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We analyze licensing of a cost reducing innovation to an oligopolistic industry, and extend 
previous work by Kamien and Tauman (1986) and Katz and Shapiro (1986) in two directions. 
First, our analysis applies to a wider class of demand functions than linear ones. Second, we 
derive a simple optimal licensing mechanism for the patentee. We also examine three licensing 
mechanisms commonly discussed in the literature and observed in practice. Auctioning of a fixed 
number of licenses is compared to a fixed license fee and to a per unit royalty in terms of the 
patentee’s profit, licensees’ profit, industry structure, and the product’s price. The analysis is 
conducted in terms of a non-cooperative game involving the patentee and n identical firms. In 
this game the patentee acts as a Stackelberg leader selecting a licensing strategy by taking into 
account the reaction and competitive interaction of the firms. The competitive interaction among 
the firms is modeled explicitly, both as a quantity (Cournot) and as a price (Bertrand) subgame 
in a market for a homogeneous product. We examine the implications of the three licensing 
strategies and how they depend on the relative magnitude of the innovation, the number of 
firms, and the price elasticity of demand. Licensing by means of a royalty is inferior to the other 
modes, both for consumers and the patentee. The firms’ profits decline under both the auction 
and the fixed fee policies relative to their pre-innovation profits. Finally, it is shown that 
auctioning licenses is the patentee% optimal strategy when the magnitude of innovation is not 
too small. However, this does not hold for an arbitrary innovation. 

1. Introduction 

The focus of this work is the licensing of an innovation that reduces the 
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production cost of an existing good or service in a competitive or oligo- 
polistic market. We analyze and compare the implications for a licenser, 
licensees and consumers of three common licensing strategies for reaping the 
fruits of a patented invention. In particular we compare auctioning a fixed 
number of licenses to the highest bidders, selling them for a flat fee, or for a 
per unit royalty. Early work on licensing of cost reducing innovation can be 
traced back to Arrow (1962) who focused on the question of whether it is 
more profitable to innovate in a competitive or monopolistic industry. 
Kamien and Tauman (1984, 1986) analyzed alternative licensing strategies 
using a game theoretic formulation to account explicitly for the competitive 
interaction among potential licensees and the patentee’s ability to exploit it. 
In the former analysis, the optimal fixed fee plus royalty licensing strategy 
was described, and in the latter, optimal fixed fee licensing alone was 
compared with licensing solely by means of a royalty. Both analyses are 
limited to the case of a linear demand function for the product to which the 
innovation applies. Katz and Shapiro (1986) studied licensing by means of an 
auction without explicitly modeling the underlying competitive interaction 
among potential licensees. Their general analysis does not disclose the effect 
of licensing strategies on market structure, firms’ profits, and the market 
price. A survey of this literature is provided in Kamien (1990). 

Our analysis follows Kamien and Tauman’s (1986) approach of explicitly 
modeling the competitive interaction among licensed and unlicensed firms, 
from which their demand for licenses derives. We consider both Cournot and 
Bertrand type competition among them. The patentee is treated as a leader 
in a Stackelberg type game in which the potential licensees, the followers, 
compete in the product market. Thus, the patentee chooses a licensing mode 
to maximize his profit, taking into consideration the firms anticipated 
reaction. The paper contains two main contributions. First, results obtained 
by Kamien and Tauman (1986) for the linear demand case are extended to a 
wider class of demand functions. Second, it is shown that a patentee who 
cannot observe or control individual firm’s production can still extract the 
highest potential licensing profit of an innovation that is not too small by a 
simple auction. 

Our analysis discloses that, if the firms are Cournot competitors and if the 
magnitude of innovation is not too small, the innovator optimally licenses a 
non-drastic innovation to K =c/E~(c) firms under both auction and fixed fee 
licensing, where c is the pre-innovation (fixed) marginal cost, E is the 
magnitude of the innovation (i.e., the innovation reduces the marginal cost of 
production from c to C-E) and q( .) is the price elasticity of demand. The 
number K, independent of the initial number of firms II, is the number of 
licensees for which the post-innovation market price equals the pre- 
innovation competitive price level c. Consequently, the unlicensed firms are 
driven from the industry and only K remain. On the other hand, a drastic 
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innovation, is exclusively licensed to a single firm, that charges a monopoly 
price of c or less. If the cost reduction is relatively small it is best for the 
patentee to license all the industry’s firms. It is also shown that, irrespective 
of the magnitude of innovation, all the firms are worse off and the market 
price declines below its pre-innovation level. 

We find that licensing by means of linear royalties is inferior for both the 
patentee and consumers relative to the auction and the fixed fee licensing 
strategies. On the other hand, each firm’s profit is at least as high as its pre- 
innovation level. 

As for general licensing mechanisms, we consider all which do not depend 
on firms’ production levels. Katz and Shapiro found that a patentee can 
achieve the maximum potential licensing profit by a two stage mechanism. In 
the second stage the patentee auctions k licenses if in the first stage all the 
firms in the industry pay a pre-determined entry fee E. Otherwise, if a non- 
empty set R of firms refuse to pay this fee, then the firms outside R all 
receive a refund E and a free license while the firms in R are not licensed. 
Now, if the patentee chooses E and k, then, in equilibrium, each firm pays 
the fee E, which, with the revenues from the second stage auction, yields the 
highest potential licensing profit. 

The difficulty with this mechanism is that it relies on the patentee’s 
binding commitment which is not credible (to provide licenses free of charge 
and realise zero profit even if only one firm refuses to pay the entry fee). We 
have resolved this difficulty by showing that a simple auction is an optimal 
mechanism for the patentee as long as the magnitude of the innovation E, is 
not too small, namely, E ~2c/(n~(c)). As for relatively small E > 0, an auction 
is not the patentee’s optimal mechanism. For this case another two stage 
mechanism is proposed. In its first stage the patentee makes a particular 
licensing offer to the industry’s firms. If the offer is not unanimously accepted 
the refusniks are punished and, in the second stage, the unpunished firms are 
licensed at a ‘reduced’ rate. In this mechanism, it is essentially a dominant 
strategy for every firm to accept the patentee’s initial offer and the patentee 
achieves the highest potential licensing profit. 

