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Abstract—We present a stochastic unit commitment model for
assessing the impacts of the large-scale integration of renewable
energy sources and deferrable demand in power systems in terms
of reserve requirements. We analyze three demand response
paradigms for assessing the benefits of demand flexibility: the
centralized co-optimization of generation and demand by the
system operator, demand bids and the coupling of renewable
resources with deferrable loads. We motivate coupling as an
alternative for overcoming the drawbacks of the two alter-
native demand response options and we present a dynamic
programming algorithm for coordinating deferrable demand
with renewable supply. We present simulation results for a model
of the Western Electricity Coordinating Council.

Index Terms—Wind power generation, load management,
power generation scheduling.

I. INTRODUCTION

The key disadvantage of renewable resources relative to
conventional dispatchable generation is their high variability,
their unpredictable fluctuation and the fact that their output can
only be controlled to a limited extent. Demand response can
strongly benefit the large-scale integration of these resources.
In order to accurately assess the impacts of renewable energy
integration and demand response integration on power system
operations it is necessary to represent the balancing operations
of the remaining grid by using a unit commitment model.

The purpose of this paper is to incorporate a fairly de-
tailed representation of deferrable demand resources in a
unit commitment and economic dispatch model, in order to
assess the benefits of demand response in reducing reserve
requirements and operating costs in scenarios of large-scale
renewable energy integration. As we discuss in the literature
review below, existing work in this area either does not model
the deferrable nature of various demand response resources
(e.g. electric vehicle charging, agricultural pumping or certain
residential appliances), or does not account for the uncertainty
that is introduced by the large-scale integration of renewable
resources. Both of these features need to be accounted for
simultaneously in a unit commitment and economic dispatch
model in order to accurately assess the impact of demand
response integration on reserve requirements and operating
costs in cases of large-scale renewable energy integration.

One additional contribution of this paper is to explore the
direct coupling of deferrable consumers with renewable re-
sources into a virtual resource through a contractual agreement
based on a strike price that limits the impact of the coupled
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system on the rest of the network. The coupling contract
that we present attempts to overcome various institutional
or technological barriers associated with alternative demand
response paradigms.

A. Literature Review

A major economic barrier in the large-scale integration of
renewable resources is the high investment cost of backup
reserves that can guarantee the reliable operation of the system.
Stochastic unit commitment models can be used for quantify-
ing reserve requirements as well as the impacts of renewable
integration on operating costs. For this reason, numerous
renewable integration studies based on unit commitment have
been performed recently by Ruiz et al. [[1]], Sioshansi and Short
[2], Wang et al. [3], Contantinescu et al. [4], Tuohy et al. [3],
Morales et al. [6]], Bouffard et al., Papavasiliou et al. [7] and
Papavasiliou and Oren [8]]. However, these publications focus
exclusively on the impact of renewable supply uncertainty on
power system operations and do not account for the potential
benefits of demand response integration.

The power system economics literature often represents
demand response through demand functions. Sioshansi and
Short [2] use this approach in the context of a unit commit-
ment model and Borenstein and Holland [9]] and Joskow and
Tirole [10], [11] also use this approach for analyzing retail
pricing. However, many flexible consumption tasks are best
characterized as deferrable, in the sense that consumers need
a certain amount of energy within a certain time window. As
such, deferrable demand behaves much like a hydro or storage
resource from the view point of the system operator. Electric
vehicle charging, agricultural pumping, pre-cooling, and resi-
dential consumption such as laundry fit this characterization.

In a recent publication, Sioshansi [12] considers a unit
commitment model where electric vehicles are centrally co-
optimized and dispatched by the system operator along with
controllable generation resources. This model extends the state
of the art by explicitly representing the deferrable nature of
electric vehicle energy demand. However, the model is deter-
ministic and does not account for the uncertainty associated
with renewable energy supply.

Both demand response paradigms discussed previously are
currently limited by institutional barriers. The real-time ben-
efits of demand-side bidding require real-time pricing at the
retail level. This possibility was introduced by Schweppe et al.
[13]] and is discussed by Borenstein et al. [14]. However, there
is strong political opposition to this approach as it exposes re-
tail consumers to the volatility of wholesale electricity prices.



