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Large-Scale Integration of Deferrable
Demand and Renewable Energy Sources
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Abstract—We present a stochastic unit commitment model for
assessing the impacts of the large-scale integration of renewable
energy sources and deferrable demand in power systems in terms
of reserve requirements. We analyze three demand response
paradigms for assessing the benefits of demand flexibility: the
centralized co-optimization of generation and demand by the
system operator, demand bids and the coupling of renewable
resources with deferrable loads. We motivate coupling as an
alternative for overcoming the drawbacks of the two alternative
demand response options and we present a dynamic programming
algorithm for coordinating deferrable demand with renewable
supply. We present simulation results for a model of the Western
Electricity Coordinating Council.

Index Terms—Load management, power generation scheduling,
wind power generation.

I. INTRODUCTION

HE key disadvantage of renewable resources relative to
conventional dispatchable generation is their high vari-
ability, their unpredictable fluctuation and the fact that their
output can only be controlled to a limited extent. Demand re-
sponse can strongly benefit the large-scale integration of these
resources. In order to accurately assess the impacts of renewable
energy integration and demand response integration on power
system operations it is necessary to represent the balancing oper-
ations of the remaining grid by using a unit commitment model.
The purpose of this paper is to incorporate a fairly detailed
representation of deferrable demand resources in a unit com-
mitment and economic dispatch model, in order to assess the
benefits of demand response in reducing reserve requirements
and operating costs in scenarios of large-scale renewable en-
ergy integration. As we discuss in the literature review below,
existing work in this area either does not model the deferrable
nature of various demand response resources (e.g., electric ve-
hicle charging, agricultural pumping or certain residential appli-
ances), or does not account for the uncertainty that is introduced
by the large-scale integration of renewable resources. Both of
these features need to be accounted for simultaneously in a unit
commitment and economic dispatch model in order to accu-
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rately assess the impact of demand response integration on re-
serve requirements and operating costs in cases of large-scale
renewable energy integration.

One additional contribution of this paper is to explore the di-
rect coupling of deferrable consumers with renewable resources
into a virtual resource through a contractual agreement based
on a strike price that limits the impact of the coupled system on
the rest of the network. The coupling contract that we present
attempts to overcome various institutional or technological bar-
riers associated with alternative demand response paradigms.

A. Literature Review

A major economic barrier in the large-scale integration of
renewable resources is the high investment cost of backup re-
serves that can guarantee the reliable operation of the system.
Stochastic unit commitment models can be used for quantifying
reserve requirements as well as the impacts of renewable inte-
gration on operating costs. For this reason, numerous renewable
integration studies based on unit commitment have been per-
formed recently by Ruiz ef al. [1], Sioshansi and Short [2], Wang
et al. [3], Contantinescu et al. [4], Tuohy et al. [5], Morales et al.
[6], Bouffard et al., Papavasiliou et al. [7] and Papavasiliou and
Oren [8]. However, these publications focus exclusively on the
impact of renewable supply uncertainty on power system oper-
ations and do not account for the potential benefits of demand
response integration.

The power system economics literature often represents de-
mand response through demand functions. Sioshansi and Short
[2] use this approach in the context of a unit commitment model
and Borenstein and Holland [9] and Joskow and Tirole [10],
[11] also use this approach for analyzing retail pricing. How-
ever, many flexible consumption tasks are best characterized as
deferrable, in the sense that consumers need a certain amount
of energy within a certain time window. As such, deferrable
demand behaves much like a hydro or storage resource from
the view point of the system operator. Electric vehicle charging,
agricultural pumping, pre-cooling, and residential consumption
such as laundry fit this characterization.

In a recent publication, Sioshansi [12] considers a unit com-
mitment model where electric vehicles are centrally co-opti-
mized and dispatched by the system operator along with con-
trollable generation resources. This model extends the state of
the art by explicitly representing the deferrable nature of elec-
tric vehicle energy demand. However, the model is deterministic
and does not account for the uncertainty associated with renew-
able energy supply.

Both demand response paradigms discussed previously are
currently limited by institutional barriers. The real-time bene-
fits of demand-side bidding require real-time pricing at the re-
tail level. This possibility was introduced by Schweppe et al.
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[13] and is discussed by Borenstein et al. [14]. However, there
is strong political opposition to this approach as it exposes retail
consumers to the volatility of wholesale electricity prices. In ad-
dition, real-time prices often fail to convey the economic value
of demand response due to the non-convex costs of system oper-
ations. This effect has been reported by Sioshansi [2], who notes
that the failure of real-time prices to capture non-convexities in-
duces a dispatch of deferrable resources that results in excessive
startup and minimum load costs. The central co-optimization
of demand-side resources, renewable supply and generator dis-
patch discussed by Sioshansi [12] represents the most efficient
approach for exploiting demand-side flexibility. However, this
paradigm cannot be implemented in practice as the system op-
erator dispatches the system at a bulk scale and cannot control
individual retail loads. In addition, the optimization problem is
too complex to solve.

An alternative demand response paradigm that is not dis-
cussed in this paper has been set forth by Hirst and Kirby [15]
and Kirby [16], whereby flexible loads deliver services to the
ancillary services market. According to this paradigm, an ag-
gregator bids on behalf of load aggregations for providing an-
cillary services to the system operator. The aggregator coordi-
nates aggregate consumption by a price-based or direct control
method. The technical feasibility of demand-side aggregation
for the provision of spinning reserve has been studied in practice
by Eto [17]. As ancillary services requirements are expected to
increase due to renewable energy integration, this solution could
prove lucrative for users who would be willing to respond to the
instantaneous needs of power system operators. However, there
are concerns about defining market products that correspond to
the types of services that loads can actually offer, which raises
the need for reform in existing electricity markets.