In the next section we state our models formally. Section 3 contains some 
results on Cournot oligopoly used in the subsequent analysis. Section 4 
addresses the auction mechanism while in section 5 and 6 fixed fees and 
royalties are examined. Section 7 deals with the optimal licensing mechanism. 
In section 8 we reexamine the above licensing policies when firms are 
engaged in Bertrand competition rather than Cournot competition. 

2. The model 

We consider an industry consisting of nz 2 identical firms producing the 
same good with a linear cost function C(q) =cq, where q is the quantity 
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produced and c >O is the constant marginal cost of production. The market 
for the good is characterized by Cournot competitors facing a downward 
sloping inverse demand function P(q), where P(0) > c. 

We assume that a cost reducing innovation developed by a patentee, who 
is not an industry member, can lower the marginal cost of production from c 
to C-E, s>O. Our first goal is to analyze the implications of three observable 
licensing policies: 

(1) Auctioning a limited number, k, of licenses through a sealed bid English 
auction. The highest k bidders get licenses. Ties are resolved by the 
patentee. 

(2) A flat pre-determined license fee a at which any firm that wishes to can 
purchase a license (as part of his strategy). 

(3) A fixed royalty payment, I, per unit of production. 

The interaction between the patentee, the n firms, and their market is 
characterized by the following three stage game. In the first stage, the 
patentee announces a licensing policy along either with the corresponding 
prices, royalty rate, or number of licenses to be auctioned. In the second 
stage, the firms simultaneously and independently decide whether or not to 
purchase a license or how much to bid, and their decisions determine the set 
of licensees. In the third stage, the set of licensees becomes common 
knowledge and all n firms simultaneously and independently determine their 
production levels. The patentee’s payoff is the total licensing profit, while the 
firms’ payoffs are their profits net of license expenses. The specific forms of 
these payoff functions depend on the licensing policy and will be specified in 
the following sections. 

In analyzing the game described above we restrict ourselves to the 
subgame perfect equilibrium concept, meaning that it is a Nash equilibrium 
which induces a Nash equilibrium in every subgame. The meaning of this 
restriction in the present context is that in the game’s third stage the 
licensees and non-licensees compete as a Cournot oligopoly under every 
possible outcome of the second stage. The Cournot equilibria corresponding 
to these subgames are taken into account by the firms in determining their 
decisions in the second stage. This in turn is taken into consideration by the 
patentee in determining his optimal licensing strategy. 

The following assumptions on the demand function are used throughout. 

Assumption I. The total revenue function, qP(q), is strictly concave in 4. 

Assumption 2. The demand function, Q(p), is decreasing, differentiable for 
p>O and the price elasticity q(p) = -pQ’/Q (where Q’ =dQ/dp) is a non- 
decreasing function of p. 
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3. General properties of the Cournot oligopoly subgame 

Before analyzing specific licensing policies, we list some properties related 
to Cournot equilibria relevant to this paper. Most of them are well known or 
easy to derive. 

Consider a Cournot oligopoly consisting of a set n of firms engaged in the 
production of the same good. The set n is partitioned into two subsets, s and 
n\s, corresponding to the two possible production technologies, with produc- 
tion costs C-E and c. Suppose that the sets s and n\s consists of k and n-k 
firms, respectively. Then, the Cournot equilibrium possesses the following 
properties: 

(i) The equilibrium market price p satisfies 

and 

1 - l/(nq(p)) = (c - .zk/n)/p for k 5 K = C/(&I](C)), (la) 

1- l/(kq(p))=(c-~)/p for k2K. (lb) 

Since q(p) is non-decreasing in p, eqs. (la) and (lb) uniquely determine, for 
any k, 05 k 5 n, an equilibrium price p =p(k). Notice that p(K) = c and for 
k>K, p(k)<c. 
(ii) The equilibrium production levels for ksK are: 

~=Q(p)Cc-&+&(n--k)rt(p)l 
nc-ke 

3 

Q\s= Q(p)Cc--Wdl 
nc-ke ’ 

(24 

(3 

where p=p(k), and Q(p) is the total quantity demanded at the price p. For 
kzK, 

qs _ Q(p) 
k 

and q”\“=O. 

(iii) For k 5 K, the equilibrium profits W(k) and II”\“(k) of each firm in s and 
n\s, respectively, are: 

us(k) = (4”)2 _+!_ = _ (p-c+# 
V(P) Q(P) p’ ’ 

and 
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nn\s(k) = (@“)2 P ---------_=- (P-c)2 

r](p) Q(P) 
p” (3b) 

where p = p(k) and P’ = dP/dQ. 

Lemma 1. (i) The Cournot equilibrium price p = p(k) decreases in k for 
lsksn. 
(ii) For each k, OsksK, np+P’Q=nc-ks. 
(iii) For each k, OsksK, QaP’/ak+(n+l) dp/ak= --E. 

Proof. See appendix. 

Throughout the paper the number of licensees, k, is treated as a 
continuous variable to determine if certain relevant functions of k are 
increasing or decreasing. However, this does not have any effect on the 
results. 

Lemma 2. The profit function II”‘“(k) of a nonlicensee decreases with k for 
k <K and V’\‘(k) =0 for kz K. The pro@ function IT’(k) of every licensee 
decreases with k. 

The proof of this lemma follows from Assumption 1, the general properties 
of the Cournot subgame, and Lemma 1. 

In our subsequent analysis we use the concept of drastic innovation. 
Following Arrow (1962), a cost reducing innovation is drastic iff the 
monopoly price under the new technology does not exceed the competitive 
price under the old technology. 

Lemma 3. Let c be the fixed marginal cost under the old technology and let 
C--E be the reduced marginal cost under the new technology. Then, an 
innovation is drastic ifl E 1 c/q(c). 

The proof follows by Assumption 2 and (lb). 

4. The auction policy 

Let us define the payoff functions for the game resulting from the auction 
policy. Assuming that k licenses are auctioned, denote by b =(b, (k), . . . , b,(k)) 
the n bids submitted by the n firms, respectively. Let s=s(k) be the set of the 
k licensees and denote by q = (q,(b, s), . . . , q.(b, s)) the respective production 
levels of the n firms. Then the payoff functions of the patentee IT; (where the 
superscript, a, stands for auction), and those of the fums Ilt,. . . ,IlE are 
defined as follows: 



M.I. Kamien et al., Optimal licensing of cost-reducing innovation 

6 = nO(b9 sq) = C bi( k), 
iss 

nt= (p-C+E)qi-bi 

I 

for iES 

(Pmc)qi for i$S, 
(4) 

where 

p=P 
( > 

~ qi . 
i=l 

First we analyze the case of a non-drastic innovation. 

