology of Figure 1 is infeasible, since if we

pick the set S = {1, 2} and the node n = 1 with u1 = 1, the

left hand side of (8) is zero (since there are no generator nodes

in S and the only edge in the cut-set has u24 = 0), while the

right hand side is one. Finally, for every node n ∈ N , there

are 2|N |−1 subsets S of N that contain it, so the formulation

has a total of |N | · 2|N |−1 constraints, which is exponential in

the size of |N |.

V. THEORETICAL RESULTS

A. Formulation Equivalence

We proceed to show that the three formulations are equiv-

alent, i.e. that they represent the exact same binary space.

Proposition 1. Formulations F1, F2 and F3 are equivalent.

Proof. We show that F1 ⊆ F3, F3 ⊆ F2, and F2 ⊆ F1.

Part 1. u ∈ F1 =⇒ u ∈ F3

Assume for contradiction that u ∈ F1 but u /∈ F3. Based

on (8), that means ∃S0 ⊆ N, ∃n0 ∈ S0 :
∑

(ij)∈δ(S0)
uij +

∑

i∈S0

∑

g∈G(i) ug < un0
. Since the right hand side is binary,

and the left hand side is integer, the only way for strict in-

equality to hold is if
∑

(ij)∈δ(S0)
uij+

∑

i∈S0

∑

g∈G(i) ug = 0
and un0

= 1. Since the first equality is a sum of non-negative

terms equal to zero, each one of them has to equal zero, so

we obtain that:

uij = 0, (ij) ∈ δ(S0) (9a)

ug = 0, g ∈ G(i), i ∈ S0 (9b)

un0
= 1 (9c)

Now, since u ∈ F1, by summing over equations (4c) for i ∈
S0, we obtain:

∑

i∈S0





∑

j:(ji)∈E

fji −
∑

j:(ij)∈E

fij



+
∑

i∈S0

∑

g∈G(i)

fg =
1

|N |

∑

i∈S0

ui

The left hand side (LHS) can be simplified by observing that

the sum of the flows inside the set S0 will cancel each other,

while the flows on branches that have only one node in S0

(i.e. belong in δ(S0)), are all zero, due to (4b) and (9a).

LHS =
∑

i∈S0





∑

j:(ji)∈E

fji −
∑

j:(ij)∈E

fij



+
∑

i∈S0

∑

g∈G(i)

fg

=
∑

i∈S0

∑

g∈G(i)

fg ≤
∑

i∈S0

∑

g∈G(i)

ug = 0

where the last line uses (4a) and (9b). On the other hand, the

right hand side (RHS) yields:

RHS ≥
1

|N |
un0

=
1

|N |

where we used that n0 ∈ S0 and the rest of the binary variables

in the summation are non negative, together with (9c). Based

Fig. 2: Graph used in the proofs of Proposition 1, Proposition 3, and
Proposition 4.

on the inequalities for the LHS and RHS, we obtain 0 ≥ 1
|N | ,

which is a contradiction.

Part 2. u ∈ F3 =⇒ u ∈ F2

Based on u, construct a directed graph with nodes N ∪{t},

where t is a dummy node, and edges: for each node i ∈ N that

has at least one generator (i.e. G(i) 6= ∅), add a directed edge

from t to i with capacity
∑

g∈G(i) ug, and for each directed

edge (ij) ∈ E, add two directed edges, one from i to j and

one from j to i, both with capacity uij . Now pick a node

k ∈ N . For T ⊆ N and S = N \ T , the capacity of any t-k
cut is given by (see Figure 2):

C(T ∪ {t}, S) =
∑

(ij)∈δ(S)

uij +
∑

i∈S

∑

g∈G(i)

ug (10)

which is greater than or equal to uk, since k ∈ S and u ∈ F3.