A stream of literature with a focus on strategic demand-side
bidding in unit commitment models has been developed by La-
mont and Rajan [18] and Zhang et al. [19]. Such models typi-
cally involve a utility owning both generation assets as well as
own demand, where the utility strives to optimize market bids
while accounting for uncertainty in competitors’ bids as well
as the impact of its own bids on market prices. A literature re-
view is provided by David and Wen [20]. This literature focuses
on strategic interactions among bidders and is therefore not ex-
plored further in this paper.

B. Paper Contributions

The methodological contribution of this paper is to present a
stochastic unit commitment model that can be used in order to
quantify the benefits of deferrable demand in mitigating the in-
creased operating costs and day-ahead reserve requirements re-
sulting from the random fluctuation of renewable energy supply.
The use of stochastic planning models for simulating long-term
market equilibrium in order to quantify generation investment
in the face of long-term uncertainty was recently introduced by
Ehrenmann and Smeers [21]. Analogously, the stochastic unit
commitment model presented in this paper is used in order to
simulate the two-stage operation of day-ahead and real-time
electricity markets. The use of a stochastic unit commitment
model for the purpose of simulating the operations of a day-
ahead market introduces computational challenges that can be
addressed by using an appropriate scenario selection technique
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to discretize the uncertainty space of the problem [5], [22]-[24]
and exploiting the decomposable structure of the resulting sto-
chastic optimization problem [3], [25]-[29]. These computa-
tional challenges have been addressed in previous work by the
authors [7], [8] and will not be the focus of this paper.

The modeling contribution of this paper is to simultane-
ously incorporate deferrable demand response resources and
stochastic renewable supply resources in the stochastic unit
commitment and economic dispatch models. The demand
bidding models cited earlier [2], [10], [11], [14] do not ac-
count for inter-temporal elasticities, thereby making demand
appear independent across time periods. In the present paper
we highlight the inadequacy of this approach in representing
deferrable demand. On the other hand, the work of Sioshansi
[12] does not account for the uncertainty introduced by re-
newable energy supply and inflexible demand fluctuations.
In this paper we extend existing models by simultaneously
modeling the inter-temporal dependency of deferrable demand
and renewable supply uncertainty.

The third and final contribution of this paper is to present a
contractual alternative for coupling the operations of renewable
resources with deferrable demand that attempts to overcome the
implementation barriers associated with centralized load dis-
patch and real-time pricing of retail loads, and compare the rel-
ative performance of each demand response paradigm in terms
of system operating costs. The motivation of directly coupling
renewable generation with deferrable demand is to create a net
resource or load that appears “behind the meter” from the point
of view of the system operator, thus limiting the risk that the
system operator needs to offset by procuring reserves.

The California ISO provides a representative example of the
institutional and regulatory difficulties that render coupling a
pragmatic approach to the large-scale integration of demand re-
sponse. The Board of Governors of the California ISO recently
appraised the current status of integrating distributed resources,
including demand response, in the California [SO energy market
[30]. The presentation and executive summary justify, in de-
tail, why the market-based integration of demand response is
far from foreseeable, which justifies the coupling approach that
the authors present in this paper for overcoming exactly these
institutional difficulties. The most that the California ISO can
expect currently from distributed resources are rough estimates
that can be incorporated into load forecasts but not direct ac-
counting of demand response in the dispatch or unit commit-
ment of the system [30].

The remaining paper is organized as follows. In Section II
we provide an overview of the components of our model. In
Section III we describe in detail the demand flexibility models
that we consider in our analysis. Results from a test case of
the Western Electricity Coordinating Council are presented in
Section IV. In Section V we discuss the conclusions of our work.

II. MODEL OVERVIEW

In Fig. 1 we present a diagram of a stochastic unit commit-
ment model that accounts both for the fluctuations of renew-
able supply as well as the benefits of demand response in ab-
sorbing these fluctuations. Uncertainty in the model is driven by
renewable supply and demand. Demand resources in the system
are categorized as inflexible (firm) consumers with stochastic
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Fig. 1. Overview of the model.

consumption patterns and deferrable consumers that require a
fixed amount of energy within the day and adapt their instanta-
neous consumption patterns to the prevailing system conditions.
The model of Fig. 1 serves two purposes. The decision support
module in the upper portion of the figure simulates day-ahead
market operations and is used for determining day-ahead re-
serve requirements when deferrable demand contributes to ab-
sorbing the variability of renewable energy supply. The eval-
uation module in the lower portion of the figure uses the re-
serves committed by the day-ahead model in order to compare
the real-time operating costs of the system under the three de-
mand response paradigms that are discussed in the introduction
of the paper. In what follows we describe each component of
the model in further detail.

A. Statistical Models

The stochastic unit commitment model presented in
Section II-B which is used for determining the optimal
amount of reserves in the system accounts for firm demand and
renewable supply uncertainty. We use a second order autore-
gressive model for modeling demand and load. We assume that
firm demand and renewable production are independent in the
stochastic unit commitment model.

Our analysis in this paper focuses on wind power resources.
Due to the nonlinear relation of wind speed to wind power, we
develop a stochastic model of wind speed and use an appro-
priately calibrated static power curve to determine the corre-
sponding wind power production. We employ a data set pub-
lished by the National Renewable Energy Resources Labora-
tory (NREL) which provides time series of wind speed at var-
ious geographic locations over a year. In order to calibrate our
wind speed model to the available data, we first remove seasonal
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Fig. 2. Probability distribution function of inflexible demand.

and diurnal patterns, and subsequently transform the data set in
order to obtain a strictly stationary Gaussian data set. The au-
toregressive parameters of the strictly stationary data set are es-
timated using the Yule-Walker equations. Our methodology fol-
lows Brown et al. [31], Torres et al. [32] and Callaway [33]. The
calibration and simulation procedure and the fit of the model
to the available data set is presented in Papavasiliou and Oren
[34]. The calibration of firm demand follows as a special case,
since the strictly stationary data set that is obtained after re-
moving seasonal and diurnal patterns is already approximately
Gaussian. The fit of the stochastic demand model to the data is
shown in Fig. 2.