Proposition I. Consider a non-drastic innovation where E 2 %c/((n + l)q(c)). 
Then: 

(i) The equilibrium number of licensees is given by K = c/(E~(c)). 

(ii) The post-innovation market price is c, i.e., the competitive price under the 
old technology. 

(iii) Each unlicensed firm drops out of the market, while each licensee produces 
Q(c)/K units but yields all his profit to the patentee. 

(iv) The patentee’s profit is ZI7: = &Q(c). 

The inequality ~2 2c/((n + l)?(c)) cannot be improved. It can be shown 
that Proposition 1 does not hold for linear demand if ~<2c/((n+ l)?(c)) [see 
Kamien and Tauman (1986)]. 

If K is not an integer then the number, K*, of licensees is either rlY1 or 
rK]+ 1 and the market price, p(k*), will be either slightly above or below c 
(depending on whether k*=rKl or k* =rKl+ 1, respectively). If p(k*) >c 
then unlicensed firms will not be driven from the industry, but their share of 
industry wide profits will be minor (otherwise, the patentee will sell rKl+ 1 
licenses and drive the market price below c). 

Proof. Suppose that the patentee auctions k licenses, 15 kg n- 1. Then’ 
each firm’s willingness to pay for a license is given by ZIP(k) -ZIP’“(k), where 
F(k) and F’\“(k) are the Cournot equilibrium profits of licensees and 
non-licensees, respectively. Notice that ZIP”“(k) is a licensee’s opportunity cost 
when k licenses are auctioned. Hence, the patentee’s equilibrium profits are 

‘If n licenses are auctioned, each firm is assured a license and will bid as little as possible. In 
order to induce firms to bid their reservation price, the patentee must limit the miniumum bid to 
that price. Thus, for k=n, the auction policy is equivalent to the fixed fee policy discussed in the 
next section. 
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ZIi= max k[n”(k)--I7”\“(k)]. 
lsksn-1 

By (3a) and (3b) it can be verified that 

ZI”,(k)=k[n”(k)-n”‘“(k)] 

= 

I 

%[2c+e(nq-2kq-l)], lsksK, 

. (P-c+e)Q(p), kzK. 

(5) 

(6) 

To complete the proof of part (i) of the proposition, we use the following 
lemma. 

Lemma 4. (i) For each k 2 K, the function II:(k) decreases in k. 
(ii) For k_lK, and ez2c/((n+ l)?(c)), the patentee’s revenue l7: increases in k. 

Proof. See appendix. 

It follows by Lemma 4 that n:(k) attains its maximum at k=K. This 
completes the proof of Part (i) of Proposition 1. 

Part (ii) of the proposition follows by substituting k=K in (la). 
Part (iii) follows from (2~) according to which q”\“= 0 for k 2 K. 
Part (iv) follows from (6) by substituting p = c and k = K. q 

The implication of Proposition 1 is that for a non-drastic but sufficiently 
important innovation the patentee induces an oligopoly consisting of fewer 
firms than originally, all of whom, however, employ the new technology. This 
number of licensees depends on the relative magnitude of the innovation, and 
the demand elasticity at the competitive price c under the old technology, 
but not on the original number of firms n. Furthermore, as every firm’s 
profits drop to zero, each is worse off, whether it is a licensee or not, relative 
to its pre-innovative profits. Consumers, on the other hand, are better off as 
the market price falls to c. The patentee manages to extract the licensee’s 
total operating profits, &Q(c). This profit equals what he could realize in 
Bertrand competition by driving the price to c and becoming the industry’s 
sole producer. Further discussion of the Bertrand model is provided in 
section 7. 

Next we deal with innovations of relatively small magnitude. 

Proposition 2. There exists an E;O<E_Ic, such that for any E,O_I .z_I.C, each 
firm, except perhaps one, becomes a licensee. Namely, k* 2 n - 1. 
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The proof appears in the appendix. The result obtains for E’S which are too 
small to drive the market price below c and to force unlicensed firms to exit 
the industry. That is, E should be sufficiently small to ensure n5 K. In the 
linear demand case k* = n for ss2c/(3n- l)u(c) [see Kamien and Tauman 
(1986)]. 

We proceed to properties of the non-drastic innovation case which hold in 
general. 

Proposition 3. Consider a non-drastic cost reducing innovation. Then: 

(i) The equilibrium number of licensees does not exceed c/(&r](c)). 
(ii) Every frim is worse off relative to its pre-innovation profit. 
(iii) The innovation results in a lower market price. 

Proof The first two parts can be found in Katz and Shapiro (1986). The 
third part follows from Lemma 1 (part (i)). 

We now proceed to the case of a drastic innovation under an auction 
policy. By definition, the innovation is drastic iff the monopoly price under 
the new technology falls below c. In this case, if only one license is auctioned 
(k= l), the Cournot equilibrium price, given by (l), falls below c and the 
exclusive licensee becomes a monopolist but the patentee realizes the entire 
monopoly profit. This establishes the following proposition. 

Proposition 4. The industry is monopolized tf and only if the innovation is 
drastic. In this case the patentee extracts the entire monopoly profit, the price 
falls below c, and the single licensee makes zero profit. 

5. Fixed fee policy 

In this section we discuss the implications of a fixed fee policy where the 
patentee sets a uniform license fee u, and does not restrict the number of 
licensees. The strategy of firm i is characterized by a pair (ri,qi) where r,(a) is 
a function from Et to (0, l} with the convention that zi(~) = 1 iff i purchases 
the license and Zi(C() =O, otherwise. The second element, qi, determines for 
each a and each subset s of licensees the ith firm’s production level, 
qi=qi(a,s). Its payoff functions are defined by 

ni(CL7 CT17 41)2... 3 bn2 4n))= 
i 

(p--C+&)qi--ai for iEs, 

(Pmc)qi for i&s, 

where p=(cy= 1 qi). The patentee’s profit, n: (the superscript f stands for 
fee), is 
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~fg(~h,qA,. . . ,(LcL)) =uk, 

where k is the number of firms in s. 
The essential difference between the fee and the auction policies stems from 

the firms’s opportunity cost of having a license when there are k licensees 
under a fee policy being IZ”\“(k- l), as opposed to F’\“(k) in the auction case. 
The reason for this is that, under the fee policy, a licensee’s decision to 
relinquish a license reduces the number of licensees by one, while in the 
auction case the number of licensees is pre-determined. Consequently, the 
amount a firm is willing to pay to be one of k licensees under the fee policy, 
is given by 

w(k)=ZI”(k)-n”“(k- 1). 

