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Abstract The California Independent System Operator (CAISO) has implemented
Convergence Bidding (CB) on February 1, 2011 under Federal Energy Regulatory
Commission’s September 21, 2006 Market Redesign and Technology Upgrade Order.
CB is a financial mechanism that allows market participants, including electricity
suppliers, consumers and virtual traders, to arbitrage price differences between the
day-ahead (DA) market and the real-time (RT) market without physically consuming
or producing energy. In this paper, market efficiency is defined in terms of trading prof-
itability, where a zero-profit competitive equilibrium impliesmarket efficiency (Jensen
in, J Financial Econ 6(2):95–101, 1978).We analyzemarket data in theCAISO electric
powermarkets, and empirically test formarket efficiency by assessing the performance
of trading strategies from the perspective of virtual traders. By viewingDA–RT spreads
as payoffs from a basket of correlated assets, we can formulate a chance constrained
portfolio selection problem, where the chance constraint takes two different forms as
a value-at-risk constraint and a conditional value-at-risk constraint, to find the optimal
trading strategy. A hidden Markov model (HMM) is further proposed to capture the
presence of the time-varying forward premium. This is meant to be a contribution to
the modeling of regime shifts in the electricity forward premium with unobservable
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states. Our backtesting results cast doubt on the efficiency of the CAISO electric power
markets, as the trading strategy generates consistent profits after the introduction of
CB, even in the presence of transaction costs. Nevertheless, by comparing with the
performance before the introduction of CB, we find that the profitability decreases
significantly, which enables us to identify the efficiency gain brought about by CB.
Convincing evidence for the improvement of market efficiency in the presence of
CB is further provided by the test for the Bessembinder and Lemmon (J Finance
57(3):1347–1382, 2002) model.

Keywords Convergence bidding · Market efficiency · Trading strategy · Value-at-
risk · Conditional value-at-risk · Hidden Markov model

JEL Classification C44 · C58 · C61 · D44 · D47 · L94 · Q41 · Q49

1 Introduction

Since 1992, the electricity sector in the United States began the process of dereg-
ulation in the pursuit of competitiveness and efficiency. The Independent System
Operator (ISO) was formed to administer regional wholesale electricity markets, and
ensure reliability for grid operations. Several regional wholesale electricity markets
were established under the management of the ISOs: ISO New England (ISO-NE),
NewYork ISO (NYISO), Pennsylvania-New Jersey-Maryland Interconnection (PJM),
Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), andCAISO. To
provide hedging instruments against volatile wholesale spot prices, forward contracts
and other financial derivatives have been introduced into these deregulated electricity
markets. Financial incentives attract virtual traders to play their critical role in price
discovery and market efficiency through exploiting arbitrage opportunities. CB is a
financial mechanism that allows market participants, including electricity providers,
retailers and virtual traders, to arbitrage price discrepancies between the forward and
spot electricity markets. After the introduction of CB in the other five regional whole-
sale electricity markets, the CAISO has implemented CB on February 1, 2011 under
FERC’s September 21, 2006 MRTU Order. The central question of this study is to
address whether the CAISO’s forward and spot electricity markets are efficient in the
sense of eliminating trading profits, and if not, to what extent CB improves market
efficiency.

Recently, Jha and Wolak (2013) have employed hypothesis testing to assess the
impact of CB on the CAISO electric power market efficiency. Specifically, they calcu-
late the implied “no-arbitrage trading costs” for which risk neutral traders will reject
the hypothesis that a profitable arbitrage opportunity between the DA and RT mar-
ket prices (after incurring such trading costs) does exist. They estimate the implied
no-arbitrage trading costs, derived from several heuristic trading strategies, before
and after the introduction of CB in the CAISO electric power markets. Their estimates
show that the implied no-arbitrage trading costs have declined after the introduction of
CB which indicates an improvement in market efficiency through price convergence.
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Efficiency impact of convergence bidding on the california... 247

In this study, we adapt theoretical and empirical tools developed for other finan-
cial markets to help us assess the efficacy of CB in the forward and spot electricity
markets. The efficient market hypothesis, first formalized by Samuelson (1965) and
Fama (1970), asserts that at any given time asset prices should always reflect all avail-
able information, and change quickly to incorporate new information. Jensen (1978)
defines market efficiency in terms of trading profitability—“a market is efficient with
respect to [an] information set, if it is impossible to make economic profits by trading
on the basis of [this] information set.” In particular, if anomalous returns are not high
enough for a sophisticated trader to generate consistent profits after allowing for trans-
actions costs, they are not economically significant. The definition ofmarket efficiency
by Jensen (1978) directly converts the test of market efficiency into the assessment
of return behavior. Following this methodology, we test the efficiency of the forward
and spot electricity markets by developing robust forecasting models and exploring
profitable trading strategies. We assume no market impact—bids submitted by virtual
traders are assumed to be marginal changes, and do not affect prices. The trading
strategy implemented is backtested using market data in the CAISO electric power
markets. Market efficiency is then evaluated in the context of trading performance.
The implications of Bessembinder and Lemmon (2002) are further tested. Both the
trading performance and the test for the Bessembinder and Lemmon (2002) model
provide consistent and convincing evidence for the improvement of market efficiency
in the presence of CB.

This paper is organized as follows. Section 2 introduces theCAISO’s two-settlement
electricity markets and the current market design for CB. Section 3 presents the for-
mulation of the virtual trader’s optimization problem. Section 4 presents the regime
switching model to capture the time-varying forward premium in electricity markets.
Section 5 describes the data used in the study. Section 6 examines market efficiency
and presents some empirical evidence. Section 7 discusses the implication of market
efficiency. Section 8 summarizes the results.

2 CAISO electric power markets

2.1 Pricing mechanism

Locational marginal prices (LMPs) are the prices used for the settlement of power
purchases and sales in organized wholesale electricity markets in the United States.
LMPs are determined by the ISO to maximize market surplus with respect to the
physical constraints of the transmission system, and expose producers and consumers
to the marginal cost of electricity delivery at different locations. Unlike traditional
commodity markets, the wholesale electricity market cannot be cleared with a single
clearing-price auction, where the aggregate supply and demand curves are formed and
the single clearing price is set to balance the supply and demand. The physical laws
governing power flow and the capacity of the transmission lines prevent electricity
from flowing freely between producers and customers on the electric power network.
When the transmission lines are congested and the import of electricity from cheap
producers are constrained, the ISO is forced to use some local but expensive producers

123

Author's personal copy



248 R. Li et al.

for power generation in order to satisfy the demand. As a result, LMPs are high in the
downstream areas of the congested transmission lines, and low in the upstream areas.
The differences between LMPs in the downstream areas and the upstream areas are
congestion rents that reflect the marginal values of the scarce transmission resources.
LMPs are calculated for a number of locations on the electric power network. These
locations are called nodes, and each node represents the geographic region where
physical resources are aggregated.

2.2 Two-settlement electricity markets

The two-settlement electricity markets consist of two interrelated markets: day-ahead
(DA) market, and real-time (RT) market. The DA market is a forward market, where
energy can be purchased at forward prices, also called day-ahead LMPs (DA LMPs).
The RT market is a spot market, where energy can be purchased at spot prices, also
called real-time LMPs (RT LMPs). DA LMPs are usually more stable than RT LMPs.
In the RT market, price spikes are often triggered by unplanned outages of generation
plants and transmission facilities, and unpredictable weather, while the DA market is
less affected due to a longer planning horizon.

The DA market includes three sequential processes: market power mitigation and
reliability requirement determination (MPM-RRD), integrated forward market (IFM),
and residual unit commitment (RUC).1 The MPM-RRD starts the day before delivery.
Market participants are allowed to submit supply and demand bids for both physical
and virtual trades until the start of the MPM-RRD. In the MPM-RRD, the ISO miti-
gates bids from physical resources that exercise locational market power, and ensures
the availability of physical resources whose outputs are required to maintain local
reliability. The results of the MPM-RRD are a pool of bids that is ready for the IFM.
In the IFM, the ISO economically clears the supply bids against the demand bids with
the transmission constraints enforced, determines DA schedules and DA LMPs, and
procures ancillary services. When the CAISO forecast of demand exceeds the total
physical supply cleared in the IFM, the additional capacity is procured by the ISO in
the RUC to satisfy reliability requirements. Note that the additional resources procured
in the RUC are not directly used for production, and hence do not receive DA LMPs.
However, there are still costs to keep these resources staying online, namely start-up
costs and minimum load costs, as discussed later.

In the RT market, the ISO runs the economic dispatch process every 5 minutes
to rebalance the residual demand, which is the deviation between the instantaneous
demand and the scheduled demand in the DA market. For one hour, RT LMPs are the
arithmetic averages of 12 5-min prices over the hour to settle the residual demand and
the supply used to balance the residual demand.

While DA and RT LMPs reflect the cost of energy production, generation plants
also incur start-up and minimum load costs which they submit as part of their bids.
Start-up costs are the costs that are incurred when generation plants are turned on,
and minimum load costs are the costs that maintain generation plants to operate at the

1 http://www.caiso.com/market/Pages/MarketProcesses.aspx. Accessed January 26th, 2015.

123

Author's personal copy

http://www.caiso.com/market/Pages/MarketProcesses.aspx


Efficiency impact of convergence bidding on the california... 249

minimum load level. The CAISO guarantees that all dispatched resources who submit
economic bids will cover their costs in the DA and RT markets. Hence, if a resource
does not cover its total cost including start-up and minimum load cost through its
energy revenue at DA and RT LMPs, its shortfall is covered by an uplift payment
which is allocated to market participants based on a two-tier cost allocation scheme
that considers both causation and socialization. The tier 1 uplift costs account for cost
causation, and the tier 2 uplift costs account for cost socialization. Some uplift costs
are allocated to virtual bids as discussed later.