Therefore, the min-cut has capacity v ≥ uk, which means the

max-flow has capacity v. We can scale all the flows of the

max-flow by the positive quantity uk

v
, which is less than one,

to obtain flows that retain feasibility and inject uk amount of

network flow at node k. Define fk
g based on the flow on the

edge t-i, where g ∈ G(i) (if more than one generators are

connected to bus i, assign to each fk
g flow proportional to the

capacity ug). For every edge (ij) ∈ E, assign fk
ij equal to the

difference of the flows on the arcs in the graph we created,

which is guaranteed to be in [−uij, uij ] due to the feasibility

of the max-flows. We can repeat this process for every node

k ∈ N , and hence generate feasible flows for formulation F2,

which shows that u ∈ F2.

Part 3. u ∈ F2 =⇒ u ∈ F1

Since u ∈ F2, based on the multi-commodity flows of

formulation F2, let:

fg =
1

|N |

∑

k∈N

fk
g , g ∈ G

fij =
1

|N |

∑

k∈N

fk
ij , (ij) ∈ E

By summing over all k ∈ N the constraints of formulation

F2, one can observe that the flows defined above satisfy the

constraints of formulation F1.
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B. Formulation Strength

The LP relaxation of F1 is defined as:

LP(F1) ={u ∈ [0, 1]|N |×|E|×|G| : ∃fg ∀g ∈ G,

fij ∀(ij) ∈ E : (1), (2), (4a)− (4c)}
(11)

We have similar definitions for the relaxations of F2 and F3.

When comparing two MIP formulations Fi and Fj , we say

that Fi is (strictly) stronger than Fj if the LP relaxation of

Fi is a (strict) subset of the LP relaxation of Fj . A stronger

formulation yields better bounds in the execution of B&B (the

B&B algorithm is based on solving successive relaxations of

the problem with additional constraints). Therefore, pruning,

branching and identifying integer points will be more efficient

for the stronger formulation and the resulting B&B tree is

expected to be smaller.

The following propositions give a result for the relative

strength of the different formulations.

Proposition 2. The LP relaxation of F2 is strictly stronger

than the LP relaxation of F1.

Proof. We first need to show that u ∈ LP(F2) =⇒ u ∈
LP(F1). To see that, note that the proof employed in Part 3 of

Proposition 1 did not use the integrality of the variables in u.

Therefore, the same proof can be used to show the inclusion

in this case.

To see the strictness of the inclusion, consider a graph with

two nodes N = {1, 2}, one line E = {(1, 2)}, and one

generator G = {g1} connected to node 1. Consider the point

(u1, u2, u12, ug1) = (1, 1, 1/2, 1). Picking fg1 = 1, f12 =
1/2, we can see that (1, 1, 1/2, 1) ∈ LP(F1). However, the

point does not belong in LP(F2), since for k = 2 the line

capacity of 1/2 prevents the 1 unit of type 2 flow to pass

from the generator to the sink in node 2.

Proposition 3. The LP relaxation of F2 is the same as the LP

relaxation of F3.

Proof. To see that u ∈ LP(F3) =⇒ u ∈ LP(F2), notice that

the proof in Part 2 of Proposition 1 did not use the integrality

of the variables u. Therefore the same proof can be employed

to show this result as well.

To see that u ∈ LP(F2) =⇒ u ∈ LP(F3), for each k ∈ N ,

consider the max-flow problem from t to k in the graph of

Figure 2. Due to the constraints in F2, a feasible flow of at

least uk exists. Therefore, the maximum flow is at least uk,

which means that the minimum cut is at least uk. That implies

that any other cut, whose capacity has the form (10), will be

greater than or equal to the minimum cut, so greater than or

equal to uk. Since this holds for all k ∈ N , the constraints of

LP(F3) are satisfied.

C. Constraint Separation

The constraints in formulation F3 are exponentially many.

Even though we cannot include all of them in the model

that is passed to commercial optimization software, we can

actually efficiently identify a violated constraint of LP(F3),

based on the following proposition. Therefore, we can use

solver callbacks to dynamically add the constraints at any point

the solver reaches (fractional or not), only if they are violated.

Proposition 4. Given a point u ∈ [0, 1]|N |×|E|×|G|, we can

identify a violated constraint from LP(F3) or verify that none

exists (separation problem), in polynomial time.