In the present analysis we use a single-area wind model and
ignore transmission constraints in order to focus on the impact
of demand response. The effect of transmission constraints in a
system with multi-area renewable supply and demand response
will be addressed in future work. The problem of balancing
the schedules of coupled resources with the rest of the system
while respecting transmission constraints would be addressed



492

by the system operator and would be reflected in locational mar-
ginal prices from the point of view of aggregators. In the frame-
work of a nodal market any transaction is exposed to congestion
charges that the aggregator can hedge by buying financial trans-
mission rights (FTRs) [35].

B. Stochastic Unit Commitment

In order to determine the day-ahead reserves that are com-
mitted by the system operator in order to accommodate the si-
multaneous integration of renewable supply and deferrable de-
mand, we formulate a unit commitment model which assumes
that the system operator co-optimizes the dispatch of flexible
loads and generation resources. The uncertainty stemming from
renewable supply and load fluctuations is represented in terms
of a discrete set of scenarios .S. The stochastic unit commitment
model is formulated as a two-stage decision model where the
first stage represents day-ahead unit commitment and the second
stage represents real-time economic dispatch in the hour-ahead
market, in hourly intervals, subsequent to the realization of un-
certainty. As we illustrate in Fig. 1, we use this model to de-
termine the day-ahead schedule of slow reserves assuming that
the system operator can co-optimize the dispatch of generators
and deferrable loads. The use of an hourly time step is jus-
tified by the fact that the day-ahead unit commitment model
and residual unit commitment model that are used for clearing
the energy market and determining reserve requirements are
solved by the system operator with hourly resolution. Conse-
quently, unit commitment models in the literature that study the
effects of renewable supply and demand response integration
also use hourly resolution [1]-[5], [12], [36], [37]. Hourly reso-
lution is sufficient for capturing the effects of renewable supply
uncertainty and variability, however it may underestimate ef-
fect of ramping rates on regulation and ramping requirements.
The California system operator recently performed a study with
5-minute time resolution [38], however this study ignores unit
commitment and focuses on more accurately assessing the im-
pacts of renewable supply fluctuations on ramping and load fol-
lowing requirements.

(SUC):
min z Z Z Ts(Kgtgst + Sgvgst + Cypgst) (1)
9EG sES teT
s.t.
Zpg,st:DSt+6,StaSES7tET (2)
geG
Z est =R, s €8 3)
teT
0<ecuy<C,s€8,tcT “4)
Ugst = Wyt, Vgst = 2g1. 9 € G5, s € S, 1 €T ©)
(p,e,u,v,w,z) € D. (6)

The set of generators G in the system is partitioned into a
set of slow generators G5 for which commitment decisions are
fixed in the day-ahead time frame, and fast generators that can
adjust their commitment schedule in the second stage. This ap-
proach is inspired by the work of Ruiz et al. [1], and adopted
by Papavasiliou ef al. [7]. First-stage decisions wg;, z4; Tepre-
sent the binary unit commitment and startup decisions for slow
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generators. The second-stage decisions include the unit com-
mitment, startup and power output of all generators, denoted
respectively as ¢gsz, Vg5t and pge:. The dispatch of deferrable
loads is also a second-stage decision variable denoted as e;.
The objective function of (1) minimizes operating costs. Startup
costs, minimum load costs and constant fuel costs for each gen-
erator g are denoted respectively as S, K, and C;. The model
is solved for a 24-hour horizon with hourly time steps. Power
balance is enforced in (2). The net demand D, which is the
net of firm demand minus renewable power supply, represents
the source of uncertainty. The constraint of (3) requires that
deferrable loads be supplied an amount of energy /2 within a
given time window and (4) enforces a limit of C on the con-
sumption (e.g., charge) rate of deferrable loads. The non-antic-
ipativity constraints on first-stage decisions is enforced in (5).
Note that all generators, including slow units, can adjust their
production level in the second stage. The set D includes gener-
ator capacity constraints, ramping constraints, and minimum up
and down times, where bold fonts indicate vectors. The notation
of the stochastic unit commitment model and the economic dis-
patch models that are presented subsequently is summarized in
the Appendix. The solution of the stochastic unit commitment
model is described in detail by Papavasiliou [37].

The scenario selection algorithm used in the stochastic unit
commitment model of this paper is inspired by importance sam-
pling, whereby scenarios are selected according to their effect
on expected cost and weighed such that their selection does not
bias the objective function of the stochastic unit commitment
formulation. The decomposition algorithm which is employed
relies on a Lagrangian relaxation scheme for scenario decom-
position. Both the scenario selection algorithm and decomposi-
tion algorithm developed by the authors account for transmis-
sion constraints, load uncertainty and renewable supply uncer-
tainty as well as generator and transmission line outages [7],
[8]. However, transmission constraints and element outages are
not accounted for in this paper in order to isolate the effect of
demand response on absorbing the uncertainty of renewable en-
ergy supply.

The centralized stochastic unit commitment model presented
in this section presumes the ability of the system operator to
centrally monitor and control individual loads. This is unreal-
istic in practice due to technological and institutional reasons.
Nevertheless, such a centralized model provides a useful bench-
mark for estimating the maximal potential benefits of demand
response, and the efficiency losses of decentralizing demand re-
sponse through load aggregators. For this reason, such a cen-
tralized demand response model has been previously employed
in the literature [12].