2.3 CB in two-settlement electricity markets

CB allows market participants to arbitrage between the DA and RT markets through
a financial mechanism, exempting them from physically consuming or producing
energy. A virtual demand bid is to make financial purchases of energy in the DA
market, with the explicit requirement to sell back that energy in the RT market at the
same location. Conversely, a virtual supply bid is to make financial sales of energy in
the DAmarket, with the explicit requirement to buy back that energy in the RTmarket
at the same location. On the physical side, the positions taken in the DA market are
offset by the opposite positions in the RT market, which leaves market participants
with no physical obligation. In anticipation of DA LMPs being less than RT LMPs,
market participants can make profits by using virtual demand bids to effectively buy
energy in the DA market and sell it back in the RT market. These virtual demand bids
result in the additional demand in the DA market that increases DA LMPs, and the
additional supply in the RT market that decreases RT LMPs. This yields the desired
outcome of CB—price convergence.

Price convergence is regarded as a benefit to the DA and RT markets. It reduces the
incentives for market participants to defer their physical resources to the RT market
in expectation of favorable RT LMPs. The improved stability of the DA market is
beneficial from reliability perspectives. To ensure reliability of the power grid, the ISO
is required to procure sufficient capacity in the RUC, when the total physical supply
cleared in the IFM is not enough tomeet the CAISO forecast of demand.With physical
resources withheld by market participants, the ISO tends to over-procure capacity in
the RUC. This raises the RUC uplift costs, and increases the risk of decommiting
scheduled resources in the RT market when deferred physical resources show up.

The benefit of CB also comes from the fact that it relieves market participants from
using physical resources to arbitrage price differences between theDAandRTmarkets,
also called implicit virtual bidding in some literature. Implicit virtual bidding is the
bidding strategy where market participants intentionally defer their physical resources
to the RTmarket to take advantage of favorable RT LMPs, by bidding at prices that are
unlikely to be cleared in the DA market rather than their economic costs and benefits.
Although implicit virtual bidding can achieve price convergence in the absence of CB,
it can also lead to reliability problems that jeopardize the efficiency of the DA and RT
markets. Without the revelation of the true economic costs and benefits of physical
resources, it is difficult for the ISO to allocate resources efficiently and optimally. In
addition, the prices at which market participants bid their physical resources largely
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depend on their own anticipation of DA and RT LMPs, and this introduces uncertainty
into the DAmarket. In some cases, the ISO can either over-schedule physical supply in
the IFM that has to be sold back in the RTmarket, or under-schedule physical supply in
the IFM that relies on the procurement in theRUC to balance. These variations decrease
the stability of the DA market, and could undermine reliability of the power grid.

CB can be conducted at both nodes and trading hubs. In comparison to nodes,
trading hubs provide more liquidity to trade large volumes of virtual bids. There are
three trading hubs in the CAISO electric power markets, that corresponds to three
congestion management zones: NP15, SP15 and ZP26. DA and RT LMPs at the
trading hub represent the weighted average of prices at generation nodes within the
corresponding congestion management zone. The weights are determined annually
based on the seasonal generation in the previous year, and are differentiated by peak
and off-peak hours. The virtual bids submitted at the trading hub are distributed to
generation nodes in proportion to their weights, and are bound together so that they
are cleared as a whole in the DA market.

The credit policy for CB requires that the current exposure of virtual bids submitted
by a market participant may not exceed the collateral established with the ISO. The
current exposure of virtual bids is calculated by the sum of the product of the quantity
and the corresponding reference price of each virtual bid. For one node, the reference
price is the 95th percentile value of the historical price differences between DA and
RT LMPs. After the settlement of virtual bids, the collateral is adjusted based on the
realized profits and losses of virtual bids.

There is no transaction fee imposed on submitted virtual bids, but cleared virtual
bids are required to pay uplift costs. The costs allocated to cleared virtual bids include
the IFM tier 1 uplift costs, and the RUC tier 1 uplift costs. In particular, cleared virtual
demand bids are obligated to pay a proportion of the IFM tier 1 uplift costs, as virtual
demand bids tend to increase physical supply procured in the IFM. Cleared virtual
supply bids are subject to a proportion of the RUC tier 1 uplift costs, as the ISO tends
to under-schedule physical supply in the IFM due to virtual supply bids and increase
additional capacity procured in the RUC. The costs allocated to 1 MWh of cleared
virtual position are estimated to be between $0.065 and $0.085 by the CAISO.2

3 Portfolio optimization

3.1 Risk neutral formulation

In the DA and RT markets, the ISO determines DA LMPs PDA
t ∈ R

24 and RT
LMPs PRT

t ∈ R
24 for one node on day t , for t = 1, . . . , T . Both PDA

t and PRT
t

contain 24 hourly market-clearing prices for 1 MWh of electricity. DA–RT spreads
can be expressed as Rt = PDA

t − PRT
t . The risk neutral virtual trader’s objective

is to maximize the expected payoff of his virtual bids (1) with respect to a budget
constraint (2), by entering virtual positions xt ∈ R

24 in the DA market and closing
those positions in the RT market,

2 http://www.caiso.com/2429/24291016c12990. Accessed January 26th, 2015.
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(P0) maxxt E
[
RT
t xt

] − τ‖xt‖1 (1)

s.t. C‖xt‖1 ≤ W0 (2)

where τ is the costs allocated to 1 MWh of virtual position, C is the reference price
for 1 MWh of virtual position, and W0 is the initial collateral. In this formulation, we
implicitly assume that virtual traders behave as price-takers, and that contract can be
fractional. x ( j)

t ≥ 0 denotes a virtual supply bid, and we can equivalently view it as
taking a long position in the corresponding DA–RT spread, while x ( j)

t < 0 denotes a
virtual demand bid, and we can equivalently view it as taking a short position in the
corresponding DA–RT spread.3 In the budget constraint (2), both supply and demand
bids must provide collateral separately, as they are not allowed to offset each other
under the current credit policy for CB. This formulation is consistent with the current
CAISO practice, and can be easily extended to multiple-node networks.4

Without loss of generality, we assume W0 = 1. The collateral used to establish
virtual positions in DA–RT spreads is yt = Cxt and the costs associated with 1 dollar
of collateral are τ c = 1

C τ . By viewing DA–RT spreads as payoffs from a basket of
correlated assets, the returns on DA–RT spreads are then defined as Rc

t = 1
C Rt =

1
C

(
PDA
t − PRT

t

)
. With these substitutions, (P0) is equivalent to (P1),

(P1) maxyt E[Rc
t
T yt ] − τ c‖yt‖1 (3)

s.t.‖yt‖1 ≤ 1, (4)

which is a portfolio optimization problem in the presence of linear transaction costs.
The budget constraint (4) requires that the absolute value of weights must sum up to
one. This is different from the standard portfolio optimization problem where long
and short positions can be netted out.

3.2 Portfolio optimization under a VaR constraint

VaR is a modern way of measuring the risk of a portfolio, based on computing
probabilities of large losses of the portfolio (Duffie and Pan 1997). Mathematically,
VaR(z; η) = inf{γ |P(z ≤ γ ) ≥ η} is the level η-quantile of the random variable z
denoting the losses. To put it another way, the confidence level η is the probability that
losses do not exceed or equal to VaR(z; η). (P1) can be reformulated as a portfolio
optimization problem (VAR0(γ, η)) under a VaR constraint (6),

(VAR0(γ, η)) maxyt E[Rc
t
T yt ] − τ c‖yt‖1 (5)

s.t.VaR(−Rc
t
T yt ; η) ≤ γ (6)

‖yt‖1 ≤ 1 (7)

where γ is the predetermined upper bound for the VaR of the portfolio.

3 x( j)
t is the j-th entry of xt .

4 http://www.caiso.com/2429/24291016c12990. Accessed January 26th, 2015.
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Table 1 Summary statistics for
post-CB DA–RT spreads

∗ indicate 5 % significance levels

Hour Mean SD Skewness T-Statistic

1 1.81 7.01 2.93 4.92*

2 1.98 9.31 2.61 4.06*

3 2.34 11.24 2.03 3.98*

4 3.08 13.44 2.62 4.38*

5 1.32 11.05 1.90 2.28*

6 −0.10 14.23 −7.33 −0.14

7 1.45 19.88 −4.94 1.38

8 −0.56 38.08 −12.09 −0.29

9 −0.54 30.92 −12.10 −0.35

10 −2.31 43.33 −10.24 −1.03

11 −2.68 56.07 −12.03 −0.92

12 0.22 35.92 −12.32 0.11

13 0.14 36.41 −9.19 0.07

14 2.19 32.08 −13.23 1.30

15 −0.29 39.99 −7.67 −0.15

16 −2.43 77.89 −10.70 −0.61

17 −5.68 78.68 −6.23 −1.39

18 −5.39 73.41 −6.24 −1.41

19 −3.35 50.58 −4.61 −1.29

20 −1.23 46.79 −6.91 −0.52

21 1.57 26.62 −6.90 1.09

22 −1.74 42.67 −7.49 −0.80

23 0.07 17.32 −4.38 0.04

24 1.26 24.67 −10.32 0.97

Overall −0.37 40.67 −11.71 −0.90

As shown in Table 1, DA–RT spreads are negatively skewed in most of the hours,
which cannot be modeled properly by a normal distribution. Without assuming nor-
mality, VaR cannot be written in a closed form, and there is no guarantee that VaR is
convex. Nemirovski and Shapiro (2006) propose a computationally tractable approxi-
mation of the non-convexVaR constraint. Therefore, we can replace theVaR constraint
(6) with the Chebyshev bound (43) yielding (VAR1(γ, η)),5

(VAR1(γ, η)) maxyt μT
t yt − τ c‖yt‖1 (8)

s.t. −E[(Rc
t
T yt + γ )] + (ηE[(Rc

t
T yt + γ )2]) 1

2 ≤ 0 (9)

‖y‖1 ≤ 1. (10)

5 See Appendix for details.
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Note that the Chebyshev bound (43) is a conservative approximation of the VaR
constraint (6), which implies that the confidence level realized is higher than the
confidence level intended η.