Let u be the fee charged by the patentee and let s be a set of k licensees. A 
buyer in s will not deviate from his decision iff a 5 w(k). A non-buyer will not 
deviate from his decision iff al w(k+ 1). Consequently, it is required that 
w(k + 1) sol5 w(k) and hence, the number k of licensees is optimally sup- 
ported by a fee a* = w(k) as long as w(k) 2 w(k + 1). Therefore, the patentee’s 
optimal profit level ZIf, under the fixed fee policy is given by 

IZf, = max kw(k) (8) 
k 

over all k such that w(k) 2 w(k - l), 0 5 k 5 n. 
The existence of an optimal solution to (8) can be easily established 

[similarly to the proof of Proposition 2 of Kamien et al. (1988)]. Hence, the 
game resulting from the fixed fee policy has a subgame perfect equilibrium in 
pure strategies. 

One of the complications that may arise in a fixed fee policy is that the fee 
a does not necessarily induce a unique number, k, of licensees. As indicated 
above, for any given a, the equilibrium number k of licensees must satisfy 

cc=ZF(k)-n”‘“(k-l)=w(k). 

In general, this equation may have multiple solutions for k, as shown in fig. 
1. In this figure we have three values of k satisfying Cr= w(k). Two of them, k, 
and k,, can be obtained in equilibrium since w( *) decreases at both points. A 
licensee’s profit, net of the license fee at any equilibrium point equals his 
opportunity cost. Hence, the licensee’s profits corresponding to k, and k, are 
II”\“(k,- 1) and II”\“(k;l). Since ZIP\“(k) decreases in k (Lemma 2), both 
licensed and unlicensed firms are better off at the equilibrium point k, or, in 
general, at the equilibrium point with the smallest number of licensees 
corresponding to a given fee a. On the other hand, the patentee will 
obviously obtain the highest profit (ka) at the equilibrium point with the 
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k 

Fig. 1. Willingness to pay for a license as a function of the number of licensees, under a fixed fee 
policy. 

highest k, for the given IX (in our case, k3). Since the patentee only controls a 
he cannot ensure the k he desires. Thus, even though he might have 
determined a fee a expecting to obtain k3 licensees, the equilibrium may 
result with only k, licensees. Notice that for the case depicted in fig. 1, if w(1) 
were lower than B, then k, would not be an equilibrium outcome since by 
increasing the fee from Cr to & the patentee ‘could force’ the equilibrium to 
move to c and increase his profits. It should also be noticed that any point, 
such as k2, at which w( .) increases, cannot be an equilibrium outcome since 
any additional non-licensee, at such a point, would be willing to purchase the 
license at a price higher than OS. 

The phenomenon of multiple equilibria described above will not occur if 
w(k) decreases in k, as is the case when the demand function is linear [see 
Kamien and Tauman (1986)]. But even if w(k) is not decreasing in k, 
multiple equilibria of the above type will not occur if the fixed fee policy is 
extended to allow discriminatory fees. That is, the patentee is allowed to set 
a different a for each firm. Notice that any equilibrium of this game can be 
supported by a uniform (nondiscriminatory) fee, but the fact that the patentee 
can potentially increase his profit by offering licenses for a small fee to an 
additional k, -k, firms will eliminate k, as a possible equilibrium outcome. 
In general, any equilibrium of a discriminatory fee policy game can be 
supported by a uniform fee a which uniquely determines the number k of 
licenses. This number is the largest k at which w(k) decreases and w(k) = a. 
[A similar phenomenon in the context of priority pricing was analyzed by 
Stobiecki (1975)]. 

Allowing the use of different fees for different firms we have the following 
proposition. 

Proposition 5. Under the Jixed fee policy (with possibly discriminatory fees): 
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(i) The equilibrium number of licensees is uniquely determined and it is 
bounded by K + 1. Furthermore, it can be supported by a uniform fee. 

(ii) Each firm is worse off relative to its pre-innovation profit level (with the 
exception of an exclusive licensee who retains his pre-innovation profit 
level). 

(iii) The patentee’s revenue is strictly lower under an optimal fixed fee than 
under an optimal auction. 

Proof. See appendix. 

It should be mentioned that while the patentee prefers an auction to fixed 
fee licensing, consumers may prefer the opposite. For the case of linear 
demand, the market price under a fee does not exceed the market price 
under auction. If the magnitude E of the innovation is not ‘too’ large, then 
the price under a fee is strictly lower than under an auction. 

6. The royalty policy 

In this section we discuss the implication of the patentee charging each 
licensee a uniform per-unit of production royalty r. After r is announced 
firms decide independently and simultaneously whether to pay it or continue 
to produce with the old technology. Firm i’s strategy is a pair (Zi,qi) where Zi 
is a function from E’ to (0, l} with the convention that ri(r)= 1 if firm i 
purchases the license and ri(r)=O, otherwise. The second component qi 
determines for each royalty r and each subset s of licenses the ith firm’s 
production level qi=qi(r, s). Its payoff functions are determined as follows: 

where p = P(cy= 1 qi). The patentee’s profit, II*,, is defined by 

n~=n~(r,(Zl,41),...,(zn,qn))=rC4i. 

ies 

Notice first that for r < E every firm becomes a licensee since, free of charge, 
it lowers its marginal cost from c to C--E + r. Next observe that r = E implies 
that both a licensed and an unlicensed firm will produce with the same 
marginal cost, c. Hence, for r = E, a firm is indifferent between purchasing and 
not purchasing a license. Nevertheless, in a subgame perfect equilibrium with 
r = E we must have k* = n (otherwise, the patentee will be better off by slightly 
reducing his royalty below E to ensure k* = n). Finally, notice that if r > E no 
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firm will be a licensee. Consequently, in any subgame perfect equilibrium of 
this game every firm becomes a licensee. 