The aggregate load represented in (2)—(4) can be perceived
as a collection of a large number of identical deferrable loads
that place identical requests for energy demand, are character-
ized by the same power rating and share power consumption
equally across the entire population. In future research the au-
thors intend to exploit high performance computing in order to
incorporate a more detailed representation of deferrable loads
according to their energy demand, capacity rating, and avail-
ability for charge.

In order to draw a comparison between the operating cost
impact of the three demand response policies discussed in this
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paper, we use a single stochastic unit commitment model in
order to model day-ahead market interactions. As a result, there
is a misrepresentation of recourse as far as the alternative de-
mand response models are concerned. In effect, the first stage
reserve commitment decisions are somewhat overoptimistic, in
assuming that the system operator can centrally coordinate gen-
eration and demand response resources. The price of this sim-
plification is that we are obtaining a lower bound on the per-
formance of demand response, a pessimistic assessment of how
different demand response strategies will perform. As a result,
we are able to isolate the effect of demand response on oper-
ating costs and draw a consistent comparison among different
demand response paradigms.

III. DEMAND FLEXIBILITY

In this section we describe each of the three demand response
paradigms that were discussed in the introduction and how these
are integrated in the economic dispatch model of real-time op-
erations. The optimal unit commitment and startup schedules
w,, z,, determined by the optimal solution of the stochastic
unit commitment model in the day-ahead phase are used as
input to an economic dispatch model for each realization of un-
certainty w. As in the case of the stochastic unit commitment
model, the horizon T of the problem is 24 hours in hourly time
steps.

A. Centralized Load Control

In the centralized load control approach we assume that the
system operator co-optimizes the dispatch of flexible loads and
generation resources:

(ED,) : min Z Z(Kgugt + Syvgt + Cypge) (1)

geG teT
s.t.
Zpgt:Dwt+6t7tET ®)
g€eG

> =R ©)

teT
0<e, <CteT (10)
Ugt = ’Il,v;t71)gt = Z;“g & GS:t cT (11)
(p,e,u,v) €D, (12)

Despite the fact that the centralized model is not realistic in
practice, it is useful for providing a benchmark for the potential
benefits of demand flexibility. In this formulation, D, repre-
sents the net of firm demand minus renewable supply.

B. Demand Bids

The demand model that we present in this section is based on
Borenstein and Holland [9] and Joskow and Tirole [10], [11].
We assume a linear demand function that consists of a fraction
o of inflexible consumers who face a fixed retail price A%, and
a fraction 1 — « of price-responsive consumers who face the
real-time price of electricity A;. The demand function ();(-) for
each period can therefore be expressed as

Q:(M\w) = ar(w) — abA® — (1 — a)b), (13)

where a4+(w) is the intercept and b is the slope of the demand
function. Note that we assume a common slope for all time pe-
riods and a time-varying stochastic intercept that depends on the
realization of inflexible demand.

In order for the demand function model to be consistent with
the two alternative demand response models, we calibrate the
demand function parameters so that they satisfy the following
two conditions: the demand functions have to yield a total daily
demand of R subject to the charging rate constraint C, and the
demand functions have to be consistent with the observed in-
flexible demand in the system. The calibration process is sum-
marized in the following steps:

Step (a). Select the fraction of inflexible demand « such
that R represents a fraction 1 — ¢ of total daily demand.
In particular, given [I?, the fraction « for each day type
is determined as 1 — & = R/(R + D), where D is the
average daily firm demand for each day type, as estimated
from the available data.

Step (b). Set the slope b such that the supply to
price-responsive consumers equals R in the economic
dispatch model with slow generator schedules fixed
according to the optimal solution w,, 27, of (SUC). In
particular, we proceed by fixing the demand functions at
the point (A#, D; /a) and calibrating the demand function
slope b until the deterministic unit commitment model
corresponding to an average wind power supply profile
results in a total demand D/« Here D, corresponds to
the average hourly firm demand for each day type as
estimated from the available data, and D = 3, D;.
Step (c). For each realization w resulting in inflexible
demand aQ; (A" w), set a;(w) = Q(AF:w) + bAT

in order to be consistent with the observed inflexible
demand.

Step (d). The inverse demand function for

deferrable demand is given by Bi(q;;w) =
(1/b)(ay(w) — ¢:/(1 — «)), g < C. We can then
discretize the inverse demand function to obtain
valuations B;; for the set of price-responsive loads L
and include these valuations in a welfare maximization
formulation of the economic dispatch model:

(ED,) : max Z Z Bdy

leL teT
= 3> (Kt + Syvgr + Cypyr) (14)
geG teT
s.t.
> pu=Du+D duteT (15)
geG leL
0<> dp<CiteT (16)
el
Ugt = Wy, Vgt = 255, € G, t €T (17)
(p,e,u,v)eD (18)

where dj; represents the power draw of load segment

[ in period ¢. As in the case of the centralized demand
response model in Section III-A, D, ; represents the net
of firm demand minus renewable supply.
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C. Coupling

Here we consider a contractual arrangement for coupling re-
newable suppliers with deferrable loads. According to such a
contract, an aggregator is entitled to any amount of output from
a large group of renewable generation assets up to its loading
capability. The aggregator then enters into a contractual agree-
ment to supply deferrable loads. Loads are characterized by a
fixed amount of energy demand within a fixed time window.
The aggregator controls the loads directly and uses renewable
resources as the primary energy source for satisfying deferrable
demand. In the case of renewable supply shortage, the aggre-
gator resorts (to a limited extent) to the real-time wholesale
market for procuring power at the prevailing price. The aggre-
gator compensates deferrable loads at a rate p for each unit of
unserved energy. The setup is similar to dynamic scheduling
[15], whereby demand and supply resources from different con-
trol areas pair their schedules in order to produce a zero net
output to the remaining system. Such scheduling is currently
implemented in the ERCOT market.