Proof. Given a point u ∈ [0, 1]|N |×|E|×|G|, for every k ∈ N ,

construct the graph from Figure 2. Then find the minimum

t − k cut in this graph and compare the value to uk. Given

the fact that the capacity of a cut in that graph has the form

(10), there are two cases for the capacity of the minimum cut

Ck
min:

1) If Ck
min < uk, for some k ∈ N , then node k and

the minimum cut set Smin yield a violated constraint

in LP(F3).
2) If Ck

min ≥ uk, for all k ∈ N , then all constraints in

LP(F3) are satisfied.

Since the min-cut problems can be solved in polynomial time,

and we only need to solve at most |N | of them, the separation

problem can be solved in polynomial time. Note that, if the

point is integral, a graph traversal to identify the islands and

check if there exists one without a generator, is enough to

identify if all constraints are satisfied in linear time (if we find

an island with no generator, we can then generate a violated

constraint with S corresponding to that island).

VI. SIMULATION RESULTS

All optimization problems were formulated using Gurobi

with Python. Each simulation was executed at a single node

of the Lawrence Livermore National Laboratory quartz server

(128 GB RAM, 2.1 GHz, 18 CPUs). For formulation F3

all constraints with |S| = 1 were a priori included in the

formulation, and the rest were lazily added using incumbent

callbacks, i.e. each candidate incumbent found by the solver

is checked for feasibility and a lazy constraint is added if the

candidate is infeasible. A 20, 000s time limit was set to the

solver and a 1% optimality gap termination was considered

(i.e. a solution guaranteed to be within 1% of the optimal is

denoted as optimal) for all simulations. Some instances caused

the B&B tree to run out of memory due to the size of the

problem. For these instances (indicated with ∗), we present

results using settings that limit the solver’s memory use by

restricting the number of threads to 4 and using the file system

as temporary storage.

A. Optimal Intentional Controlled Islanding

The most common practice behind ICI is that the generators

of the grid can be divided into groups of coherent generators,

based on their relative angle response to a disturbance. By

isolating unstable generators or grouping together only gener-

ators that are coherent to each other, a cascaded outage may be

avoided. In [1], an optimal ICI model was devised to propose

switching actions. The goal was to create a partition of the grid

into islands of coherent generators with minimal power-flow

disruption.

The formulation provided in [1], which we denote with

F4, utilizes a mixed integer program to identify the optimal

islanding. The authors of [1] deal with the intractability
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Optimal B&B Gap Upper Lower Time
ICI Nodes [%] Bound Bound [s]

IEEE-118 K = 4
F1 1 Optimal 3.6846 3.6846 0.16
F3 328 Optimal 3.6846 3.6846 1.03
F4 1 Optimal 3.6846 3.6846 0.94
Polish K = 3
F1 3 Optimal 17.7717 17.6123 5
F3 1 Optimal 17.7717 17.7710 29
F4 1 Optimal 17.7717 17.7717 509

K = 4
F1 13 Optimal 27.3901 27.3901 12
F3 1 Optimal 27.4225 27.2373 36
F4 2635 Optimal 27.3901 27.3901 3098

K = 5
F1 32 Optimal 44.9159 44.9159 13
F3 1 Optimal 44.9508 44.8052 34
F ∗

4
5138 1.46 44.9159 44.2587 20000

TABLE I: Optimal ICI for the IEEE-118 and Polish systems, splitting the
system into K islands.

of formulation F4 by constructing a heuristic based on LP

relaxations. In this paper, we present equivalent formulations

of F4 using the IE constraint formulations F1, F2 and F3; see

Appendix A for the full formulations.

In order to perform a computational comparison between the

different formulations of the problem, we considered two test

systems: the IEEE-118 bus system (118 buses, 186 branches,

54 generators) and an instance of the Polish system (3374
buses, 4161 branches, 596 generators). Due to the size of the

resulting model and the memory limitations, formulation (F2)

was impractical and was not implemented.

The results for the ICI problem are presented in Table I. The

IEEE-118 system solves to optimality relatively quickly for

all three formulations considered. For the Polish system, we

observe that F4 seems to be two orders of magnitude slower

than F1. The exponential formulation F3 performs slightly

worse than F1 (with, in fact, more than 80% of its simulation

time spent in separating the violated constraints). In this case

the trade-off between a tighter formulation and separation of

an exponential number of constraints is inconclusive.