The first-order condition of the firm’s profit maximization is 

p+P’q,=c-&Err, iEn. 

Thus, the equilibrium price is 

p=c-&++-QP’/n. (9) 

Proposition 6. Under the optimal linear royalty policy: 

(i) Each firm becomes a licensee. 
(ii) The market price strictly exceeds the market price under the auction or 

fixed fee licensing. 
(iii) The patentee’s revenues are lower than with a license auction. 
(iv) Suppose that n(c) -C 1. Then for suflciently large n each firm’s profit is at 

least as high as its pre-innovation profit. 

Proof. See appendix. 

Proposition 6 asserts that for both the patentee and consumers a uniform 
royalty is inferior to an auction. On the other hand, in a sufficiently 
competitive industry where q(c)< 1, the firms are all better off under the 
royalty policy. Notice, that if Q = a- P, then q(c) < 1 iff a > 2c. 

7. Optimal licensing mechanism 

In this section we analyze an optimal licensing mechanism of a patentee 
who cannot control or effectively observe firms’ production levels. Thus, a 
feasible mechanism cannot be contingent on firms production levels and 
therefore a linear royalty, for instance, is not feasible. It is assumed that the 
firms, after the licensing process is completed, engage in Cournot com- 
petition. Denote by G the class of all feasible licensing mechanisms for the 
patentee. The class G contains more than the auction or the fixed fee 
mechanisms. It may contain a variety of sequential mechanisms. For 
example, consider an industry of n = 3 firms and let K =c/(E~(c)) =2. [Recall 
that K is the smallest k such that p(k) =c.] Let S>O be a small number and 
let M, be the following sequential mechanism. The patentee first approaches 
firm 1. He offers it an exclusive license for the price CI~ = W( 1) - 6. If it refuses 
to purchase the license, then firm 2 is approached and offered a (non- 
exclusive) license for the price c(~ = ZIS(2) - fl”\“( 1) -8. Then firm 3 is 
approached and offered a license for a price which depends on firm 2’s 
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decision. If firm 2 purchases a license, then the price to firm 3 is the same as 
to firm 2, namely, a2. Otherwise, it is a3 = n’(1) -lYjs(0) -6. If this mecha- 
nism is common knowledge among the firms then the unique backward 
induction outcome is that firm 1 becomes the exclusive licensee. Indeed, 
suppose that firm 3 is approached by the patentee. If firm 2 refused to buy, 
then firm 3’s net profit is R’\“(O) +6 if it purchases a license and U”\“(O) if it 
does not. Hence, firm 3 will purchase a license. If firm 2 purchased a license 
then firm 3’s net profit is ZZ”\“(l) + 6 if it purchases a license and ZI”\“( 1) if it 
does not. Hence, in both cases, firm 3 is better off purchasing a license. Firm 
2, if approached by the patentee, takes into account that whatever its 
decision, firm 3 will purchase a license. Thus, if firm 2 purchases a license for 
the price az, its net profit is nn\‘(l) +6 while if it does not its profit is m\‘(l). 
Therefore, if firm 2 is approached by the patentee, then both firms 2 and 3 
will purchase licenses for the price a*. Taking this into account, firm 1 knows 
that if it pays the price a1 =ZZS(l) -6 it will be the exclusive with a net profit 
6. Otherwise, it will be the only unlicensed firm with profit U”‘“(2). Since 
K =2, p(2) =c, and thus n”‘“(2) =O. Consequently, firm 1 will purchase the 
license and be the exclusive licensee. 

The patentee’s profit under the mechanism Ma is m(l) -6 while for an 
exclusive license he can obtain, with an auction, ZZ’( 1) -II”\“( 1). If the 
innovation is not drastic, then n”\‘(l) >O. Therefore, an auction for an 
exclusive license yields the patentee lower profit than Ma does. Sequential 
licensing mechanisms of a similar nature are discussed in Tauman and Weiss 
(1990) in a different context. Their model deals with a monopolistic industry 
where barriers to entry are due to a large fixed cost. The innovation reduces 
the fixed cost and entry becomes profitable. This is an asymmetrical model 
where the incumbent’s willingness to pay is different from that of a potential 
entrant. 

Our next goal is to show that if E, the magnitude of innovation is not ‘too 
small’, then the auction mechanism (described in section 4) is optimal for the 
patentee as it maximizes his total rents over all possible licensing mecha- 
nisms in G. This does not contradict our previous statement about M, since 
it was compared with the auction of an exclusive license only. It is known 
from Proposition 1 that the optimal number of licenses to be auctioned is K, 
which is 2 in the example above. Also, we will show that for a relatively 
small E, an auction is not in general the patentee’s best strategy. 

Let sun, n={l,2,. ..,n} and let x(s)~R’!+ be the Cournot equilibrium 
profit vector corresponding to an industry with a set of n firms and a subset 
s of licensees. Let s* be a subset of n which maximizes total industry profits. 
That is, 

S E arg max 1 xi(S). 

sCn isa 



M.I. Kamien et al., Optimal licensing of cost-reducing innovation 497 

Denote x*=x(s*), i.e., x* is the Cournot equilibrium profit vector with the 
highest total industry profits. The lowest profit level of firm i in is attained 
for s=n\(i>, that is, when every other firm produces with the new tech- 
nology. Denote this lowest protit level ZI,, i.e., 17,=xi(n\{i}). Finally, let p be 
the Cournot equilibrium profit level prior to the innovation. With the above 
notation, p = Xi(~). 

Proposition 7. The patentee’s potential licensing profit is bounded above by 

CipnXT-nnl. 

Proof. Obviously, the most the patentee can extract is the highest total 
industry profit which is ‘&_$. Since each firm can guarantee itself at least 
Z7, (by just producing with the old technology) he can at most extract 

LXi*-nn,. 

Proposition 8. If ~22c/(nn(c)), then the upper bound CisnXT-nn, of the 
patentee’s potential licensing profit is achieved by an auction. The optimal 
number of licensees is K =c/(q(c)) and every unlicensed firm is driven out of 
the industry. 

Proof. If the innovation is drastic (K 5 l), then the patentee extracts the 
entire monopoly profit (under the auction policy) (Proposition 4) and the 
upper bound is clearly achieved. Suppose next that the innovation is not 
drastic. Let 

H(k)=kW(k)+(n-k)ZF”(k). 