For practical purposes we do not envision the load aggregator
as becoming a trader of renewable power. We therefore assume
that the aggregator has the option to consume renewable energy
but not ownership over the renewable energy output. The ag-
gregator can then schedule as much load as it has against the
renewable supply but has no title against the residual. Effec-
tively, the aggregator is holding a “use it or lose it” contract for
the renewable supply output.

1) Implementation: As Schweppe et al. [13] discuss, the
operating cost benefits of incorporating demand flexibility in
power systems are expected to be outweighed by the savings in
capital investment on balancing generation capacity. Such sav-
ings can be ensured, in the context of coupling contracts, by
limiting the participation of aggregators in the real-time whole-
sale market. It is therefore necessary to provide financial incen-
tives to deferrable loads for limiting their consumption to an ef-
ficient level that ensures the satisfaction of their demand while
not imposing excessive capacity requirements on the system.
Priority pricing introduced by Chao, Wilson, Oren and Smith
[39], [40] and the derivative idea of callable forward contracts
introduced by Gedra and Varaiya [41], and extended by Oren
[42] can be used for limiting the participation of deferrable loads
in the real-time market, while compensating loads for the ca-
pacity savings they enable. Callable forward contracts bundle a
forward contract on power supply with a call option that can be
exercised by the system operator in real time in order to limit
the consumption of deferrable loads whenever real-time price
exceeds a strike price k. Callable forward contracts therefore
enable flexible consumers to enter the merit order stack of the
system operator at the price &, which translates to capacity sav-
ings for the system operator.

It is important to ensure that callable forward contracts, or
other mechanisms for inducing deferrable loads to limit the de-
gree of their participation in real-time markets, induce loads
to self-select the degree of their participation in the real-time
market efficiently. In particular, it is desirable to provide strong
financial incentives for loads to limit their participation in the
real-time market to the greatest possible extent, without how-
ever making these financial incentives so strong as to distort al-
locative efficiency. In the context of callable forward contracts,
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this translates to inducing loads to self-select the lowest strike
price % that still provides sufficient flexibility for deferrable
loads to participate in the real-time market in order to satisfy
their entire demand.

2) Problem Formulation: The coupling contract that we de-
scribed in the previous section can be formulated as a stochastic
optimal control problem. The aggregator solves the following:

min E | X () — we) ™ At + pry (19)

ST o=
s.t.

rn=R~R (20)

Ti41 = T — Nt(l‘t) (21)

() — we < My (22)

0 < () <C (23)

e > 0 (24)

where 14,(z;) represents the rate at which power is supplied to
deferrable loads. The state vector xx = (A¢, we, r+) consists of
the real-time price A, the available renewable power supply w;
and the remaining energy demand of the deferrable consumers
r¢. The initial condition for the residual demand is r1 = R,
where R is the amount of energy demand to be satisfied. The
control y:(¢) is constrained by the rate of supply C and by the
amount of energy that can be procured in the real-time electricity
market M;, which is a random variable. The rate of supply C
is the same as the rate of deferrable loads that appears in (4).
Hence, we obtain the constraints of (22), (23). Unsatisfied en-
ergy incurs a penalty p. As we explain in the Appendix, the limit
on real-time market participation M, depends on the choice of
strike price. The optimal control problem stated above is solved
by backward dynamic programming, with a lattice representing
the state space of the stochastic processes. The lattice model
of renewable power supply and real-time prices is presented in
Section III-C3.

3) Lattice Models: Recombinant lattices are used for control-
ling the rate of growth of the dynamic programming lattice. Due
to the fact that the state space of the optimal control problem of
(19) includes residual energy demand, we need to limit the size
of the state space for the stochastic state variables, in order to
solve the problem using the dynamic programming algorithm.
Therefore, although it is well known that wind power produc-
tion and load (and therefore real-time prices) exhibit significant
autocorrelation [31]-[33], [43], we will simplify the stochastic
models of wind power and real-time prices by representing them
as first-order autoregressive processes in order to control the
size of the state space. Specifically, we assume that wind speed
and real-time prices are driven by two correlated mean-reverting
processes:

Xt+1 = Xt + HIA(G)\ — Xt)At + TN \/E&)l (25)
Y1 =Y + H,w(e,w — Yt)At + (I)\w(fw\/A—twl
+ /(1 = 02, )0V Bl (26)

where X; and Y; are the noise terms of the price and wind
models respectively, w; and ws are independent standard normal
random variables, ¢ and f,, represent the average trends of the
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price and wind noise respectively, the variance terms ¢ and 7,
capture the effect of random shocks, # and ., model the rate
at which the processes return to their mean value and o, is a
correlation coefficient that couples the evolution of the two pro-
cesses.

In our study we employ a discrete model that approximates
the model of (25) and (26). The model is presented in Deng and
Oren [44]. The dynamics of the process are given by

Xt+0,\\/g\/At, ji=1
Xg+1 = X, j=2
X}—mvﬁv j=3
Yot (Vaouu + V1= 03, ) oun/5 J=1
}:E]—Fl = va - Jlllm% vV At/ j=2
— (VBoaw = VI=0%,) oun/3h =3

@7

where X and Y/ are the noise terms of the discrete price and
wind models respectively and At is the discretization interval.
Each state j is visited with a probability p; that depends on the
current state. The transition probabilities are defined in [44]. The
lattice grows as O(n?), which enables us to control the growth
rate and therefore the running time of the dynamic programming
algorithm.

The real-time price and wind speed values that are used in
the stochastic optimal control problem of (19) can be recovered
by using the underlying noise and the systematic patterns of the
underlying data, as explained in [37]:

Ao =i+ M (N (Xg'))
wy = i 4+ Rt (N (Yg)) .