In addition, real-time prices often fail to convey the economic
value of demand response due to the non-convex costs of
system operations. This effect has been reported by Sioshansi
[2], who notes that the failure of real-time prices to capture
non-convexities induces a dispatch of deferrable resources that
results in excessive startup and minimum load costs. The
central co-optimization of demand-side resources, renewable
supply and generator dispatch discussed by Sioshansi [12]
represents the most efficient approach for exploiting demand-
side flexibility. However, this paradigm cannot be implemented
in practice as the system operator dispatches the system at
a bulk scale and cannot control individual retail loads. In
addition, the optimization problem is too complex to solve.

An alternative demand response paradigm that is not dis-
cussed in this paper has been set forth by Hirst and Kirby
[15] and Kirby [16], whereby flexible loads deliver services
to the ancillary services market. According to this paradigm,
an aggregator bids on behalf of load aggregations for pro-
viding ancillary services to the system operator. The aggre-
gator coordinates aggregate consumption by a price-based or
direct control method. The technical feasibility of demand-
side aggregation for the provision of spinning reserve has
been studied in practice by Eto [17]. As ancillary services
requirements are expected to increase due to renewable energy
integration, this solution could prove lucrative for users who
would be willing to respond to the instantaneous needs of
power system operators. However, there are concerns about
defining market products that correspond to the types of
services that loads can actually offer, which raises the need
for reform in existing electricity markets.

A stream of literature with a focus on strategic demand-side
bidding in unit commitment models has been developed by
Lamont and Rajan [18] and Zhang et al. [19]. Such models
typically involve a utility owning both generation assets as
well as own demand, where the utility strives to optimize
market bids while accounting for uncertainty in competitors’
bids as well as the impact of its own bids on market prices.
A literature review is provided by David and Wen [20]. This
literature focuses on strategic interactions among bidders and
is therefore not explored further in this paper.

B. Paper Contributions

The methodological contribution of this paper is to present
a stochastic unit commitment model that can be used in order
to quantify the benefits of deferrable demand in mitigating the
increased operating costs and day-ahead reserve requirements
resulting from the random fluctuation of renewable energy
supply. The use of stochastic planning models for simulating
long-term market equilibrium in order to quantify generation
investment in the face of long-term uncertainty was recently
introduced by Ehrenmann and Smeers [21]]. Analogously, the
stochastic unit commitment model presented in this paper is
used in order to simulate the two-stage operation of day-
ahead and real-time electricity markets. The use of a stochastic
unit commitment model for the purpose of simulating the
operations of a day-ahead market introduces computational
challenges that can be addressed by using an appropriate

scenario selection technique to discretize the uncertainty space
of the problem [22], [23], [24], [S] and exploiting the de-
composable structure of the resulting stochastic optimization
problem [25]], [26], [27], [28], [3], [29]. These computational
challenges have been addressed in previous work by the
authors [[7], [8]] and will not be the focus of this paper.

The modeling contribution of this paper is to simultane-
ously incorporate deferrable demand response resources and
stochastic renewable supply resources in the stochastic unit
commitment and economic dispatch models. The demand
bidding models cited earlier [10], [[L1], [14]], [2]] do not account
for inter-temporal elasticities, thereby making demand appear
independent across time periods. In the present paper we high-
light the inadequacy of this approach in representing deferrable
demand. On the other hand, the work of Sioshansi [12] does
not account for the uncertainty introduced by renewable energy
supply and inflexible demand fluctuations. In this paper we
extend existing models by simultaneously modeling the inter-
temporal dependency of deferrable demand and renewable
supply uncertainty.

The third and final contribution of this paper is to present a
contractual alternative for coupling the operations of renewable
resources with deferrable demand that attempts to overcome
the implementation barriers associated with centralized load
dispatch and real-time pricing of retail loads, and compare the
relative performance of each demand response paradigm in
terms of system operating costs. The motivation of directly
coupling renewable generation with deferrable demand is to
create a net resource or load that appears ‘behind the meter’
from the point of view of the system operator, thus limiting
the risk that the system operator needs to offset by procuring
reserves.