3.3 Portfolio optimization under a CVaR constraint

Since VaR is incapable of addressing the distribution of losses beyond VaR(z; η),
CVaR is introduced by Rockafellar and Uryasev (2000) as an alternative risk assess-
ment technique to account for losses in the tail of the distribution. For continuous
distributions, CVaR is defined as the conditional tail expectation exceeding VaR(z; η),
CVaR(z, η) = E[z|z ≥ VaR(z, η)], if z is to be minimized. In this case, the optimiza-
tion problem can be stated as follows,

(CVAR0(γ, η)) maxyt E[Rc
t
T yt ] − τ c‖yt‖1 (11)

s.t. CVaR(−Rc
t
T yt ; η) ≤ γ (12)

‖yt‖1 ≤ 1. (13)

VaR and CVaR can be characterized by function gη(z, ρ) = ρ + 1
1−η

E[(z − ρ)+]
in the following forms,

CVaR(z, η) = min
ρ

gη(z, ρ), (14)

VaR(z, η) = argmin
ρ

gη(z, ρ). (15)

Thus, by substituting the CVaR constraint (12) with (14), (CVAR0(γ, η)) becomes

(CVAR1(γ, η)) maxyt E[Rc
t
T yt ] − τ c‖yt‖1 (16)

s.t. gη(−Rc
t
T yt , ρ) ≤ γ (17)

‖yt‖1 ≤ 1. (18)

4 Regime switching model

4.1 Spot price and forward price

In deregulated electricity markets, the prominent features of electricity spot prices
include mean-reversion, seasonality, and spikes (Deng 2000). The causes of these
features can be traced to the inherent characteristics of electricity. As the supply
function of power generation becomes much steeper above a certain capacity level,
the marginal production cost increases substantially with the aggregate demand. The
consumer demand is highly inelastic and varieswidely from season to season, resulting
in seasonal variations in the levels of electricity spot prices. The difficulty of storing
electricity further limits the feasibility of holding inventories to arbitrage and smooth
price discrepancies across time periods. In some extreme cases, price spikes occur
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when the power system is not flexible enough in response to forced outages of power
plants and unexpected contingencies in the transmission networks within a short time
frame. Inmost of theUnited States, price spikes are frequently seen during the summer,
when the demand is high.

Regime switching models seem to be natural candidates to study the dramatic
alternations in the behavior of electricity spot prices. Deng (2000) proposes several
mean-reversion jump-diffusion models with parameters varying in different regimes
to capture the systematic alternations of electricity spot prices among different equi-
librium states of supply and demand. Mount et al. (2006) investigate the predictability
of price spikes in electricitymarkets using daily on-peak average spot prices and loads.
They adopts a probabilistic model with two regimes, where the state variables are the
load and the reserve margin. However, the prediction accuracy decreases substantially
when forecasts of the state variables are used.

In electricity forward markets, there is a wide range of tradable instruments with
maturities varying from a day, a week, amonth, to a year. Here wemainly present stud-
ies that focus on modeling forward prices that are settled one day ahead of delivery by
regime switching. De Jong (2006) provides statistical evidence that the regime switch-
ing model outperforms the generalized autoregressive conditional heteroskedasticity
(GARCH) model and the stochastic Poisson jump model. The consistent test results
from various day-ahead spot markets in Europe and the United States make a convinc-
ing case for the use of regime switchingmodels to capture price dynamics in electricity
markets.6 Haldrup and Ørregaard Nielsen (2006) analyze market data in Nord Pool
with a regime switching model that features long memory. They find that the regime
switchingmodel is superior to the non-switchingmodel in terms of out-of-sample fore-
casting performance. Some other successful applications of regime switching models
to electricity forward prices are presented in Huisman and Mahieu (2003), Weron
(2009), and Janczura and Weron (2010).

4.2 Time-varying forward premium

The forward premium is defined as the difference between the forward price and the
expected spot price. In electricity markets, the 24 hourly forward premia FPt on day
t take the form,

FPt = Et−1[PDA
t − PRT

t ] = Et−1[Rt ]. (19)

There exists extensive literature on the time-varying property of the forward
premium—a situation where the forward premium varies through time to reflect eco-
nomic risk. The time-varying forward premium is observed and well documented in
exchange rates and traditional commodity markets. In one of the seminal papers, Fama
(1984) first attributes the behavior of forward exchange rates to a time-varying forward
premium, and finds that the variation in the forward premium accounts for a substan-

6 The day-ahead spot market or the spot market in Europe is similar to the DA market in the United States,
where the delivery of electricity for each of the 24 hours is settled one day in advance.
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tial proportion of the variation in forward exchange rates. In addition to Fama (1984),
other papers focusing on explaining the determination of the time-varying forward
premium include Fama and French (1987), Bekaert and Hodrick (1993), Backus et al.
(2001), and Baillie and Kilic (2006).

Recently, there is a growing literature investigating the time-varying forward pre-
mium in electricity markets. These studies present empirical evidence that supports
the risk-factor-related time variation in the electricity forward premium.Bessembinder
and Lemmon (2002) develop a general equilibrium model for forward prices, where
the difference between the equilibrium forward price and the expected wholesale price
can be explained by risk-related factors that reflect the net hedging pressure of produc-
ers and consumers. The risk-related factors are approximated in terms of the central
moments of the distribution of wholesale spot prices. To be specific, the electricity
forward premium is negatively correlated to spot price volatility, but positively cor-
related to spot price skewness. The model is empirically verified by using data from
the PJM power market and the California Power Exchange (CALPX) at a monthly
level.7 The one-month forward price is estimated by the average of one-month forward
prices prior to the delivery month. They also point out that in a frictionless market with
risk-neutral outside speculators, the forward prices would converge to the expected
spot prices. Based on a data set of hourly spot and forward prices in the PJM power
market, Longstaff and Wang (2004) find evidence that supports the structural model
presented in Bessembinder and Lemmon (2002) at an hourly level. They also conclude
that the forward premium is fundamentally related to the risk premium required by
market participants to compensate for uncertainty.

Shawky et al. (2003) conduct studies on the spot and future price relationship,
based on the contracts traded on the New York Mercantile Exchange and delivered at
the California-Oregon Border. They find the forward premium of electricity is larger
than those of other commodities. An exponential GARCH specification is employed
to model the time-varying volatility clustering in the forward premium time series.
Cartea and Villaplana (2008) propose a model to forecast wholesale electricity prices
in different states identified by two observable state variables—demand and capacity.
By testing their model in the PJM, England and Wales, and Nord Pool markets, they
present empirical results that the forward premium exhibits a seasonal pattern. The
forward premium is high during the months of high demand volatility. Benth et al.
(2008) provide a framework to explain the forward premiumwith twomarket factors—
the levels of risk aversion of buyers and sellers, and the market power of producers
relative to that of consumers.

As mentioned, the existing literature extensively studies the time-varying forward
premium by statistical models with observable state variables, namely the volatility
and skewness of spot prices, the level of risk aversion, market structure, and demand
and supply capacity. The choice of state variables is largely predetermined and varies
across different electricity markets, which limits the possibility to arrive at a gen-
eralization. From a different perspective, the time-varying forward premium can be

7 TheCalPXwas founded in 1998. It declared bankruptcy and permanently ceasedmarket operations during
2000–2001 California energy crisis. During its existence, the CALPX administered market transactions,
while the CAISO ensured the reliable management of transmission network.
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Fig. 1 GMHMM

subject to regime shifts, where the behavior of the forward premium exhibits dramatic
changes. Lucia and Schwartz (2002) propose a factor model with unobservable state
variables, for the purposes of derivative pricing. These unobservable state variables
can be further interpreted as latent market regimes. However, their model is primarily
aimed to forecast the forward curve—forward prices with different maturities, rather
than the forward premium. To the authors’ best knowledge, there is no paper on mod-
eling the electricity forward premium with unobservable states. Our study therefore is
intended to fill this gap by introducing a HMM framework to model the regime shifts
in the electricity forward premium.

4.3 Model description

AHMMcan be presented as a dynamic Bayesian networkmodel in which the underly-
ing state transition follows a Markov process. Each state has a probability distribution
over the possible observations. The state is assumed to be invisible to the observer, but
the observation is visible. Therefore some information about the sequence of states can
be inferred from the sequence of observations. In the context of CB, {St , Rt }Tt=1 is a
discrete-time stochastic process, where the sequence of states {St }Tt=1 is an unobserved
Markov chain.8 Given {St }Tt=1, the observed sequence of DA–RT spreads {Rt }Tt=1 is a
sequence of conditionally independent random variables with the conditional distrib-
ution depending on {St }Tt=1 only through the current state of the chain St . In this study,
we assume the conditional probability density function of Rt , given the occurrence of
St , follows a Gaussian mixture distribution. This HMM variant is also called Gaussian
mixture hidden Markov model (GMHMM). The GMHMM is illustrated in Fig. 1.

We assume there exist M different states in the GMHMM and N different clusters
in the Gaussian mixture distribution. The equation for DA–RT spreads Rt given the
cluster zt , for zt = 1, . . . , N , can be expressed as,

8 We use upper case letters to denote random variables, and lower case letters to denote realizations of
random variables.
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Rt = μzt + Σ
1
2
zt εt , (20)

where μzt denotes the conditional mean given the cluster zt , Σzt denotes the condi-
tional covariance given the cluster zt , and εt denotes the noise. Both μzt and Σzt can
take different values depending on the realization of the cluster zt . The noise term
εt follows a standard multivariate Gaussian distribution εt ∼ N(0, I24). The cluster
zt follows a multinomial distribution, and occurs with probability P(zt |st ) = cst ,zt ,
conditioned on the state st , for st = 1, . . . , M and zt = 1, . . . , N . The transition
from the present state st to the future state st+1 is governed by a transition probability
matrix, and the transition probability is P(st+1|st ) = ast ,st+1 , for st , st+1 = 1, . . . , M .