(28)

29

Here /i and &} represent the hourly mean and standard de-
viation of real-time prices for each day type respectively, as es-
timated from the available data. The inverse of the non-para-
metric distribution of the original data set is denoted as F !
and N(-) indicates the cumulative distribution function of the
standard normal distribution. The notation is analogous for the
wind speed production process. Wind power is converted is con-
verted to wind speed through a static aggregate power curve, as
the authors describe in detail in [34]. The fit of the model to the
data is presented in Fig. 3.

4) Incorporating the Coupling Model in Economic Dispatch:
For any given realization of uncertainty w, the solution of the
optimal control problem of Section III-C2 induces a net demand
profile () — w; for deferrable loads coupled with renewable
resources. The total demand D, ; in the system is the sum of this
net demand profile and the inflexible demand, as in Fig. 1. The
resulting total demand is satisfied by the system operator in the
economic dispatch phase:

D..) : min Z Z (Kguge + Sqvgr + Cypgr)  (30)
geG teT
s.t.
> pgt=Dus,t €T 31
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Fig. 3. Probability distribution function of real-time electricity prices (up) and
wind power production (down).

Ugt = Wiy Vgt = 255, € G, t €T (32)
(pu,v) €D, (33)
IV. RESULTS

We present results for a case study based on a reduced model
of the Western Electricity Coordinating Council (WECC), also
used in other studies [7], [8], [45]. The model consists of 124
generators. The average load in the system is 27 298 MW, with
a minimum of 18412 MW and a peak of 45562 MW. The net
load profile that needs to be served by thermal generators and
wind power, the generation mix of the system and a schematic
of the WECC model are presented in Papavasiliou and Oren [8].
The entire thermal generation capacity of the system is 28 381.5
MW. Thermal units with a capacity greater than 300 MW are
classified as slow generators. There are 82 fast thermal gener-
ators with a total capacity of 9156.1 MW and 42 slow thermal
generators with a total capacity of 19 225.4 MW. The value of
lost load is set to 5000 $/MWh.

We use import, hydroelectric, geothermal and biomass pro-
duction data from Yu ef al. [45] that correspond to 2004. Since
we are using 2004 import data, we also use load data from the
same year, which is publicly available at the California ISO
Oasis database. We use a retail price of A = 130 $/MWh
for the calibration of the demand function model, according
to data provided by the U.S. Energy Information Administra-
tion [46]. The three wind integration cases that we consider
are summarized in Table 1. The load represented in Table I ap-
pears as additional flexible load in the system, as opposed to
replacing existing load. For each level of wind integration, we
assume a demand response integration level that is approxi-
mately one-for-one in terms of energy demand and capacity.
We assume that deferrable requests span 24 hours, from mid-
night to midnight. This implies that the optimal control problem
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TABLE 1
PARAMETERS OF THE DEMAND RESPONSE CASE STUDY

No Wind | Moderate Deep
Wind capacity (MW) 0 6688 | 14143
DR Capacity C (MW) 0 5000 | 10000
Daily wind energy (MWh) 0 46485 | 95414
Daily DR energy R (MWh) 0 40000 | 80000
Flexible/firm demand (%) 0 6.1 12.2

TABLE II
STRIKE PRICE THRESHOLD FOR DEFERRABLE LOAD
CALLABLE FORWARD CONTRACTS ($/MWh)

Moderate | Deep
WinterWD 45 47
SpringWD 45 49
SummerWD 49 53
FallWD 49 54
WinterWE 45 45
SpringWE 45 47
SummerWE 48 51
FallWE 49 52

of (19) is solved for a 24-hour horizon from midnight to mid-
night. Analogously, the time horizon of the constraints in (3)
and (9) span 24 hours, from midnight to midnight. We consider
6 levels of power supply for the control problem. The penalty
of unserved energy is p = 5000 $/MWh. We use 12 scenarios
for the formulation of the stochastic unit commitment model.
The wind data that is used for the calibration of the statistical
models is based on the National Renewable Energy Laboratory
(NREL) 2006 Western Wind and Solar Integration Study [47].
The moderate and deep wind integration studies correspond to
the 2012 and 2020 wind integration targets of California. We
consider one day type for each season and in addition we differ-
entiate between weekdays and weekends.

A. Costs, Load Loss, Capacity Requirements, and Spillage

As we discuss in Section III-C1, deferrable demand can
produce great economic value by limiting the requirements
for balancing capacity. Callable forward contracts can be used
for limiting the extent to which deferrable loads participate in
the real-time market. The strike price of the callable forward
contracts determines the extent to which loads can participate
in the market. As the strike price of the contracts decreases, the
participation of loads in the real-time market is increasingly
limited. The strike price that mobilizes deferrable demand to
the greatest possible extent is presented in Table II for each of
the day types for each integration study. In order to obtain these
strike price thresholds, we have gradually decreased the strike
price of the stochastic optimal control of (19). As we explain
in the Appendix, as the strike price decreases the procurement
margin and the ability of the aggregator to serve deferrable de-
mand decreases as well. Below a certain strike price threshold,
the aggregator cannot serve the entire amount of deferrable
demand under all possible realizations of uncertainty. This
is the threshold reported in Table II. In order to simplify the
analysis, we assume a common strike price for each hour of the
day.