The highest total industry profit is max,H(k). Our purpose is to show that 
H(k) is maximized for k= K. This will imply that the patentee’s profit is 
bounded from above by H(K). But H(K) =KZP(K)=eQ(c), and this level is 
achieved by the auction policy when ~2 2c/(nv(c)). By Lemmas 2 and 4, H 
decreases for kl K. To complete the proof it is sufficient to show that 
H(k) 5 &Q(C) for any k S K. 

H(k) = 
k(p-c+e)2+(n-k)(p-c)2 = ke2+2ke(p-c)+n(p-c)2]Q 

--P -P’Q 

By Lemma 1 

,(,)=[k’2+2kE(p-c)+n(P--)21Q 
np-nc+ke 



498 

Since p 2 c 

(*) 
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H(k) <&Q(C) if 

[2ke+n(p-c)]QInsQ(c). 

L=[2ks+n(p-c)]Q. 

BY (la) 

kE=L -n(p-c). 
V(P) 

This together with (11) imply that 

L= & -a(~-cc) 1 QG$Q(,,. 

(11) 

(12) 

Let us show that (p/(q(p))Q(p) ’ d is ecreasing in p. By the definition of q this 
expression is Q’/( - Q’). Since P’(q) < 0 it is sufficient to prove that 4*(-P’(q)) 
is increasing in 4. But a[-q*P’(q)]aq= -q(2P’+qP”). Hence 4*(-P’(q)) is 
increasing in 4 iff 2P’+qP” <O. But the last inequality follows by the strict 
concavity of qP(q) (Assumption 1). Therefore, since pzc we obtain by (12) 

By (*), it is left to show that (2c/~(c))Q(c)~n~Q(c). But this is equivalent to 
s 12c/(nrl(c)). Cl 

Next we proceed to describe a licensing mechanism M* that guarantees 
the patentee the upper bond profit ~ien~~-nn,, for any magnitude E of the 
innovation. The idea of this mechanism stems from Theorem 7.2 of Kamien 
et al. (1990). The mechanism M* has two stages. First, the patentee selects a 
subset s* satisfying (10). The firm in s* are the potential licensees. Second, he 
offers each firm i E n the option of paying a fee of XT - (ZZ, + 6/n), where 6 > 0 
is an arbitrary small number. Notice that this initial offer is made to any 
firm inside or outside s. If all the firms agree to pay their fee then we say 
that the offer is accepted. In this case only, the firms in s* obtain licenses and 
the industry engages in a Cournot oligopoly game. (Obviously, each firm’s 
Cournot equilibrium net profit is n, + 6/n.) If, however, there is a non-empty 
subset r of firms refusing to pay the fee, we say that the offer is rejected. In 
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this case, the firms in n\r (who accepted the offer) are offered licenses for the 
price u given by 

c( = xi(n\r) -p - 6/n for i E tZ\r, (13) 

where p = Xi(0) is each firm’s pre-innovation profit. The firms in r are not 
entitled to purchase licenses. Notice that each licensee’s net profit depends on 
the number of firms in n\r that purchase licenses for the price u. In any 
event, this profit is never below ~+6/n. 

Proposition 9. By eliminating dominated strategies it is a dominant strategy 
for each firm in n to accept the initial offer. 

Proof Let iEn. We will show that, independent of the actions taken by 
other firms (as long as they do not use dominated strategies), it is best for 
firm i to accept the patentee’s initial offer. Since this is true for every ien, all 
players must accept the initial offer. To prove this claim, we consider two 
cases. In the first case, some firms, other than i, reject the initial offer. In the 
second case, all other firms accept the initial offer. It will be sufficient to 
show that, in both cases, it is best for i to accept the initial offer. Let rcn\(i) 
be a subset of firms that reject the initial offer. Suppose first that r#@. Let 
us compare i’s payoff if he accepts or rejects the initial offer. If i accepts the 
initial offer, purchases a license and pays a, his net profit is Ki(t) -a, where 
tcn\r is the set of licensees (who pay the price a). If i does not purchase a 
license his profit is xj(t\{i}) for jet\(i). By Lemma 2 and (13) we have 

(14) 

That is, if r #QI and i accepts the initial offer, then, regardless of the other 
firms’ actions, i should purchase a license for the price ~1. Now, if r # /z/ and if 
i rejects the initial offer, then for some t~n\r his profits is xj(t), for j# t, 
which by Lemma 2 is below ~+6/n. Consequently, due to (14) we have that, 
if r#@, then, regardless of the other firm’s actions, it is best for i to accept 
the initial offer and purchase a license at the price cc It remains to check that 
i should accept the initial offer also if r= fz/ - that is, if each firm, except i, 
accepts the initial offer. Suppose that i rejects the initial offer while everyone 
else accepts it. Then, by the previous case, applied to any j, j#i, it is 
dominant for j to purchase a license. So, we can delete i’s strategies which 
lead him not to purchase a license in the case where i rejects the initial offer. 
Thus, the only undominated actions of all firms, other than i is to pay the 
fee. Hence, i will obtain xi(n\(i}) = ZZ, if he refuses the offer and ZZ, + 6/n if he 
accepts it. Consequently, i should accept the initial offer regardless of the 
other firms’ decisions. 
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Corollary. For any 6>0, the mechanism M* ensures the patentee a profit 

C xl-nil,-S. 
ion 

Finally, let us briefly examine the linear demand case. 

Example. Consider a Cournot oligopoly (nz 2) with a linear demand 
function 

Q=a-p. 