The GMHMM offers a flexible framework where both the inferences of unobserv-
able states and the estimations of forward premium statistics can be obtained from
market data. We denote the historical DA and RT LMPs by pRTt and pDA

t . Let rt =
pDA
t − pRTt denote the historical DA–RT spreads. The forward-backward algorithm

and the expectation-maximization algorithm are adopted to compute the posterior
marginals of state variables and update maximum likelihood estimators respectively,
given a sequence of DA–RT spreads rt . A detailed discussion of the forward-backward
algorithm and the expectation-maximization algorithm can be found in Bilmes (1998).
Maximum likelihood estimators are denoted as Θ = {πk, μk,h,Σk,h, ak,l , ck,h :k, l =
1, . . . , M, h = 1, . . . , N }.

4.4 In-sample and out-of-sample test

We implement the in-sample and out-of-sample test to measure and evaluate the per-
formance of the trading strategy using historical data. In both tests, the two chance
constrained portfolio selection problems (VAR1(γ, η)) and (CVAR1(γ, η)) can be
approximated and solved with sampling for a given GMHMM. To illustrate the sam-
pling procedure, we calculate the expected value of a function in general form f (Rt ).

In the in-sample test, the whole sequence of DA–RT spreads, r1, . . . , rT , is used to
train the parameters of GMHMM Θ on day t . The expected function value of DA–RT
spreads f (Rt ), conditioned on the whole sequence of DA–RT spreads, can be derived
as,

E[ f (Rt )|r1, . . . , rT ] =
M∑

st=1

E[ f (Rt )|st , r1, . . . , rT ]P(st |r1, . . . , rT ) (21)

=
M∑

st=1

E[ f (Rt )|st ]P(st |r1, . . . , rT ) (22)

=
M∑

st=1

N∑

zt=1

E[ f (Rt )|zt , st ]P(zt |st )P(st |r1, . . . , rT ) (23)

=
M∑

st=1

N∑

zt=1

E[ f (Rt )|zt ]cst ,zt P(st |r1, . . . , rT ), (24)
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where E[ f (Rt )|zt ] can be simulated since Rt follows a multivariate Gaussian distri-
bution given the cluster zt , cst ,zt is the maximum likelihood estimator of the cluster
probability obtained by the expectation-maximization algorithm, and P(st |r1, . . . , rT )

is the posterior state probability computed by the forward-backward algorithm.
In the out-of-sample test, only the sequence of available DA–RT spreads up to day

t, r1, . . . , rt−2, is used to train the parameters of GMHMM Θ on day t . We exclude
rt−1, because virtual positions for day t must be taken in the morning of day t − 1,
when RT LMPs for the rest of the day are still unavailable for the calculation of rt−1 .

The probability of being in the state st , conditioned on the sequence of available
DA–RT spreads up to day t , can be derived as,

P(st |r1, . . . , rt−2) =
M∑

st−2=1

P(st , st−2|r1, . . . , rt−2) (25)

=
M∑

st−2=1

P(st−2|r1, . . . , rt−2)P(st |st−2, r1, . . . , rt−2) (26)

=
M∑

st−2=1

P(st−2|r1, . . . , rt−2)P(st |st−2), (27)

where P(st |st−2) is the probability of going from the state st−2 to the state st in 2 time
steps. The n-step transition probability satisfies the Chapman–Kolmogorov equation,
and thus (27) can be rewritten as,

P(st |r1, . . . , rt−2)

=
M∑

st−2=1

P(st−2|r1, . . . , rt−2)

M∑

st−1=1

P(st |st−1)P(st−1|st−2). (28)

The expected function value of DA–RT spreads f (Rt ), conditioned on the sequence
of available DA–RT spreads up to day t , can be derived as,

E[ f (Rt )|r1, . . . , rt−2] =
M∑

st=1

E[ f (Rt )|st , r1, . . . , rt−2]P(st |r1, . . . , rt−2) (29)

=
M∑

st=1

E[ f (Rt )|st ]P(st |r1, . . . , rt−2) (30)

=
M∑

st=1

N∑

zt=1

E[ f (Rt )|zt , st ]P(zt |st )P(st |r1, . . . , rt−2) (31)

=
M∑

st=1

N∑

zt=1

E[ f (Rt )|zt ]cst ,zt P(st |r1, . . . , rt−2), (32)
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where E[ f (Rt )|zt ], cst ,zt and P(st |r1, . . . , rt−2) can be computed in the same way
as mentioned in the in-sample test.

One distinction between the two tests lies in the fact that virtual positions con-
structed in the out-of-sample test only rely on the distribution of past DA–RT spreads,
while the distribution of both past and future DA–RT spreads are used to determine
virtual positions in the in-sample test. By using the predicted distribution of DA–RT
spreads, the out-of-sample test produces a robust and credible assessment of the trad-
ing strategy. The in-sample test contributes to the evaluation of the trading strategy by
allowing us to obtain the most efficient portfolio of virtual positions and achieve the
best attainable performance, under the true distribution of DA–RT spreads.

5 Data

The data for this study consist of the historical DA and RT LMPs at the CAISO NP15
EZGenHub before and after the implementation of CB. The data in the pre-CB period
include the historical DA and RT LMPs from January 1st, 2010 to December 31st,
2010, and the data in the post-CB period include the historical DA and RT LMPs from
January 1st, 2012 to December 31st, 2012. For each day, the data contain DA and RT
LMPs for each of the 24 hours during that day. The CAISO NP15 EZ Gen Hub is
one of the trading hubs in the CAISO electric power markets, and covers the current
CAISO congestion management zone NP15.9

6 Numerical results

6.1 Summary statistics for the DA and RT markets

Table 1 presents summary statistics for post-CB DA–RT spreads in dollars per
megawatt hour.10 Post-CB DA–RT spreads can also be viewed as realized or ex post
forward premia. The mean of post-CB DA–RT spreads varies throughout the day.
Large negative spreads are observed during peak hours. The volatility of post-CB
DA–RT spreads is higher during peak hours than during off-peak hours. Post-CB
DA–RT spreads are negatively skewed in most of the hours, because price spikes
occur frequently in the RT market during the summer. The overall mean of post-CB
DA–RT spreads (−$0.37) is closer to zero than the overall mean of pre-CB DA–RT
spreads (−$2.36), which indicates better price convergence after the introduction of
CB.11

The same statistics for pre-CB DA–RT spreads are presented in Table 12 in dollars
per megawatt hour. The overall mean of post-CBDA–RT spreads is closer to zero than
the overall mean of pre-CB DA–RT spreads. Besides, more pre-CB DA–RT spreads

9 The majority of Pacific Gas and Electric Company’s load is located in NP15.
10 Stars indicate 5 % significance levels.
11 Summary statistics for pre-CB DA–RT spreads are reported in Table 12 .
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Table 2 Seasonal means of post-CB DA–RT spreads

Hour November–January February–April May–July August– October

1 1.84 1.18 2.25 1.95

2 1.98 2.71 1.63 1.61

3 1.47 4.25 2.02 1.68

4 2.93 3.46 3.19 2.78

5 1.51 1.44 1.79 0.55

6 −0.74 −1.73 1.85 0.18

7 −0.16 0.34 5.82 −0.29

8 2.32 −3.53 −3.70 2.58

9 −3.99 −0.60 2.44 −0.14

10 −1.44 −10.37 2.03 0.27

11 0.15 −11.31 −0.72 0.90

12 −0.70 −5.47 1.85 4.99

13 −2.25 −1.93 0.92 3.70

14 2.76 −0.13 −2.22 8.27

15 1.09 −2.11 −1.71 1.43

16 0.58 1.15 −8.49 −3.04

17 2.68 −0.98 −14.45 −9.92

18 3.55 2.02 −23.82 −3.18

19 0.35 2.46 −7.51 −8.79

20 3.32 −0.39 −7.79 −0.17

21 0.93 3.39 1.38 0.44

22 −1.85 1.27 −10.84 4.32

23 −0.75 0.43 −1.19 1.66

24 1.88 2.02 −2.47 3.61

Overall 0.73 −0.52 −2.41 0.64

are statistically significant at 5 % level than post-CB DA–RT spreads. Both indicate
better price convergence after the introduction of CB.