In Table III we present the operating costs and daily load
losses for the case with no wind and no demand response in the
system. These costs consist of minimum load, startup and fuel
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DAILY COST OF OPERATIONS AND LOAD SHEDDING
FOR EACH DAY TYPE—NO WIND

Daily Cost ($) | Shed (MWh)
WinterWD 7,390,206 0.001
SpringWD 7,145,737 4.317
SummerWD 13,684,880 30.869
FallWD 9,589,506 0
WinterWE 6,079,003 0.001
SpringWE 5,855,883 0
SummerWE 11,839,573 0
FallWE 7,868,146 154.285
Total 9,012,031 17.301

TABLE IV

DAILY COST OF OPERATIONS FOR EACH DAY TYPE—MODERATE INTEGRATION

Cost ($) A Cost ($) [ A Cost (3)
Centralized Coupled Bids

WinterWD 7,320,620 256,740 300,051
SpringWD 6,408,355 172,006 139,589
SummerWD 13,625,136 155,096 219,124
FallWD 9,640,017 316,089 157,159
WinterWE 5,890,755 300,701 246,408
SpringWE 3,637,240 707,223 244,353
SummerWE 11,739,177 176,230 234,101
FallWE 7,735,502 277,817 189,465
Total 8,677,857 265,128 211,010
relative (%) 3.06 243

costs, namely > . ;e (Kgtgr + Sqvgr + Cypye). The oper-
ating costs do not include the cost of lost load.

In Tables IV and VI we present the daily operating cost of
each policy for the moderate and deep integration cases respec-
tively. As in the case of Table III, these costs consist of min-
imum load, startup and fuel costs. The column with bold figures,
that corresponds to centralized load dispatch by the system oper-
ator, represents absolute cost values. Cost figures corresponding
to the other policies are relative to the centralized operating
costs. The row with total costs weighs the cost of each day type
with its relative frequency in the year in order to yield annual
results. The last row shows the relative performance of central-
ized control with respect to the other policies, normalized by
the cost of centralized control. Note that the operating costs of
demand-side bidding outperform those of the coupling mech-
anism. This can be attributed to the diversification benefits of
including flexible demand in the market.

The “cost of anarchy” that results from using price signals in
order to control load response, rather than centralized control,
ranges from 2.43%—6.88% for the case of demand-side bidding
and 3.06%-8.38% in the case of coupling. Although demand
bids result in lower operating costs, demand-side bidding results
in excessive load shedding. This is due to the failure of demand
bids to capture the inter-temporal dependencies of deferrable
demand. Instead, the centralized dispatch model accounts for
such inter-temporal dependencies in (9), while the deferrable
demand model accounts for such dependencies through the ini-
tial conditions of the system expressed in (20). Note that the lost
load presented in Tables V and VII accounts for the shortfall of
power supply to deferrable loads throughout the entire day from
the daily target demand R.

In Table VIII we present a breakdown of operating costs by
type for each of the demand response policies that we consider
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TABLE V
DAILY LOAD LOSS FOR EACH DAY TYPE—MODERATE INTEGRATION
Shed (MWh) | Shed (MWh) | Shed (MWh)
Centralized Coupled Bids
WinterWD 0 0 177.257
SpringWD 1.532 1.869 701.828
SummerWD 3.617 4.346 821.719
FallWD 1.661 1.661 799.323
WinterWE 0 0 642.105
SpringWE 0 0.249 453.791
SummerWE 0.059 1.100 215.816
FallWE 6.792 10.005 976.766
Total 1.705 2217 609.914
TABLE VI

DAILY COST OF OPERATIONS FOR EACH DAY TYPE
FOR THE DEMAND RESPONSE STUDY—DEEP INTEGRATION

Cost ($) A Cost ($) | A Cost ($)
Centralized Coupled Bids
WinterWD 6,656,665 633,164 556,775
SpringWD 5,692,860 978,182 572,465
SummerWD 13,661,862 505,869 835,609
FallWD 9,321,281 772,659 404,523
WinterWE 5,220,109 711,882 616,931
SpringWE 4,251,600 910,253 576,010
SummerWE 12,136,223 329,929 472,930
FallWE 7,930,823 700,205 515,431
Total 8,419,322 705,497 578,909
relative (%) 8.38 6.88
TABLE VII

DAILY LOAD LOSS FOR EACH DAY TYPE FOR THE DEMAND
RESPONSE STUDY—DEEP INTEGRATION

Shed (MWh) | Shed (MWh) | Shed (MWh)

Centralized Coupled Bids
WinterWD 0.001 8.290 552.769
SpringWD 0 351.782 1382.459
SummerWD 0.001 36.643 1952.332
FallWD 33.660 143.629 1210.443
WinterWE 0 0 929.960
SpringWE 0 32.601 1008.222
SummerWE 2.081 58.725 1157.565
FallWE 57.005 132.134 1260.137
Total 10.231 112.452 1221.492

TABLE VIII

BREAKDOWN OF DAILY OPERATING COSTS FOR EACH DEMAND
RESPONSE POLICY FOR EACH INTEGRATION LEVEL ($)

Min load | Fuel | Startup | Total

No wind 1,382,156 | 7,549,491 | 80,384 9,098,537
Centralized Moderate 1,246,552 | 7,364,815 | 66,489 8,677,857
Bids Moderate 1,317,383 | 7,471,363 | 100,123 | 8,888,866
Coupled Moderate 1,330,130 | 7,532,898 | 79,958 8,942,958
Centralized Deep 1,194,606 | 7,174,611 | 50,105 8,419,322
Bids Deep 1,360,543 | 7,494,472 | 143,217 | 8,998,232
Coupled Deep 1,432,948 | 7,592,595 | 99,276 9,124,819

for each integration level. We note that the demand-side bid-
ding and coupling models result in cost increases in all cost cat-
egories.