Then it can be verified that q(p)=p/(a-p) and K=c/(E~(c))=(u--cc)/&. Now, 
(i) if E 22(a-c)/(n + l), then the auction mechanism is optimal, the number 
of licensees is K =(a - c)/E, the market price is c, and any unlicensed firm is 
driven out of the industry. 
(ii) If (a-c)/n <E < 2(a-c)/(n + 1) then M* yields the patentee higher profits 
than an auction. Under M* the optimal number of licensees k* satisfies 
k* <(a--c)/& and the market price exceeds c. In this case unlicensed firms 
continue to produce. However, each firm in n pays its entire profit to the 
patentee. 
(iii) If E<=( 1 -c)/n then again M* is preferred by the patentee to an auction 
and the optimal number of licensees, E, is given by It= min (k*, n), where k* is 
defined in (ii). This is the only case where the patentee cannot extract the 
entire industry profit, since 

n = 

[ 

a-c-(n-l)& 
1 

2>o 

n+l 1 * 
8. Optimal licensing under Bertrand competition 

The above analysis was directed to firms engaged in quantity (Cournot) 
competition. The analysis becomes much simpler if firms engage in price 
(Bertrand) competition. Price competition reduces each firm’s profit to zero 
unless the new technology (with cost C--E) is licensed exclusively to one firm. 
Thus, the patentee’s profit is bounded from above by the highest total profit 
of firms engaged in Bertrand competition, which is obtained when the 
innovation is licensed to a single firm. In the case of a non-drastic 
innovation, the exclusive licensee sets a price equal to c and drives his 
competitors out of the market. Hence, n,=O and the patentee’s profit is 
&Q(C). In the case of a drastic innovation, the exclusive licensee sets the 
monopoly price, which is below c, and pays out the entire monopoly profit 
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to the patentee. Thus, for a drastic innovation or a non-drastic innovation 
with E 2 2c/[(n + l)?(c)], Bertrand competition and Cournot competition yield 
the patentee the same profit. 

It is easy to verify that both an auction and a license fee are optimal in the 
Bertrand model, as is royalty licensing. Indeed, the following can be easily 
established. 

Proposition 10. Under Bertrand competition the three licensing policies are 
all equivalent for the patentee. His profit is &Q(c) if the innovation is not 
drastic and equals the monopoly profit under the new technology when the 
innovation is drastic. In the first case the equilibrium market price is c and in 
the latter case it is below c. Finally, Bertrand competition yields the patentee 
the same profit as under Cournot competition if E 2 2c/((n + l)?(c)). 

Appendix A 

Proof of Lemma I 

(i) Differentiating (la) with respect to k we have for k 6 K 

(WMWW = - (O)p - (Wk)(c - W4 
v2(p) P2 

(A-1) 

Suppose that ap/akzO. Since anlap> 0, the left side of the equation is 
non-negative and the right side is negative. This contradiction implies that 
ap/ak SO. Suppose next that k 2 K. Then, by (lb), 

k(p-c++)=p/n. 

Hence, 

Therefore, 

It is therefore sufficient to prove that k2 11~. Since k 2 K = c/en(c) it is 
sufficient that c/(&q(c) 2 l/q(p) or equivalently n(p) 2 (E/c)~(c). The last 
inequality follows from the assumption that an/appO and from &SC. Now, 
as before, it follows that ap/ak>O cannot hold and that ap/akSO. 
(ii) The first-order condition of the firms’ profit maximization are 
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p+P’qi=C-E, itzs, 

p+P'qj=C, j#s, 

provided that ks K. Adding these n equations we have 

np+P’Q=nc-kc. 

(iii) Differentiating both sides of (A.2) with respect to k we obtain 

(A-2) 

(n+l)g+gQ=-s, 

Proof of Lemma 4 

(i) From (6) we get that for each k 2 K 

Since the innovation is not drastic K 2 1, thus by (lb) 

1 - MP) < 1 - l/(krl(p)) = (c - LIP, 

which implies that (q(p)/p)(p-CC+) < 1. Consequently, by Lemma 2 for k> K 
aIlfgk)/ak co. 
(ii) Suppose that kl K and s 22c/(n+ l)?(c). Let 

F(k) = k[ZI’(k) - II”‘“(k)]. 

Then by (3a) and (3b) for kgK, F(k)= -(&k/P’)(2p-2c+e). Thus, 

1 aF 

-=-[ 

(2p-2c+&+2k(ap/ak))P’-(aP’/ak)k(2p-2c+&) 

E ak (V2 I* 
Consequently, 

g>O iff 2p-2c+e+2k$ 
> 

P’- gk(2p-2c+e)<O. 

By Lemma 1, 



M.I. Kamien et al., Optimal licensing of cost-reducing innovation 503 

(n+l)$+gQ=-s. (A.3) 

This implies that 

aF 
%>O iff 

By (A.2), P’Q = - np + nc - k&. Hence, 

g>O iff 2p-2c+e+2k$ (-np+nc-kke) 
> 

The last inequality is equivalent to 

%[2k(p-c)-k.z(Zk-n-l)]-n(p-c)[(Z(p-c)+&]<O. 64.4) 

Since ap/ak < 0, this inequality holds whenever n + 12 2K. Consequently, 
aF/ak>O if n + 1 ~~c/(Ev(c)) and the proof is complete. 

Proof of Proposition 2 

First let E be such that E <c/(nq(c)). This ensures that n <K and p>c. 
Now, by (A.4), it is sutlicient that 

2(p-cc)-&(2k-n-l)>O. (A.9 

The left side of (A.5) is a decreasing function of k. Hence, it is sufficient to 
prove (A.5) for the case where k = n. Namely, 

2(j-c)-(n- l)s>O, (A.6) 

where fi is the Cournot n-oligopoly price under the new technology C--E. By 
the first-order condition, 

1 - l/Mi))) = (c -WV 
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it is easy to verify that j?~ decreases with E. Hence, 

L(&)=2(ji-c)-(n- 1)E 

decreases with E. Let 

Since L(0) >O, then E>O. Consequently, E 5 E implies that L(E) >O and hence 
(A.6), (A.5) and (A.4) hold. This proves that the patentee’s revenue increases 
for ksn-1. Therefore, k*Ln-1. 

Proof of Proposition 5 

(i) Since w(k) =ZZ’(k) for kh K + 1 we have by Lemma 2 that w(k) is 
decreasing for k2 K + 1. The optimal number of licensees is the largest k at 
which w(k) decreases. Hence, k 5 K + 1 and the uniform fee is u = w(k). 
(ii) The net profit of the firm (licensee or non-licensee) is F\‘(j) for some 
0 6 j $ n - 1. By Lemma 3, n”\*(j) 5 n”\“(O) where n”\“(O) is the pre-innovation 
profit of a firm. This level is achieved in equilibrium only if the innovation is 
licensed directly to one firm. 
(iii) Let k’ be the optimal number of licenses under fee. Then 

Il’,=kf[17s(kf)-II”‘“(kf-1)]. 

By part (i), k’s K + 1. If k’s K then by Lemma 2 

II’,<k’[I7”(k’)-II”‘“( <IZa,. 