The California ISO provides a representative example of the
institutional and regulatory difficulties that render coupling a
pragmatic approach to the large-scale integration of demand
response. The Board of Governors of the California ISO
recently appraised the current status of integrating distributed
resources, including demand response, in the California ISO
energy market [30]. The presentation and executive summary
justify, in detail, why the market-based integration of demand
response is far from foreseeable, which justifies the coupling
approach that the authors present in this paper for overcoming
exactly these institutional difficulties. The most that the Cali-
fornia ISO can expect currently from distributed resources are
rough estimates that can be incorporated into load forecasts
but not direct accounting of demand response in the dispatch
or unit commitment of the system [30].

The remaining paper is organized as follows. In Section
we provide an overview of the components of our model. In
Section [[T]| we describe in detail the demand flexibility models
that we consider in our analysis. Results from a test case of
the Western Electricity Coordinating Council are presented in
Section In Section [V] we discuss the conclusions of our
work.

II. MODEL OVERVIEW

In Fig. [I] we present a diagram of a stochastic unit com-
mitment model that accounts both for the fluctuations of
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Fig. 1. Overview of the model.

renewable supply as well as the benefits of demand response
in absorbing these fluctuations. Uncertainty in the model is
driven by renewable supply and demand. Demand resources in
the system are categorized as inflexible (firm) consumers with
stochastic consumption patterns and deferrable consumers that
require a fixed amount of energy within the day and adapt
their instantaneous consumption patterns to the prevailing
system conditions. The model of Fig. [I| serves two purposes.
The decision support module in the upper portion of the
figure simulates day-ahead market operations and is used for
determining day-ahead reserve requirements when deferrable
demand contributes to absorbing the variability of renewable
energy supply. The evaluation module in the lower portion of
the figure uses the reserves committed by the day-ahead model
in order to compare the real-time operating costs of the system
under the three demand response paradigms that are discussed
in the introduction of the paper. In what follows we describe
each component of the model in further detail.

A. Statistical Models

The stochastic unit commitment model presented in Section
which is used for determining the optimal amount of
reserves in the system accounts for firm demand and renewable
supply uncertainty. We use a second order autoregressive
model for modeling demand and load. We assume that firm
demand and renewable production are independent in the
stochastic unit commitment model.

Our analysis in this paper focuses on wind power resources.
Due to the nonlinear relation of wind speed to wind power,
we develop a stochastic model of wind speed and use an
appropriately calibrated static power curve to determine the
corresponding wind power production. We employ a data
set published by the National Renewable Energy Resources
Laboratory (NREL) which provides hourly time series of wind

speed at various geographic locations over a year. In order
to calibrate our wind speed model to the available data, we
first remove seasonal and diurnal patterns, and subsequently
transform the data set in order to obtain a strictly stationary
Gaussian data set. The autoregressive parameters of the strictly
stationary data set are estimated using the Yule-Walker equa-
tions. Our methodology follows Brown et al. [31], Torres et
al. [32] and Callaway [33]. The calibration and simulation
procedure and the fit of the model to the available data set
is presented in Papavasiliou and Oren [34]]. The calibration
of firm demand follows as a special case, since the strictly
stationary data set that is obtained after removing seasonal
and diurnal patterns is already approximately Gaussian. The
fit of the stochastic demand model to the data is shown in Fig.
2

In the present analysis we use a single-area wind model and
ignore transmission constraints in order to focus on the impact
of demand response. The effect of transmission constraints in a
system with multi-area renewable supply and demand response
will be addressed in future work. The problem of balancing
the schedules of coupled resources with the rest of the system
while respecting transmission constraints would be addressed
by the system operator and would be reflected in locational
marginal prices from the point of view of aggregators. In the
framework of a nodal market any transaction is exposed to
congestion charges that the aggregator can hedge by buying
financial transmission rights (FTRs) [35].

B. Stochastic Unit Commitment

In order to determine the day-ahead reserves that are com-
mitted by the system operator in order to accommodate the
simultaneous integration of renewable supply and deferrable
demand, we formulate a unit commitment model which as-
sumes that the system operator co-optimizes the dispatch
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Fig. 2. Probability distribution function of inflexible demand.

of flexible loads and generation resources. The uncertainty
stemming from renewable supply and load fluctuations is
represented in terms of a discrete set of scenarios S. The
stochastic unit commitment model is formulated as a two-stage
decision model where the first stage represents day-ahead unit
commitment and the second stage represents real-time eco-
nomic dispatch in the hour-ahead market, in hourly intervals,
subsequent to the realization of uncertainty. As we illustrate in
Fig.[I] we use this model to determine the day-ahead schedule
of slow reserves assuming that the system operator can co-
optimize the dispatch of generators and deferrable loads.