B. Optimal Black Start Allocation

The optimal BSA problem aims to allocate the black start

resources in the grid in a way that will ensure an efficient

restoration of the system in the case of a blackout. The

formulation used in this paper is a simplified adaptation of

the one explained in [19]. The main simplification employed

is that, instead of detailed nodal power balance equations and

active and reactive power flow approximations, we only use

one aggregate constraint for the active power balance and one

for the reactive power capability at every time step of the

underlying restoration problem (given the BSA). This is a

typical assumption for this problem [17], [23], made mostly to

ensure its tractability. The complete formulation used in this

paper can be found in Appendix B.

We use three test systems: the IEEE-39, the IEEE-118, and

the IEEE-300 power systems. The results of the simulations

are shown in Table II. The IEEE-39 bus problem solves to

optimality relatively quickly for all formulations. Formulation

F2 is slower due to its size (every linear program solved at

Optimal B&B Gap Upper Lower Time
BSA Nodes [%] Bound Bound [s]

IEEE-39
F1 1335 Optimal 1550 1536 2
F2 640 Optimal 1536 1533 22
F3 108 Optimal 1545 1530 1

IEEE-118
F1 474738 4.81 5946 5673 20000
F2 3177 1.30 5730 5656 20000
F3 4624 Optimal 5721 5670 99

IEEE-300
F1 203933 2.86 12873 12515 20000
F ∗

2
1028 2.15 12840 12570 20000

F3 5172 Optimal 12668 12593 108

TABLE II: Optimal BSA results for the IEEE-39, IEEE-118 and IEEE-300
systems.

intermediate steps takes more time), however the number of

explored B&B nodes for the solution is smaller (due to the

strength of the formulation).

In the larger systems considered, the performance of the

formulations is very different. For the IEEE-118 system, F1

and F2 are unable to solve the problem to optimality within the

time limit of 20, 000s, whereas F3 easily achieves a solution

with the desired gap within 99 seconds. F2 performs better

than F1, however due to its size it is unable to explore enough

nodes in the B&B tree to reduce the optimality gap to the

desired levels. Finally, for the IEEE-300 system F3 is able

to yield an optimal solution in around 100 seconds. F1 only

achieves a 2.86% solution and F2 only a 2.15% solution in

more than 100-fold the time it took for F3 to optimally solve

the problem.

VII. CONCLUSIONS

The main message of this work is that, while it might be

easy to formulate a power systems problem as a MIP, choosing

the right way to formulate the problem can make a significant

difference in the solution times. Among others, some issues to

consider when selecting the right formulation are the tightness

of the formulation (i.e. how tight the relaxation of the feasible

region is around the integral points) and the size of the

formulation (number of constraints and variables). There is

usually a trade-off between the size and the tightness of

the formulation, that can be resolved in practice for each

problem. Also, even if a problem is intractable in practice with

one formulation, a reformulation could yield an acceptable

computational performance. We presented empirical proof of

all the aforementioned points by examining two problems in

power systems.

For the ICI problem, even though formulations F4 and

F1 are equivalent and are both employing single-commodity

flow to enforce connectivity, their computational performance

was very different, since F1 is more compact than F4 (fewer

variables and constraints). The problem formulated using F4

solved orders of magnitude slower compared to F1. The size of

F2 made it completely intractable. Finally, even though F3 is

imposing tighter constraints in general, the exponential size of

the formulation (that forced the implementation to employ lazy

constraints added through callbacks) made the computational
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performance of the formulation slightly worse that the weaker

F1.

The situation for the optimal BSA problem was different.

Formulation F2 was still impractical, due to its size. However,

F3 significantly outperformed F1, even though it employed an

exponential number of constraints. The reasons for that are

twofold: firstly, formulation F3 employs stronger constraints,

as shown in this paper. Secondly, the constraints of F3 other

than those with |S| = 1 are rarely violated, so candidates

found by solver heuristics early on the tree are often feasible

and optimal. The intuition behind this is that for the restoration

problem we expect that the direction of the problem is such

that edges get energized (rather than de-energized). If lines

are mostly getting energized around energized generators, the

situation where islands without an energized generator will

show up are actually rare, so lazily generating the cuts for

F3 is faster than including the entire formulation F1 in the

optimization solver.