Tables 2 and 3 show the seasonal means and standard deviations of post-CBDA–RT
spreads in dollars per megawatt hour. Both exhibit strong seasonal patterns, especially
for peak hours. In particular, the means of post-CB DA–RT spreads for 5 p.m. range
from a low of−$23.82 during the period fromMay to July to a high of $3.55 during the
period fromNovember to January. The large negative mean values of post-CBDA–RT
spreads are observed during the period fromMay to July, as a result of the price spikes
that occur regularly throughout the summer in the RTmarket. The lowest overall mean
of post-CB DA–RT spreads is observed during the period from May to July, and the
highest overall standard deviation of post-CB DA–RT spreads is also observed during
the same period. This seasonal variation is consistent with the Bessembinder and
Lemmon (2002) model in that downward hedging pressure is imposed on the forward
premium by the variance. The strong seasonal patterns raise the need to incorporate
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Table 3 Seasonal standard deviations of post-CB DA–RT spreads

Hour November–January February–April May–July August–October

1 7.40 7.31 8.20 4.77

2 10.37 10.48 9.36 6.72

3 8.54 13.02 13.68 8.78

4 11.23 15.42 15.22 11.65

5 9.53 10.54 14.43 9.05

6 17.46 20.04 9.15 5.22

7 19.30 22.21 14.97 22.00

8 9.44 55.29 51.24 8.76

9 56.30 17.93 7.34 17.61

10 31.29 77.13 15.91 20.01

11 30.15 98.84 27.36 36.17

12 29.90 60.60 23.17 10.13

13 53.25 20.47 36.14 27.79

14 9.72 10.40 61.68 7.89

15 16.01 21.82 56.80 49.59

16 14.09 6.75 99.58 118.79

17 14.82 20.07 111.17 108.03

18 22.96 10.59 117.88 81.25

19 40.83 12.25 47.47 78.20

20 13.03 29.47 60.89 63.16

21 20.30 7.40 21.73 43.60

22 40.20 7.09 70.50 23.48

23 18.00 10.51 22.21 16.58

24 14.12 14.65 44.51 5.70

Overall 25.50 33.81 51.67 46.29

a time-varying property in the forward premium model, and support the use of the
GMHMM characterized by the time-varying conditional mean and variance. It is also
worth noting that off-peak hours do not display significant seasonal effects as peak
hours do. The means and standard deviations of post-CB DA–RT spreads in off-peak
hours show relatively small variation across different periods, compared with those in
peak hours.

The same statistics for pre-CB DA–RT spreads are presented in Tables 13 and 14
in dollars per megawatt hour. Similar features are observed as Tables 2 and 3.

6.2 Summary statistics for the GMHMM

Several heuristic procedures for model selection are applied to determine the number
of states and the number of clusters in the GMHMM. We choose the number of
states M = 2 to avoid the overfitting problem commonly encountered in learning a
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Fig. 2 Post-CB within-cluster sum of squared error

Table 4 Transition probabilities
of the post-CB GMHMM
(one-step)

State 1 (%) State 2 (%)

State 1 95.23 4.77

State 2 4.00 96.00

large state-space HMM (Ghahramani 2001; Ghahramani and Jordan 1997). A simple
model also allows us to provide clear economic interpretations for different states,
which are discussed later. One common method of choosing the appropriate number
of clusters is to graph the within cluster sum of squared error against the number of
clusters in Fig. 2. The appropriate number of clusters can be defined as the number
at which the reduction in the within cluster sum of squared error slows significantly.
As demonstrated in Fig. 2, to increase the number of clusters reduces the the within
cluster sum of squared error, but at 3 clusters the marginal gain drops suggesting
that additional clusters do not have a substantial impact on the within cluster sum of
squared error. It produces an “elbow” in the graph at 3 clusters. Hence, we choose the
number of clusters N = 3, according to this “elbow criterion”. After model selection,
statistical inference and estimation can then be conducted by applying the forward-
backward algorithm and the expectation–maximization algorithm on historical data.
In particular, note that maximum likelihood estimators presented in this section are
estimated using the whole sequence of DA–RT spreads to obtain a complete picture
of the property of the forward premium across seasons.

In Fig. 14, similar features are observed as Fig. 2.
The transition probabilities of the post-CB GMHMM are shown in Table 4. The

transition probability from one state to itself is over 90 %, which implies that the
alternations between states occur at a relatively low frequency in the underlying state
transition process. It captures the fact that the forward premium time series exhibits
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Fig. 3 Post-CB posterior state probability

seasonal patterns and evolves slowly from season to season. Table 6 shows summary
statistics for DA–RT spreads of the clusters of the post-CB GMHMM in dollars per
megawatt hour.12 Each cluster is represented by a multivariate Gaussian distribution
characterized by its mean vector and covariance matrix. For most of the hours, the
means are positive in cluster 1, and negative in cluster 2 and cluster 3. The standard
deviations in cluster 2 are uniformly larger than those in cluster 1, indicating a higher
level of volatility. However, cluster 3 behaves very differently than the other two
clusters, and can be interpreted as a cluster where DA–RT spreads are highly volatile,
especially during several specific peak hours, including 7 a.m. and 2 p.m. to 5 p.m.
During these peak hours, themeans in cluster 3 are lower than−$400, while the lowest
mean value in cluster 1 and cluster 2 is −$37.59 during the corresponding hours. The
standard deviations in cluster 3 are also significantly larger than those in cluster 1
and cluster 2 for these hours. Table 5 reports the cluster probabilities of the post-CB
GMHMM. As shown in Table 5, cluster 3 is not historically observed in state 1 and
occurs with very low probability in state 2. This is consistent with the fact that DA–RT
spreads in cluster 3 exhibit occasional extreme price movements of magnitudes that
can only be observed during the summer, but rarely seen for the rest of the year.

Table 7 shows summary statistics for DA–RT Spreads of the states of the post-CB
GMHMM in dollars per megawatt hour. The means in state 1 are higher than those in
state 2, since more observations in state 1 are drawn from cluster 1 as shown in Table
5 and cluster 1 exhibits higher means. Similarly, the standard deviations in state 1 are
smaller than those in state 2. Therefore, we can interpret state 1 as a low volatility
state, and state 2 as a high volatility state. Similar implications can be seen from Fig.
3. In Fig. 3, the posterior probability of being in state 1 is low during the summer, and

12 A full covariance matrix is estimated in this study, but only diagonal elements are presented in Table 6
to convey insights.
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Fig. 4 Marginal distribution of Post-CB DA–RT spreads for 1 a.m

Fig. 5 Marginal distribution of post-CB DA–RT spreads for 1 p.m

high during the rest of the year. After the inference, the posterior probability of being
in state 1 is adjusted based on the empirical evidence that DA–RT spreads are most
volatile during the summer to correctly reflect the updated belief that the occurrence
of state 1 which exhibits low volatility is rather unlikely during this period. Finally, we
note that the negative skewness shown in Table 7 is consistent with summary statistics
in Table 1.

Figures 4 and 5 plot the marginal distribution of the post-CB DA–RT spreads
for 1 a.m. and 1 p.m., representing peak hours and off-peak hours respectively.
During off-peak hours, the marginal distributions of pre-CB DA–RT spreads are
almost identical in the two states. During peak hours, however, the marginal dis-
tribution of pre-CB DA–RT spreads in state 1 has more density concentrated
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Table 5 Cluster probabilities of
the post-CB GMHMM

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

State 1 89.65 10.35 0.00

State 2 56.84 42.10 1.05

around the mean and less in both tails, compared to that in state 2. The dif-
ference of the marginal distributions between the two states is supported by the
findings we report in Tables 2 and 3 that seasonal patterns are stronger for off-peak
hours.

All of these results demonstrate that many stylized facts of the time-varying
forward premium can be well captured and accommodated in the GMHMM frame-
work.

The same statistics for the pre-CB GMHMM are presented in Tables 15, 16, 17
and 18 in dollars per megawatt hour. Similar features are observed as Tables 4, 5,
6 and 7. In Figs. 15, 16 and 17, similar features are observed as Figs. 3, 4 and
5.

6.3 Pre-CB and post-CB performance

To test for market efficiency, we backtest the trading strategy on the last 120 days in the
pre-CB and post-CB period respectively, and all the rest of the data are used in train-
ing. We adopt several popular metrics for performance assessment. The annualized
expected return and the annualized standard deviation directly measure the reward
and risk of the trading strategy converted to an annual basis. The Sharpe ratio, also
known as the reward-to-variability ratio, is a risk-adjusted measure used to evaluate
the quality of the return. The ratio is calculated by using excess return and standard
deviation to determine reward per unit of risk.13 These standard measures of risk,
however, do not account for the risk exposure associated with skewness, kurtosis, and
serial correlation of the return distribution. In such cases, we include the maximum
drawdown, that measures the greatest loss from a historical peak in the cumulative
return, as an additional measure of the worst-case risk.

In the backtest, the predetermined upper bound γ for both the VaR and CVaR
constraints is set to 0.02. To investigate the robustness of the trading strategy, we vary
the choice of confidence levels η. As the Chebyshev bound (9) in (VAR1(γ, η)) is a
conservative approximation of the VaR constraint (6), we tend to use lower confidence
levels for the VaR constraint than for the CVaR constraint to ensure the risks of the two
portfolios obtained from (VAR1(γ, η)) and (CVAR1(γ, η)) comparable. Thereforewe
vary η from 0.90, 0.85 to 0.80 for the VaR constraint, and from 0.99, 0.98 to 0.95 for
the CVaR constraint. The costs τ are assumed to be $0.085 for 1 MWh of cleared
virtual position and the reference price C for 1 MWh of cleared virtual position and is

13 We assume the risk-free interest rate is 3% in the calculation of excess return.
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Table 6 Summary statistics for DA–RT spreads in the clusters of the post-CB GMHMM

Hour Mean SD

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

1 2.20 0.75 1.73 7.21 6.38 2.68

2 1.95 2.08 0.83 8.98 10.22 2.25

3 2.50 1.93 0.59 11.13 11.57 1.43

4 3.54 1.91 1.21 13.55 13.21 1.88

5 2.13 −0.84 0.22 11.57 9.28 1.38

6 1.18 −3.53 −1.30 10.28 21.27 1.59

7 1.87 0.33 −2.27 20.95 16.81 3.36

8 3.18 −5.89 −236.75 7.11 53.68 240.32

9 2.67 −9.28 −1.39 5.92 57.98 3.11

10 3.70 −18.71 0.07 6.95 80.59 4.32

11 4.70 −22.88 3.69 7.67 104.85 3.55

12 4.84 −12.16 −7.55 6.37 66.95 0.87

13 4.73 −11.70 −29.70 6.62 67.73 27.41

14 5.17 −3.67 −107.51 7.91 56.28 97.00

15 6.04 −9.11 −412.31 8.12 44.78 77.20

16 7.35 −9.84 −944.17 10.75 59.77 119.64

17 9.99 −36.38 −583.82 13.61 113.61 244.14

18 9.55 −37.59 −412.65 12.06 109.88 355.19

19 6.17 −29.78 19.05 22.38 84.75 40.92

20 7.92 −26.74 28.00 9.14 83.73 32.35

21 5.95 −10.86 22.44 8.52 47.05 23.38

22 5.35 −21.47 16.41 5.77 78.43 13.56

23 1.18 −3.09 1.20 14.77 22.62 3.48

24 3.91 −6.01 4.91 5.89 45.84 2.16

calculate by the 95th percentile value of the historical price differences between DA
and RT LMPs.14