(SUC) :
min Z Z Z To(Kgugst + Sgvgst + Copgst) (1)
geG seSteT
S.t.
> Pgst = Dut+ew,s€S,tET 2)
geaG
> ew=RseS 3)
teT
0<es <C,s€SteT 4)
Ugst = Wgyt, Vgst = Zgt, g € Gs,s S S,tET (5)
(p,e,u,v,w,z) € D. (6)

The set of generators G in the system is partitioned into
a set of slow generators G5 for which commitment decisions
are fixed in the day-ahead time frame, and fast generators that
can adjust their commitment schedule in the second stage.
This approach is inspired by the work of Ruiz et al. [1],
and adopted by Papavasiliou et al. [7]. First-stage decisions
Wgt, Zg¢ Tepresent the binary unit commitment and startup
decisions for slow generators. The second-stage decisions
include the unit commitment, startup and power output of all
generators, denoted respectively as ugss, Vgst and pgs¢. The
dispatch of deferrable loads is also a second-stage decision
variable denoted as eg. The objective function of Eq.
minimizes operating costs. Startup costs, minimum load costs
and constant fuel costs for each generator g are denoted
respectively as S, K, and C,. The model is solved for a
24-hour horizon with hourly time steps. Power balance is

enforced in Eq. . The net demand D,;, which is the net
of firm demand minus renewable power supply, represents
the source of uncertainty. The constraint of Eq. (3) requires
that deferrable loads be supplied an amount of energy R
within a given time window and Eq. () enforces a limit of
C on the consumption (e.g. charge) rate of deferrable loads.
The non-anticipativity constraints on first-stage decisions is
enforced in Eq. (). Note that all generators, including slow
units, can adjust their production level in the second stage.
The set D includes generator capacity constraints, ramping
constraints, and minimum up and down times, where bold
fonts indicate vectors. The notation of the stochastic unit
commitment model and the economic dispatch models that are
presented subsequently is summarized in the appendix. The
solution of the stochastic unit commitment model is described
in detail by Papavasiliou [36].

The scenario selection algorithm used in the stochastic unit
commitment model of this paper is inspired by importance
sampling, whereby scenarios are selected according to their
effect on expected cost and weighed such that their selection
does not bias the objective function of the stochastic unit
commitment formulation. The decomposition algorithm which
is employed relies on a Lagrangian relaxation scheme for
scenario decomposition. Both the scenario selection algorithm
and decomposition algorithm developed by the authors account
for transmission constraints, load uncertainty and renewable
supply uncertainty as well as generator and transmission
line outages [7], [8]. However, transmission constraints and
element outages are not accounted for in this paper in order
to isolate the effect of demand response on absorbing the
uncertainty of renewable energy supply.

The centralized stochastic unit commitment model pre-
sented in this section presumes the ability of the system
operator to centrally monitor and control individual loads. This
is unrealistic in practice due to technological and institutional
reasons. Nevertheless, such a centralized model provides a
useful benchmark for estimating the maximal potential benefits
of demand response, and the efficiency losses of decentralizing
demand response through load aggregators. For this reason,
such a centralized demand response model has been previously
employed in the literature [12].

The aggregate load represented in Eqs. (2) - @) can be
perceived as a collection of a large number of identical de-
ferrable loads that place identical requests for energy demand,
are characterized by the same power rating and share power
consumption equally across the entire population. In future
research the authors intend to exploit high performance com-
puting in order to incorporate a more detailed representation
of deferrable loads according to their energy demand, capacity
rating, and availability for charge.

In order to draw a comparison between the operating cost
impact of the three demand response policies discussed in this
paper, we use a single stochastic unit commitment model in
order to model day-ahead market interactions. As a result,
there is a misrepresentation of recourse as far as the alternative
demand response models are concerned. In effect, the first
stage reserve commitment decisions are somewhat overopti-
mistic, in assuming that the system operator can centrally



coordinate generation and demand response resources. The
price of this simplification is that we are obtaining a lower
bound on the performance of demand response, a pessimistic
assessment of how different demand response strategies will
perform. As a result, we are able to isolate the effect of demand
response on operating costs and draw a consistent comparison
among different demand response paradigms.