APPENDIX A

OPTIMAL ISLANDING FORMULATION

The optimal ICI formulation presented here is an equivalent

reformulation of the problem formulated in [1], based on a

previous work by the same authors in [34]. The goal is to

find a minimum cost partitioning of the grid to islands given a

partitioning of the generators. More specifically, the generators

are divided into |K| subsets of coherent generators Gh, h ∈ K ,

i.e. of generators that will be in the same island after the

reconfiguration of the grid and in different islands from the

generators of the other subsets. We note that our single-

commodity flow formulation approach is similar in nature to

the model used in [1], with the exception that we make use of

the fact that the generators in each coherent group are forced

to belong to the corresponding partition, so one of them can

be used as the source of the network flow.

Let i ∈ N denote a bus of the system, (ij) ∈ E a branch,

and g ∈ G a generator. We denote the generators connected

to node i with G(i). Also, for each set Gh, denote one of the

generators (assumed to be the isochronous one, even though

the specific choice is not important) with G
(0)
h ∈ Gh. We

denote the node that generator g is connected by n(g). Let

the binary variables uh
i /uh

ij /uh
g denote (if equal to 1) that node

i/branch (ij)/generator g belongs to partition h ∈ K . Let the

binary variable zij denote that branch (ij) is switched on (i.e.

it belongs to some partition). Let the variables fh
ij , f

h
g denote

the network flows that will ensure the connectivity of partition

h ∈ K . Finally, there is a cost dij associated with switching

off branch (ij) and a minimum size requirement M of every

bus set in the partition.

minimize
∑

(ij)∈E

1

2
dij(1− zij)

s.t.

zij =
∑

h∈K

uh
ij , (ij) ∈ E (12a)

∑

h∈K

uh
i = 1, i ∈ N (12b)

∑

i∈N

uh
i ≥ M,h ∈ K (12c)

uh
ij ≤ uh

i , u
h
ij ≤ uh

j , (ij) ∈ E, h ∈ K (12d)

uh
g ≤ uh

i , g ∈ G(i) (12e)

0 ≤ fh
g ≤ uh

g , g ∈ G, h ∈ K, (12f)

− uh
ij ≤ fh

ij ≤ uh
ij , (ij) ∈ E, h ∈ K, (12g)

∑

j:(ji)∈E

fh
ji −

∑

j:(ij)∈E

fh
ij +

∑

g∈G(i)

fh
g =

1

N
uh
i ,

i ∈ N, h ∈ K (12h)

uh
g =

{

1, if g = G
(0)
h

0, otherwise
, h ∈ K (12i)

uh
n(g) = 1, g ∈ Gh, h ∈ K (12j)

The objective of the problem minimizes the weighted cost of

switching off edges. Constraint (12a) imposes that a bus is

switched on if it belongs in one of the partitions. Constraint

(12b) ensures that each bus is assigned to exactly one partition,

constraint (12c) ensures that each partition has at least M
buses, constraints (12d) require that if a branch belongs to

a partition, both its endpoints belong to it, constraint (12e)

ensures that if a generator belongs to partition h, the node it

is connected to will belong to the same partition. Constraints

(12f)-(12h), together with (12d) and (12e), are the IE con-

straints of formulation F1 imposed for every partition h. These

constraints can be equivalently substituted with the constraints

of F2 or F3, as we have shown in this paper. Finally, (12i)

allows only the generator G
(0)
h to generate the network flow

that ensures the connectivity of each partition h and (12j)

forces each node of the coherent generators to belong to the

corresponding partition.

APPENDIX B

OPTIMAL BLACK START ALLOCATION FORMULATION

The optimal BSA problem aims to allocate black start units

across the grid so that an efficient system restoration is ensured

after a blackout. The formulation used in this paper is a

simplified adaptation of the formulation in [19]. Let t ∈ T
denote the set of time instances, starting from 1 ∈ T , g ∈ G
the generators, i ∈ N the buses, and (ij) ∈ E the branches.