Table 8 and Figs. 6, 7, 8 and 9 report the trading performance under a VaR constraint
in the pre-CB and post-CB period. To begin with, we investigate the behavior of the
trading strategy under different confidence levels η. In Table 8, both the annualized
standard deviation and the maximum drawdown are negatively related to the confi-
dence level, as a higher confidence level imposes a tighter bound for probability of tail
events and hence lower risks are undertaken in the portfolio. The annualized expected
return is positively related to the annualized standard deviation. This is what onemight
expect based on economic theory that high potential returns are associated with high
levels of uncertainty. In terms of risk-adjusted performance measures, the low risk

14 The upper bound of the estimated costs allocated to 1 MWh of cleared virtual position is used to ensure
the robustness of our results.
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Table 7 Summary statistics for DA–RT spreads in the states of the post-CB GMHMM

Hour Mean SD Skewness

State 1 State 2 State 1 State 2 State 1 State 2

1 2.05 1.59 7.16 6.89 0.00 0.05

2 1.98 1.96 9.15 9.47 0.01 0.01

3 2.49 2.18 11.25 11.24 0.01 −0.01

4 3.41 2.76 13.51 13.31 0.00 0.01

5 1.86 0.85 11.36 10.73 0.03 0.07

6 0.77 −0.82 11.93 15.90 −0.27 −0.27

7 1.74 1.17 20.54 19.22 0.02 0.03

8 2.17 −2.86 18.86 48.21 −1.06 −4.50

9 1.46 −2.41 19.75 38.74 −1.41 −0.49

10 1.61 −5.69 26.90 54.06 −1.74 −0.67

11 2.06 −6.80 34.95 69.87 −1.56 −0.64

12 3.13 −2.29 22.63 44.73 −1.57 −0.54

13 3.14 −2.76 23.28 45.07 −1.55 −0.58

14 4.38 0.43 19.55 39.98 −0.93 −0.88

15 4.36 −4.34 16.95 51.33 −1.92 −5.51

16 5.50 −9.14 22.20 102.52 −1.47 −7.92

17 5.05 −15.15 41.28 98.80 −2.57 −3.18

18 4.34 −14.22 40.55 91.68 −2.81 −3.02

19 2.33 −8.59 36.32 60.44 −1.53 −0.79

20 4.22 −6.54 30.29 57.39 −2.77 −0.98

21 4.18 −1.00 18.04 32.37 −1.91 −0.80

22 2.53 −5.76 26.68 52.36 −2.40 −0.87

23 0.74 −0.60 15.83 18.63 −0.09 −0.16

24 2.94 −0.25 15.84 30.34 −1.36 −0.53

trading strategy exhibits a high Sharpe ratio in all cases except for the out-of-sample
performance in the pre-CB period, as the Sharpe ratio penalizes the trading strategy
that generates high but volatile returns.

We further compare the performance in the pre-CB and post-CB periods. There
is little disparity between the in-sample and out-of-sample tests in their relative per-
formance before and after the implementation of CB. In particular, to compare the
post-CB metrics against the pre-CB metrics, we see the annualized expected returns
and the Sharpe ratios in both of the tests drop dramatically. It is plausible because
in the post-CB period virtual traders who engage in arbitrage trades tend to use the
trading strategy that previously proved to be profitable in the pre-CB period. As these
arbitrage trades have the effect of causing price convergence between the DA and RT
markets, the profitability is significantly eroded in the post-CB period, which serves
to be convincing evidence for the improvement of market efficiency brought about by
CB.
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Table 8 Performance under a VaR constraint

Strategy parameter Expected return (%) SD (%) Sharpe Maximum drawdown (%)

Pre-CB in-sample performance

γ = 0.02 η = 0.90 153.42 14.60 10.34 1.12

γ = 0.02 η = 0.85 187.50 19.54 9.48 1.53

γ = 0.02 η = 0.80 210.34 24.71 8.43 2.09

Pre-CB out-of-sample performance

γ = 0.02 η = 0.90 90.36 24.50 3.58 6.91

γ = 0.02 η = 0.85 118.70 29.42 3.95 8.96

γ = 0.02 η = 0.80 150.92 35.15 4.23 9.45

Post-CB in-sample performance

γ = 0.02 η = 0.90 78.03 11.10 6.79 2.23

γ = 0.02 η = 0.85 86.66 13.08 6.42 2.82

γ = 0.02 η = 0.80 87.61 15.21 5.59 3.72

Post-CB out-of-sample performance

γ = 0.02 η = 0.90 33.47 13.03 2.35 2.73

γ = 0.02 η = 0.85 35.11 14.35 2.25 3.19

γ = 0.02 η = 0.80 38.03 16.55 2.13 5.08
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Fig. 6 Pre-CB in-sample performance under a VaR constraint

We now proceed to explore whether the current CAISO DA and RT markets are
efficient, and if not, the extent to which the implementation of CB enhances market
efficiency in the post-CB period. For this purpose, we primarily focus on the out-of-
sample test. Examining the out-of-sample performance metrics in Table 8 reveals that
the trading strategy generates profits in the presence of transaction costs in the post-
CB period. The out-of-sample Sharpe ratios under different parameters range from
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Fig. 7 Pre-CB out-of-sample performance under a VaR constraint
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Fig. 8 Post-CB in-sample performance under a VaR constraint

2.13 to 2.35. For medium frequency strategies, the Sharpe ratio of the S&P 500 is
commonly used as a benchmark, which Modigliani and Modigliani (1997) estimate
to be about 0.30 based on quarterly returns ten years ending the second quarter of
1996.15 All the out-of-sample Sharpe ratios exceed this benchmark by substantial
margins in the post-CB period. In addition, the maximum drawdowns are small, if
not negligible, in comparison with the corresponding annualized expected returns,
which indicates that daily losses tend to be small and the occurrence of consecutive
losses is uncommon. Taken together, these results provide compelling evidence that

15 Generally, low, medium, and high trading frequencies are defined as position holding periods of months,
days, and hours, respectively.
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Fig. 9 Post-CB out-of-sample performance under a VaR constraint

Table 9 Performance under a CVaR constraint

Strategy parameter Expected return (%) SD (%) Sharpe Maximum drawdown (%)

Pre-CB in-sample performance

γ = 0.02 η = 0.99 267.77 37.04 7.18 1.19

γ = 0.02 η = 0.98 296.75 44.60 6.61 1.14

γ = 0.02 η = 0.95 341.83 59.30 5.74 1.42

Pre-CB out-of-sample performance

γ = 0.02 η = 0.99 245.86 47.78 5.10 6.59

γ = 0.02 η = 0.98 266.79 55.65 4.76 7.23

γ = 0.02 η = 0.95 284.81 66.01 4.29 7.80

Post-CB in-sample performance

γ = 0.02 η = 0.99 47.35 11.54 3.86 2.75

γ = 0.02 η = 0.98 52.93 13.29 3.77 3.16

γ = 0.02 η = 0.95 60.82 16.58 3.50 4.60

Post-CB out-of-sample performance

γ = 0.02 η = 0.99 22.58 16.56 1.19 4.02

γ = 0.02 η = 0.98 25.55 17.87 1.27 5.29

γ = 0.02 η = 0.95 22.18 22.83 0.84 9.01

profitable trading opportunities still exist and consistent returns can be generated by
exploiting these trading opportunities. Hence, the introduction of CB has not fully
restored market efficiency in the current CAISO DA and RT markets in the sense of
Jensen (1978).

Table 9 and Figs. 10, 11, 12 and 13 report the trading performance under a CVaR
constraint in the pre-CB and post-CB period. Similar features are observed as Table 8
and Figs. 6, 7, 8 and 9.
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Fig. 10 Pre-CB in-sample performance under a CVaR constraint
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Fig. 11 Pre-CB out-of-sample performance under a CVaR constraint

6.4 Test for the Bessembinder and Lemmon (2002) model

Bessembinder and Lemmon (2002) model the forward market as a closed system,
where the only participants are producers and consumers. In their general equilibrium
model, the forward premium reflects the net hedging pressure of producers and con-
sumers, and the sign of the forward premium is indeterminate. The forward premium
can be expressed as,

PDA
t − E[PRT

t ] = θ1Var [PRT
t ] − θ2Skew[PRT

t ], (33)
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Fig. 12 Post-CB in-sample performance under a CVaR constraint
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Fig. 13 Post-CB out-of-sample performance under a CVaR constraint

where θ1 ≤ 0, and θ2 ≤ 0, implying that the forward premium is negatively related
to the variance of RT LMPs, and positively related to the skewness of RT LMPs. To
express forward premia in terms of DA–RT Spreads Rt = PDA

t −PRT
t , we can rewrite

(33) as,

E[Rt ] = θ1Var [Rt ] + θ2Skew[Rt ]. (34)

To further test the implications of Bessembinder and Lemmon (2002), we regress
the means for each of the 24 hours in the 2 states of the post-CB GMHMM on the
correspondingvariance and skewnessmeasures inTable 7.The regression specification
can be written in the form of (35),
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Table 10 Post-CB regression analysis

θ0 θ1 θ2 tθ0 tθ1 tθ2 R2 DF

1.8041 −0.0021 −1.0617 4.6235 −13.4369 −4.2229 0.8246 45

Table 11 Pre-CB regression analysis

θ0 θ1 θ2 tθ0 tθ1 tθ2 R2 DF

0.9050 −0.0032 −1.1511 1.2250 −16.1359 −2.0904 0.8732 45

StateMeani = θ0 + θ1StateVari + θ2StateSkewi + εi . (35)

As shown inTable 10, θ1 is negativewith a t-statistic of−13.4369, and θ2 is negative
with a t-statistic of −4.2229. Both of θ1 and θ2 are significant at 1 % level and the
R-squared value for the regression is 0.8246, which strongly supports the empirical
implications of the Bessembinder and Lemmon (2002) model.