III. DEMAND FLEXIBILITY

In this section we describe each of the three demand
response paradigms that were discussed in the introduction and
how these are integrated in the economic dispatch model of
real-time operations. The optimal unit commitment and startup
schedules wy,, 27, determined by the optimal solution of the
stochastic unit commitment model in the day-ahead phase
are used as input to an economic dispatch model for each
realization of uncertainty w. As in the case of the stochastic
unit commitment model, the horizon T' of the problem is 24
hours in hourly time steps.

A. Centralized Load Control

In the centralized load control approach we assume that the
system operator co-optimizes the dispatch of flexible loads and
generation resources:

(ED,,) : min Z Z(Kgugt + Sgvgt + Cypgt)

9EG teT (N
s.t.
> pg=DutenteT ®)
geaG

Y e=R ©)

teT
0<e,<CteT (10)
Ugt = Wiy, Vgt = 2,9 € Gs, 1 €T (11)

(p,e,u,v) € D. (12)

Despite the fact that the centralized model is not realistic
in practice, it is useful for providing a benchmark for the
potential benefits of demand flexibility. In this formulation,
D, represents the net of firm demand minus renewable

supply.

B. Demand Bids

The demand model that we present in this section is based
on Borenstein and Holland [9] and Joskow and Tirole [10]],
[11]. We assume a linear demand function that consists of a
fraction « of inflexible consumers who face a fixed retail price
A%, and a fraction 1 — « of price-responsive consumers who
face the real-time price of electricity ;. The demand function
Q:(+) for each period can therefore be expressed as:

Qi(\;w) = ar(w) — abAf — (1 —a)bAs, (13)

where a;(w) is the intercept and b is the slope of the demand
function. Note that we assume a common slope for all time

periods and a time-varying stochastic intercept that depends
on the realization of inflexible demand.

In order for the demand function model to be consistent with
the two alternative demand response models, we calibrate the
demand function parameters so that they satisfy the following
two conditions: the demand functions have to yield a total daily
demand of R subject to the charging rate constraint C', and
the demand functions have to be consistent with the observed
inflexible demand in the system. The calibration process is
summarized in the following steps:

Step (a). Select the fraction of inflexible demand « such
that R represents a fraction 1 — o of total daily demand.
In particular, given R, the fraction « for each day type is
determined as 1 — o = WRD’ where D is the average daily
firm demand for each day type, as estimated from the available
data.

Step (b). Set the slope b such that the supply to price-
responsive consumers equals R in the economic dispatch
model with slow generator schedules fixed according to the
optimal solution wj,, z;, of (SUC'). In particular, we proceed
by fixing the demand functions at the point (A, %) and
calibrating the demand function slope b until the deterministic
unit commitment model corresponding to an average wind
power supply profile results in a total demand g. Here D,
corresponds to the average hourly firm demand for each day
type as estimated from the available data, and D = Y, D;.

Step (c). For each realization w resulting in inflexible
demand aQ;(A\T;w), set ar(w) = Q:(A\F;w) + bAR in order
to be consistent with the observed inflexible demand.

Step (d). The inverse demand function for deferrable de-
mand is given by Bi(grw) = b(arw) — 1%).a < C.
We can then discretize the inverse demand function to obtain
valuations Bj; for the set of price-responsive loads L and
include these valuations in a welfare maximization formulation
of the economic dispatch model:

(ED,) : maxz Z By dy

leL teT
— Z Z(Kgugt + nggt —+ Cgpgt) (14)
geG teT
s.t.
> pgt=Dur+ Y dit €T (15)
geG leL
0<> dy<CiteT (16)
leL
Ugt = Wy, Vgt = 25,9 € Gs, 1 €T 17
(p,e,u,v) €D, (18)

where d;; represents the power draw of load segment [ in
period t. As in the case of the centralized demand response
model in Section D,,; represents the net of firm demand
minus renewable supply.