If k’= K + 1, then since ZI”\“(K) = 0, we have by Lemma 4 [part (i)] 

l7’,=(K+l)I7”(K+1)<KZI”(K)~l7a,. 

Hence, n: < IIt. 

Proof of Proposition 6 

To prove Proposition 6 we first establish: 

Lemma 5. Consider a non-drastic innovation. Then the market price p* =p(r*) 
under the optimal royalty satisfies p* > p(k) for any 15 k 5 K, where p(k) is the 
Cournot price of an industry with n firms and k licenses. 
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Proof. By (la). 

l_L=C--E+r -. 
nv P 

(A.7) 

Differentiating both sides of A.7 one obtains (after rearranging terms) that 

Hence by (A.7) and by Assumption 2 ap/ar>O and thus aQf& CO. Hence, 

qE s4$qo where qE and q. are QM-1) f or r = E and r = 0, respectively. Thus 

ZZl,= max rQ(p(r))= max P(q)-c+E+qp’ q 1 n. (A-8) 
OSr6e Q&SQSQo 

Denote 

g(q) = f(4) + 4Wn, 

where 

f(q)=(P(q)--++)q. 

Since 

ag/aq = af/aq + (q/n)(2P’ + Fq) 

we have by strict concavity of qP(q) that 

ag/aq < affaq for any 4. (A.9) 

Let q,,,= Q(p,) be the monopoly quantity under the new technology C--E. 
Then (af/aq)(q,) =O. By the concavity of f, (af/aq)(q) ~0 for each q >qm. 
Consequently by (A.9) ag/aq ~0 for each q > q,,,. This implies that the 
optimal solution q* to (A.8) satisfies q* <q,,,. Consequently, p* s-pm. Thus, it 
remains to prove that p,Bp(k) for each 1 s ksK. Observe that by (la) 
and (lb) 

(A.lO) 

and 
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p(k)[I-&]=c-ic forOsksK. (A.ll) 

Hence, by (A.lO) and (A.ll), 

for each 05 k $K. Since p[l - l/n?(p)] is an increasing function of p it 
remains to be proven that 

n-1 Pm n-k 
__- -pEzo, 

n rlhn) rl 

for each 15 k 5 K. Thus, it is sufficient that p,/q(p,) 2.z holds. The last 
inequality is equivalent to 

- Q(P,N'(P,) 2 E. (A.12) 

Since q,,,=Q(Pm) is the solution in p to af/aq=O we have 

Q’(P~)(P, -c + E) + Q(P,) = 0. (A.13) 

This is equivalent to 

- Q(~m)lQ’(~rn) = pm - c + E. 

Since the innovation is not drastic, p,lc and hence (A.12) holds. This 
completes the proof of Lemma 5 0. 

Proof of Proposition 6. (i) The discussion following the definitions of the 
payoff functions establishes part (i). 
(ii) The proof for this case of a non-drastic innovation follows directly from 
Lemma 5. Also, the proof of Lemma 5 establishes, in particular, that 
p(r*) > pm. This together with Proposition 4, completes the proof of part (ii) 
for the drastic innovation case as well. 
(iii) Suppose that the innovation is not drastic and that n LK. Then by (3a) 
and (3b) 

IIt = max k[ W( k) - n”\s( k)] = max -Ek(2p-2c+4. 
OjkSK 06ksK p 
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Consequently, 

fl;z -&Q’(p(K))[2p(K)-2c+s], 

507 

(A. 14) 

On the other hand, 

K max rQ(pW) = r*Q(p(r*)) 
osrsa 

where r* is the optimal royalty for the patentee. Since E 2 I*, it is sufficient to 
prove that 

- KQ’MKNPPW - 2~ +&I > QMr*)). (A.15) 

By Lemma 5, p(r*) > p(K) = c. Hence, Q(c) > Q(p(r*)). Also, since p(K) = c it is 
sufficient to prove that 

- KQ’(c)c 2 Q(c). (A.16) 

Since K = c/(&q(c)) = Q(c)/( -&Q’(c)), (A.16) holds as an equality. 
Suppose next that n < K. Then by Lemma 5 it is sufficient to prove, similar 

to (A.15), that 

- nQ’(p(n))CZp(n) - 2~ + ~1’ Q(PW 

It is easy to verify that the last inequality is equivalent to 

l-1 > _ m-c+& 
W(P(4) = p(n) ’ 

Using (la) it is sufficient to prove that 

C--E, -p(n)-c+E 

0) = p(n) ’ 

which is equivalent to p(n)hc. Finally, it is easy to verify from (la) that 
aplan < 0. Hence, n s K implies that p(n) 2 p(K) = c and the proof is complete 
for the non-drastic innovation case. Consider next a drastic innovation. 

BY (A.@ 

ZK<max[P(q)-c++]q=ZI,, 
4 

where n,,, is the monopoly profit under the new technology. 
By Proposition 4, ZI,=ZI; and hence the proof of part (iii) is complete. 
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(iv) Suppose that for some c, say C, q(E) < 1. Under the royalty policy every 
firm’s marginal cost is E---E +r* 5 E. Hence it is sufficient to show that the 
total Cournot industry profit decreases with c for E-E 5 c 5 E. Let 

A=$Q(p-c))=$c(Q’(~-c)+Q)-Q (A.17) 

for E--E$c~E. For s=O and k=n (la) is equivalent to n(p-c)+p’Q=O. 
Hence Q’= -Q/(n(p-c)) and by (A.17) 

A=[$(l- I)-l]Q. 

Consequently A < 0 if iTp/& c n/(n - 1). Eq. (la) for E =0 and k = n is 

Differentiation of both sides of (A.18) w.r.t. c yields 

V’(P) 3P P -(aP/ac)c 
n?2(p)dc= P2 . 

Since q’(p) >=O i3p/& > 0. Hence p -(8p/&)c 2 0 or ap/& sp/c. It is therefore 
left to show that p/c<n/(n- 1) for each x,E-s~c~c. By (A.18) it is sufficient 
that (n - 1)/n > 1 - l/nq(p) or equivalently, q(p) -C 1. Since q’(p) 2 0 and q(E) < 1 
then q(c)cl, for E-sscsc. By (A.18) p-w as n+co uniformly in [c-s,E]. 
Thus q(p)< 1 for n sufficiently large. 0 
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