These test results provide evidence against the efficiency of the current CAISO DA
and RT markets. The theoretical framework of Bessembinder and Lemmon (2002)
essentially describes the characteristics of the electricity forward premium in an inef-
ficient market, where the risks are borne within the industry by a few producers and
consumers due to a lack of risk-sharing mechanisms. As financial mechanisms are
implemented to allow risk neutral outside traders to enter the market and share the
risks, the risk premium should decline and these characteristics are expected to dis-
appear for the market to be fully efficient. Nevertheless, in the post-CB period, we
demonstrate that the electricity forward premium still displays characteristics similar
to what Bessembinder and Lemmon (2002) describe for an inefficient market in the
absence of risk neutral outside traders, which to some extent implies market ineffi-
ciency.

The same statistics for the pre-CB GMHMM are presented in Table 11. The mag-
nitudes of the coefficients θ1 and θ2 are smaller in the post-CB period, which implies
that characteristics caused by a lack of risk-sharing mechanisms are diminished by the
introduction of CB. This is consistent with the evidence that supports the improvement
of market efficiency.

Combining the evidence against the efficiency of the current CAISO DA and RT
markets with the evidence for the improvement of market efficiency brought about by
CB, we are inclined to conclude that the current CAISO DA and RTmarkets lie some-
where between the two extremes, the inefficient markets as they were and the fully
efficient markets that we pursue.16 During this transition phase of CB, trading expe-
rience and market knowledge are accumulated among market participants within the
industry, which serves as a necessary condition for the development of fully efficient
DA and RT markets.

16 This is consistent with Jha and Wolak (2013) that after the implementation of CB the implied trading
costs decrease but the difference between the implied trading costs before and after the implementation of
CB is relatively small at the NP15 trading hub for all three hypothesis tests.
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7 Market power, risk averse speculation and implications

The efficient market hypothesis, which implicitly assumes that economic agents are
risk neutral and have no market power, is called the simple efficiency hypothesis in
Hansen and Hodrick (1980). In the forward market, the simple efficiency hypothesis
implies that forward prices are unbiased predictors of expected spot prices. These
risk neutral and competitive market conditions are also implicitly assumed in the
statement by Jensen (1978) that no trading strategy can consistently profit from an
efficient market.

However, if the market is not competitive, economic agents can exercise market
power by withholding their bidding quantities below the competitive levels to maxi-
mize their profits. Thus, as a result, price discrepancies are not fully arbitraged away
and the zero-profit competitive equilibrium as described by Jensen (1978) is no longer
attained. We argue this is an unlikely case in the current CAISO DA and RT markets.
There are currently over 70 market participants registered with the CAISO to partici-
pate in CB, including electricity producers and consumers, their trading subsidiaries,
investment banks, and energy trading firms.17 The latter two are sophisticated virtual
traders, who do not own physical resources and engage in arbitrage activities for pure
financial incentives. They are generally large corporations, and have sufficient access
to capital to perform intended trading strategies. Therefore, in the presence of low
transaction costs and full nodal granularity, it is reasonable to assume a high degree of
competition among these well-informed and well-financed virtual traders that reduces
the possibility of market manipulation and prevents the possession of excessivemarket
power.

If, on the other hand, we extend the assumption to allow for risk averse economic
agents, forward prices can systematically deviate from expected spot prices, which
compromises the statement of Jensen (1978). Some intuition is provided by Keynes
(1923). He explains that, in a commodity market where only hedgers and speculators
can take positions, the forward premium is determined by the net hedging demand.18

As consumers traditionally show no interest in participation possibly due to infor-
mational setup costs, hedgers in this forward market are typically producers who
are endowed with initial long positions in goods.19 When facing price uncertainty,
hedgers are net short to offset the exposures to their initial long positions, and there-
fore speculators have to be net long. Speculators are only willing to bear the risks
if expected returns to speculation are positive, that is, forward prices are downward
biased relative to expected spot prices. In contrast, Rolfo (1980), Anderson and Dan-
thine (1983), and Hirshleifer (1990) argue that forward prices can be upward-biased
predictors of expected spot prices, when hedgers are subject to both price and quantity

17 CAISOList of Scheduling Coordinators (SCs), Congestion Revenue Rights (CRR)Holders, CBEntities
as updated on July 8th, 2014. http://www.caiso.com/Documents/ISOListofSCsCRRsCBEs_July_2014pdf.
Accessed July 23rd, 2014.
18 To follow the convention in the finance literature, we use the term “speculators” referring to informed
traders who explore price deviations and stabilize prices. The term “speculators” and “traders” are inter-
changeable in our paper.
19 Informational setup costs is the implicit costs of collecting and analyzing market information.
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uncertainties. If demand is elastic, quantity uncertainty has a more pronounced effect
than price uncertainty from the perspective of hedgers, since small price fluctuations
lead to large quantity fluctuations. Hedgers are then net long to reduce their quan-
tity risks. Speculators are only willing to be net short, if forward prices constantly
lie above expected spot prices. Hirshleifer (1990) shows that, apart from quantity
uncertainty, the participation of consumers can also result in upward-biased forward
prices, because the hedging incentives of consumers are opposite to those of pro-
ducers. This way, we can think of both the upward and downward deviations of
forward prices from expected spot prices as the costs of hedging, or the returns to
speculation.

In this sense, rationally, risk averse virtual traders only employ trading strategies that
are capable of generating returns high enough to compensate for the risks undertaken,
to arbitrage cautiously between the DA and RT markets. For virtual traders with
relatively low risk-tolerance, they might require a higher risk-adjusted return than that
of the trading strategy we develop to enter the forward market. If that is the case, the
DA and RTmarkets can still be efficient in the presence of profitable trading strategies,
and the profitability of these trading strategies only reflects the competitive returns to
induce the participation of those risk averse virtual traders.

We tend to believe this is not the case for three reasons. Firstly, virtual traders in
the current CAISO DA and RT markets are investment banks and trading firms, who
are by nature less risk averse, if not risk neutral.20 Secondly, the Sharpe ratios of our
trading strategy in Table 8 are significantly higher than that of the S&P 500, we can
reasonably assume that the trading strategy indeed provides a decent risk-adjusted
return. Thirdly, when there exists sufficient competition among virtual traders, the
price deviation between the DA and RT markets is expected to be kept small, even if
virtual traders are risk averse. The small DA–RT spreads should certainly lead to the
the demise of the profitability in the post-CB period, which is contrary to what we
observe in Table 8.

Although our profitable trading strategy indicates market inefficiency, it is not in
itself sufficient evidence for us to fully reject the efficiency of the current CAISO DA
and RT markets, with these unjustified concerns on market power and risk aversion in
mind. A thorough investigation of these alternative hypotheses requires the estimation
of risk aversion parameters of speculators and the level of competition,which is beyond
the scope of this study, and is left for future research.

8 Conclusion

In this study, we investigate whether the current CAISO DA and RT markets are
efficient, and whether markets efficiency is improved by CB, based on the zero-profit
condition of Jensen (1978). In the backtest, our results show that our trading strategy
continues to be profitable in the post-CB period, but the profitability is at a lower

20 Risk neutral assumption is often used to describe the behavior of investment banks, as in Miller (1977),
De Meza and Webb (1987), and Baron (1982).
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magnitude, compared to the profitability in the pre-CB period. Clearly, the deteriorated
profitability in the post-CB period provides compelling evidence for the improved
market efficiency, which demonstrates the benefit of CB. The profitability in the post-
CB period, however, conveys empirical implications that can be interpreted differently,
depending on the assumed levels of competition and risk aversion of virtual traders.
If virtual traders are risk-neutral and competition among virtual traders is intense, the
profitability in the post-CB period is convincing evidence against the fully efficient
DA and RT markets. On the other hand, the profitability in the post-CB period might
only rationally reflect the economic profit to incentivize the participation of risk averse
virtual traders, which has nothing to do with market inefficiency and the mispricing
of financial instruments.

Last but not least, market efficiency does not come for free. A market becomes
or remains efficient as a result of the persistent efforts of market participants, who
conduct research, identify inefficiencies, and trade until these inefficiencies disap-
pear. In this sense, we encourage market participants to search for profitable trading
strategies, make profits, and ultimately improve the efficiency of electricity forward
markets.