We denote the generators connected to node i with G(i). The

binary variables ut
g, u

t
i, u

t
ij denote the energization (when set

to 1) of generator g/bus i/branch (ij) at time t, and u0
g, u

0
i

denote the initial state of the generator g and bus i (here

assumed zero for all components, i.e. we examine a total

blackout). The variables f t
g, f

t
ij denote the network flows of

the F1 formulation, ptg is the active generation of generator

g, and pSHi
is the load shed at bus i. Finally, the parameters

of the problem are the cost CBSg
of allocating generator g

to be a BS unit, the total allocation budget B, the generator

capability P g , cranking time TCRg
, cranking power PCRg

,

ramping rate KRg
, and minimum reactive power capability



0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2920872, IEEE
Transactions on Power Systems

8

Q
g
, the bus load PDi

, angles φDi
and shunt reactance QSHi

and the branch susceptance BSHij
.

maximize
∑

i∈N,t∈T

ut
i +

∑

(ij)∈E,t∈T

ut
ij +

∑

g∈G,t∈T

ut
g

s.t.
∑

g∈G

CBSg
uBSg

≤ B (13a)

u0
g = 0, g ∈ G (13b)

u0
i = 0, i ∈ N (13c)

ut
ij ≤ ut−1

i + ut−1
j , (ij) ∈ E, t ∈ T (13d)

ut
i ≥ ut−1

i , i ∈ N, t ∈ T (13e)

ut
g ≥ uBSg

, (ij) ∈ E, t ∈ T (13f)

ut
g ≤ ut

i , i ∈ N, g ∈ G(i), t ∈ T (13g)

ut
ij ≤ ut

i, u
t
ij ≤ ut

j , (ij) ∈ E, t ∈ T (13h)

0 ≤ f t
g ≤ ut

g, g ∈ G, t ∈ T, (13i)

− ut
ij ≤ f t

ij ≤ ut
ij , (ij) ∈ E, t ∈ T, (13j)

∑

j:(ji)∈E

f t
ji −

∑

j:(ij)∈E

f t
ij +

∑

g∈G(i)

f t
g =

1

N
ut
i,

i ∈ N, t ∈ T (13k)

0 ≤ pτg ≤ P gu
t
g, g ∈ G, τ ∈ {t, t+ 1, . . . , t+ TCRg

+ 1},

t ∈ T ∪ {0} (13l)

ptg − pt−1
g ≤ KRg

, g ∈ G, t ∈ T (13m)

pt−1
g − ptg ≤ KRg

, g ∈ G, t ∈ T (13n)
∑

g∈G

(

ptg + PCRg
(uBSg

− ut
g)
)

=
∑

i∈N

(

PDi
− ptSHi

)

,

t ∈ T (13o)

(1− ut
i)PDi

≤ ptSHi
≤ PDi

, i ∈ N, t ∈ T (13p)
∑

i∈N

∑

g∈G(i)

Q
g
u

max{0,t−TCRg−1}
g +

∑

(ij)∈E

BSHij
ut
ij+

∑

i∈N

QSHiu
t
i −

∑

i∈N

(PDi
− ptSHi

) tan(φDi
) ≤ 0, t ∈ T

(13q)

The objective of the problem maximizes the energization of the

system components, (13a) imposes the allocation budget, (13b)

and (13c) initialize the outage, (13d) allows the energization

of a bus only if at least one of its endpoints was energized

at the previous time step, (13e) forces the nodes to stay

energized after their initial energization, (13f) forces a black

start generator to get energized, (13g) forces the energization

of a bus if one of its generators is energized, (13h) impose

that if an edge is energized both of its endpoints should be

energized. Constraints (13g)-(13k) are the constraints of for-

mulation F1 for illustration (which, as proven, can be replaced

equivalently with F2 or F3), repeated for every time step t.
Constraints (13l)- (13n) define the generator startup capability

curve. Finally, constraints (13o)-(13q) impose aggregate ac-

tive and reactive power capacity constraints. The underlying

assumptions and justification behind this formulation of the

problem can be found in [19].
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