In Table IX we present the amount of capacity that is com-
mitted by each policy as well as the amount of renewable supply
spillage. Capacity requirements do not change significantly for
each integration study, which suggests that the additional de-
ferrable demand can be fully absorbed by the installed renew-
able capacity. Wind spillage is negligible across all cases.
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TABLE IX
CAPACITY REQUIREMENTS AND WIND POWER SPILLAGE
FOR EACH DEMAND RESPONSE POLICY

Capacity (MW) | Spillage (MWh)
No wind | 26,123 N/A
Moderate | 26,254 0
Deep 26,789 2

B. Computational Details

The stochastic unit commitment algorithm was implemented
in AMPL. The mixed integer programs were solved with
CPLEX 11.0.0 on a DELL Poweredge 1850 server (Intel Xeon
3.4 GHz, 1 GB RAM). The Lagrangian relaxation algorithm
that was used for solving the problem, which is presented in
detail by Papavasiliou ef al. [7], was run for 80 iterations, where
the first 40 iterations were run without seeking for a feasible
solution and the latter 40 iterations were run with feasibility
recovery. The average elapsed time for this entire process was
7047 s. The average duality gap (UB — LB)/LB was 0.8%.
Note that if a MIP gap ¢ is used for the computation of the
lower bound, then this gap should also be accounted for. In our
case study we used a MIP gap of e = 1%. The average bound
on the optimality gap, when also accounting for the MIP gap,
is then computed as (UB — (1 — €)LB)/(1 — ¢)LB = 1.81%.

V. CONCLUSIONS

In this paper we present a stochastic unit commitment model
that accounts for the large-scale integration of renewable en-
ergy sources and demand response resources. We consider three
types of load response in our analysis, centralized load dis-
patch, demand-side bidding and coupling. We analyze the case
of no wind in the network, as well as cases of wind integra-
tion that correspond to the 2012 and 2020 wind integration tar-
gets of California, with a corresponding one-for-one increase
in flexible demand. Our analysis is performed on a model of
the Western Electricity Coordinating Council that consists of
124 generators. We find that the “cost of anarchy” incurred by
decentralizing demand response ranges between 3.06%—8.38%
for the case of coupling. Demand-side bidding outperforms cou-
pling with respect to operating costs, resulting in a cost increase
ranging between 2.43%—-6.88% of the cost corresponding to
centralized load dispatch. However, demand-side bidding fails
to capture the cross-elasticity of demand across time periods,
resulting in excessive load losses. We therefore conclude that
it is not possible to convert a constraint on the total energy
consumption into an hourly elastic demand, and that the tradi-
tional economists’ approach of reasoning about price-respon-
sive demand needs to be refined for the purpose of studying de-
ferrable demand. Arguably, if we assume that customers may
adjust their response to avoid unserved load the price response
functions should have been calibrated to reflect such behavior
rather than matching expected energy served. In that case one
would expect that cost would rise and unserved load decline,
making the coupling strategy more competitive from a cost per-
spective. The “cost of anarchy” imposed by coupling renew-
able resources with deferrable demand is the price for over-
coming the institutional and regulatory barriers associated with
the large-scale integration of demand response [30] that can in
turn facilitate the large-scale integration of renewable resources.
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For the case studies that we consider, the additional integration
of deferrable demand imposes no additional capacity require-
ments to the system. Renewable supply capacity is adequate for
satisfying the added demand, which represents 6.1%—12.2% of
firm power demand for the 2012 and 2020 renewable integration
targets respectively. The waste of available renewable power
supply is negligible for the demand response integration study.

APPENDIX

A. Notation for the Stochastic Unit Commitment and Economic
Dispatch Problems

In this section we introduce the notation that is used in the
unit commitment and economic dispatch models.

Sets

: set of all generators, G;: subset of slow generators
: set of load segments

: set of scenarios

: set of time periods

N

Decision variables

Uger: COMMItment, v,s¢: startup, pgqe: production of gen-
erator ¢ in scenario s, period ¢

wge: commitment, zg, : startup of slow generator g in period
t

es¢: supply to deferrable loads in scenario s, period ¢

dj;: power draw of load segment / in period £

Parameters

7. probability of scenario s

K 4: minimum load cost, S, : startup cost, C,: marginal cost
of generator g

R: total energy demand, C': power rating of deferrable
loads

Dg;: demand in scenario s, period #

DBy benefit of load segment { in period ¢

B. Procurement Margin in the Aggregator Optimal Control
Problem

The computation of the margin M; of (22) is explained in
Fig. 4. The figure displays the merit order curve of the system.
This merit order curve can be constructed by publicly avail-
able market data on the total dispatched capacity and the cor-
responding energy market price for each hour of the day. Given
a strike price k, the megawatt capacity that corresponds to the
given strike price is computed by inverting the merit order curve
of the system. The resulting capacity P; represents the con-
ventional capacity that is available up to marginal cost k. Total
system load consists of net inflexible demand P» (which is equal
to inflexible demand minus imports minus non-wind renewable
resources) plus deferrable demand. Therefore, the procurement
margin of the aggregator is computed as M; = P, — P». In the
present model it is assumed that the merit order curve remains
constant throughout the year and is known in advance to the ag-
gregator. In addition, import supplies and non-wind renewable
supplies are also assumed known. Consequently, randomness in
the margin M, is driven by the randomness of inflexible demand
that induces randomness in net inflexible demand Ps.
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Fig. 4. Computation of the procurement margin A7, for (22) of the aggregator
stochastic optimal control problem.

It is understood that the optimal strike price & depends on the
demand characteristics of each consumer, the market environ-
ment that the aggregator operates in, as well as the renewable re-
source that the aggregator dedicates to its deferrable consumers.
Therefore, it is envisioned that a different strike price is applied
to different consumers depending on their demand characteris-
tics. This will become part of the aggregator business intelli-
gence and their contribution to the value chain. Although the
authors describe a procedure for computing the optimal strike
price k, they do not address the issue of contract design, i.e.,
how to create a menu of options for deferrable consumers that
induces them to self-select the strike price that corresponds best
to their true flexibility. This problem has been addressed in a
static (single-period) setting by Chao and Wilson [39], Oren,
Smith and Wilson [40] and Gedra and Varaiya [41]. The ex-
tension of the contract design problem to a multi-period setting
where demand can be deferred across time periods represents
an exciting area of future research.
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