Appendix 1

With φ(u) = (u+1)2+, we can show φ( u
α
) ≥ I (u ≥ 0) for any α > 0. By substituting

u = −RT
t yt − γ , we have φ( 1

α
(−RT

t yt − γ )) ≥ I (−RT
t yt − γ ≥ 0). Taking

expectation on both sides yields,

E

[
φ

(
1

α
(−RT

t yt − γ )

)]
≥ P(−RT

t yt − γ ≥ 0). (36)

By multiplying α on both sides and replacing the positive part function, we can
further show a conservative approximation of P(−RT

t yt − γ ≥ 0) ≤ 1 − η in the
following form,

αP(−RT
t yt − γ ≥ 0) ≤ αE

[
φ

(
1

α
(−RT

t yt − γ )

)]
(37)

= αE

[(
1

α
(−RT

t yt − γ ) + 1

)2

+

]

(38)

≤ αE

[(
1

α
(−RT

t yt − γ ) + 1

)2
]

(39)

≤ α(1 − η). (40)
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Rearranging αE[( 1
α
(−RT

t yt − γ ) + 1)2] ≤ α(1 − η) yields,

αE

[(
1

α
(−RT

t yt − γ ) + 1

)2
]

− α(1 − η) (41)

= 1

α
E

[(
RT
t yt + γ

)2] − 2E
[(

RT
t yt + γ

)]
+ ηα ≤ 0. (42)

Noticing that (42) is a quadratic function, we can minimize the function by setting

α =
(
1
η
E

[(
RT
t yt + γ

)2]) 1
2
.21 By substitutingα =

(
1
η
E

[
(RT

t yt + γ )2
]) 1

2
into (42),

we derived the Chebyshev bound,

− E
[(

RT
t yt + γ

)]
+

(
ηE

[(
RT
t yt + γ

)2]) 1
2 ≤ 0. (43)

Appendix 2

See Tables 12, 13, 14, 15, 16, 17 and 18.

Table 12 Summary statistics for Pre-CB DA–RT Spreads

Hour Mean SD Skewness T-Statistic

1 −3.14 31.10 −9.14 −1.93

2 −5.37 41.71 −10.49 −2.46*

3 −3.13 44.29 −11.55 −1.35

4 2.77 14.42 0.54 3.64*

5 5.29 13.84 0.63 7.30*

6 5.35 16.31 −4.50 6.25*

7 3.46 22.97 −7.70 2.87*

8 −0.56 29.56 −8.95 −0.36

9 1.38 31.63 −13.38 0.83

10 1.51 21.85 −6.31 1.32

11 −2.94 35.41 −6.70 −1.58

12 −2.62 34.98 −7.85 −1.43

13 −0.05 20.95 −6.70 −0.04

14 1.08 15.95 −3.70 1.30

21 α is nonnegative, since α =
(
1
η E

[(
RT
t yt + γ

)2]) 1
2 ≥ 0.
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Table 12 continued

Hour Mean SD Skewness T-Statistic

15 −0.14 29.48 −7.62 −0.09

16 −2.71 43.38 −6.02 −1.19

17 −0.88 43.38 −6.09 −0.39

18 −5.34 55.43 −5.43 −1.84

19 −8.70 65.40 −6.14 −2.54*

20 −7.77 64.63 −6.94 −2.30*

21 −8.89 62.01 −6.30 −2.74*

22 −5.48 38.77 −7.36 −2.70*

23 −11.09 43.37 −4.77 −4.88*

24 −8.55 53.93 −7.51 −3.02*

Overall −2.36 39.84 −8.61 −5.54*

Table 13 Seasonal means of Pre-CB DA–RT spreads

Hour November–January February–April May–July August–October

1 −3.27 1.37 −12.31 1.77

2 −1.99 0.37 −20.20 0.51

3 2.19 3.58 −20.22 1.81

4 4.84 5.18 −1.38 2.28

5 2.88 6.37 9.33 2.65

6 1.25 6.71 9.37 4.15

7 0.83 2.87 8.14 2.05

8 −4.63 2.68 2.20 −2.48

9 −4.63 2.14 6.32 1.63

10 −1.12 0.90 3.54 2.66

11 −14.39 −1.23 4.39 −0.61

12 −1.72 2.33 −6.93 −4.05

13 −2.87 1.36 3.76 −2.44

14 0.82 −0.04 2.56 0.95

15 0.51 2.55 −0.74 −2.80

16 −1.94 3.02 −6.33 −5.46

17 5.25 3.64 −7.16 −5.09

18 −28.71 6.99 2.02 −1.66

19 −15.67 3.69 −1.48 −21.16

20 −0.86 −5.84 −2.40 −21.85

21 −12.84 −5.61 −12.11 −4.99

22 −2.92 −3.24 −13.38 −2.31

23 −9.12 −3.77 −24.61 −6.67

24 −2.32 1.19 −34.06 1.34

Overall −3.77 1.55 −4.68 −2.49
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Table 14 Seasonal standard deviations of Pre-CB DA–RT spreads

Hour November–January February–April May–July August–October

1 45.31 8.07 40.01 6.61

2 35.05 11.79 72.52 6.94

3 11.87 11.40 84.74 10.40

4 14.36 12.57 17.34 12.27

5 9.84 11.74 17.55 14.09

6 22.43 9.51 18.64 9.83

7 34.01 18.34 19.48 14.97

8 46.88 8.38 19.15 29.13

9 56.20 7.45 25.73 10.09

10 24.32 20.67 29.22 6.35

11 59.93 26.83 20.50 12.09

12 16.73 7.61 55.02 38.57

13 23.81 8.15 11.20 31.21

14 16.58 13.40 16.35 17.29

15 16.55 5.84 33.43 45.15

16 44.13 5.89 53.33 51.66

17 23.10 6.61 58.73 58.23

18 98.47 7.06 28.41 32.86

19 91.13 16.17 47.18 77.46

20 29.06 41.79 56.75 103.27

21 83.50 40.51 61.86 54.78

22 17.95 34.55 57.73 33.28

23 44.05 20.86 64.04 28.58

24 20.53 4.81 101.17 6.56

Overall 44.80 18.59 49.51 38.84

Table 15 Transition
probabilities of the pre-CB
GMHMM (one-step)

State 1 (%) State 2 (%)

State 1 96.67 3.33

State 2 7.77 92.23

Table 16 Cluster probabilities
of the pre-CB GMHMM

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

State 1 81.46 18.51 0.00

State 2 39.13 56.06 4.81

123

Author's personal copy



280 R. Li et al.

Table 17 Summary statistics for DA–RT spreads in the clusters of the pre-CB GMHMM

Hour Mean SD

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

1 1.11 −13.02 −9.07 9.55 53.43 47.24

2 0.23 −18.32 −15.27 10.14 73.78 28.48

3 2.30 −12.98 −68.48 11.39 70.58 146.98

4 4.18 −0.77 3.01 14.02 14.62 7.45

5 5.94 3.51 9.44 13.39 14.44 16.62

6 6.93 1.99 −5.36 11.29 23.78 18.52

7 5.60 1.28 −60.65 11.74 23.68 121.92

8 2.61 −4.98 −68.09 10.75 32.76 171.85

9 4.15 −5.24 0.53 9.19 56.28 9.65

10 4.67 −4.82 −24.90 9.11 34.83 52.73

11 3.43 −18.47 2.75 6.75 62.03 13.78

12 2.97 −16.06 −1.86 7.00 61.85 6.79

13 3.02 −7.51 2.21 6.92 36.17 10.50

14 3.49 −3.93 −15.12 8.81 23.56 41.48

15 4.63 −11.56 −0.22 9.17 50.94 6.58

16 6.10 −23.95 −0.07 9.13 74.98 6.06

17 7.46 −17.85 −64.59 9.67 70.60 113.34

18 6.22 −29.70 −76.13 8.41 91.09 140.81

19 4.06 −25.15 −308.54 16.08 75.66 270.04

20 4.99 −23.49 −322.35 11.71 77.02 242.70

21 3.31 −21.66 −358.18 10.42 66.47 218.42

22 1.79 −17.55 −119.07 9.20 59.30 109.04

23 −3.04 −26.01 −103.40 18.13 67.35 86.84

24 1.17 −32.46 6.50 9.41 94.54 6.50

Table 18 Summary statistics for DA–RT spreads in the states of the pre-CB GMHMM

Hour Mean SD Skewness

State 1 State 2 State 1 State 2 State 1 State 2

1 −1.57 −7.27 25.08 42.19 −1.15 −0.33

2 −3.14 −10.84 33.48 56.52 −1.10 −0.34

3 −0.59 −9.50 32.53 64.23 −1.04 −0.74

4 3.25 1.38 14.22 14.36 −0.02 −0.03

5 5.53 4.75 13.67 14.28 −0.01 −0.01

6 6.05 3.50 14.57 19.86 −0.30 −0.20

7 4.78 0.22 15.20 35.44 −1.38 −3.01

8 1.11 −4.87 18.14 47.41 −2.29 −2.53

9 2.58 −1.20 25.50 42.95 −0.64 −0.25

123

Author's personal copy



Efficiency impact of convergence bidding on the california... 281

Table 18 continued

Hour Mean SD Skewness

State 1 State 2 State 1 State 2 State 1 State 2

10 2.93 −1.92 17.35 29.74 −1.00 −0.55

11 −0.56 −8.77 28.78 48.31 −1.69 −0.51

12 −0.35 −8.16 28.07 47.94 −1.39 −0.47

13 1.03 −3.03 17.20 27.95 −1.17 −0.43

14 2.11 −1.55 13.23 21.06 −0.75 −0.51

15 1.75 −4.75 23.90 39.35 −1.29 −0.47

16 0.62 −11.28 35.33 58.35 −1.78 −0.62

17 2.95 −10.54 33.08 61.52 −1.50 −0.72

18 −0.44 −18.09 42.12 78.27 −1.89 −0.68

19 −1.60 −27.46 38.84 105.23 −2.87 −3.49

20 −0.52 −27.28 36.69 105.30 −2.00 −3.34

21 −1.42 −28.35 32.53 103.04 −2.78 −3.70

22 −1.70 −15.18 27.88 57.60 −1.42 −1.40

23 −7.19 −21.01 34.10 59.88 −1.02 −0.72

24 −4.76 −17.68 42.34 73.36 −1.68 −0.57

Appendix 3

See Figs. 14, 15, 16 and 17.
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Fig. 14 Pre-CB within-cluster sum of squared error
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Fig. 16 Marginal distribution of Pre-CB DA–RT spreads for 1 a.m
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Fig. 17 Marginal distribution of Pre-CB DA–RT spreads for 1 p.m
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