C. Coupling

Here we consider a contractual arrangement for coupling
renewable suppliers with deferrable loads. According to such



a contract, an aggregator is entitled to any amount of out-
put from a large group of renewable generation assets up
to its loading capability. The aggregator then enters into a
contractual agreement to supply deferrable loads. Loads are
characterized by a fixed amount of energy demand within a
fixed time window. The aggregator controls the loads directly
and uses renewable resources as the primary energy source
for satisfying deferrable demand. In the case of renewable
supply shortage, the aggregator resorts (to a limited extent)
to the real-time wholesale market for procuring power at the
prevailing price. The aggregator compensates deferrable loads
at arate p for each unit of unserved energy. The setup is similar
to dynamic scheduling [15], whereby demand and supply
resources from different control areas pair their schedules in
order to produce a zero net output to the remaining system.
Such scheduling is currently implemented in the ERCOT
market.

For practical purposes we do not envision the load aggre-
gator as becoming a trader of renewable power. We there-
fore assume that the aggregator has the option to consume
renewable energy but not ownership over the renewable energy
output. The aggregator can then schedule as much load as it
has against the renewable supply but has no title against the
residual. Effectively, the aggregator is holding a “use it or lose
it” contract for the renewable supply output.

1) Implementation: As Schweppe et al. [13] discuss, the
operating cost benefits of incorporating demand flexibility in
power systems are expected to be outweighed by the savings
in capital investment on balancing generation capacity. Such
savings can be ensured, in the context of coupling contracts,
by limiting the participation of aggregators in the real-time
wholesale market. It is therefore necessary to provide financial
incentives to deferrable loads for limiting their consumption to
an efficient level that ensures the satisfaction of their demand
while not imposing excessive capacity requirements on the
system. Priority pricing introduced by Chao, Wilson, Oren and
Smith [37], [38]] and the derivative idea of callable forward
contracts introduced by Gedra and Varaiya [39], and extended
by Oren [40] can be used for limiting the participation of
deferrable loads in the real-time market, while compensating
loads for the capacity savings they enable. Callable forward
contracts bundle a forward contract on power supply with a
call option that can be exercised by the system operator in
real time in order to limit the consumption of deferrable loads
whenever real-time price exceeds a strike price k. Callable
forward contracts therefore enable flexible consumers to enter
the merit order stack of the system operator at the price k,
which translates to capacity savings for the system operator.

It is important to ensure that callable forward contracts,
or other mechanisms for inducing deferrable loads to limit
the degree of their participation in real-time markets, induce
loads to self-select the degree of their participation in the real-
time market efficiently. In particular, it is desirable to provide
strong financial incentives for loads to limit their participation
in the real-time market to the greatest possible extent, without
however making these financial incentives so strong as to
distort allocative efficiency. In the context of callable forward
contracts, this translates to inducing loads to self-select the

lowest strike price k that still provides sufficient flexibility for
deferrable loads to participate in the real-time market in order
to satisfy their entire demand.

2) Problem Formulation: The coupling contract that we
described in the previous section can be formulated as a
stochastic optimal control problem. The aggregator solves the
following:

min E[Z A (e (mg) — we) T AL + prav],

pe(ze) er (19)
s.t.

=R (20)

Mt(xt) —wy < M,y 21

0 < p(zy) <C (22)

where . (z;) represents the rate at which power is supplied
to deferrable loads. The state vector z; = (\¢, wy, 7¢) consists
of the real-time price \;, the available renewable power
supply w; and the remaining energy demand of the deferrable
consumers 7;. The initial condition for the residual demand
is r1 = R, where R is the amount of energy demand to
be satisfied. The control p(x;) is constrained by the rate of
supply C and by the amount of energy that can be procured
in the real-time electricity market M, which is a random
variable. The rate of supply C is the same as the rate of
deferrable loads that appears in Eq. (). Hence, we obtain
the constraints of Eqs. (2I), (22). Unsatisfied energy incurs a
penalty p. As we explain in the appendix, the limit on real-
time market participation M; depends on the choice of strike
price. The optimal control problem stated above is solved by
backward dynamic programming, with a lattice representing
the state space of the stochastic processes. The lattice model
of renewable power supply and real-time prices is presented
in Section

3) Lattice Models: Recombinant lattices are used for con-
trolling the rate of growth of the dynamic programming lattice.
Due to the fact that the state space of the optimal control
problem of Eq. includes residual energy demand, we need
to limit the size of the state space for the stochastic state
variables, in order to solve the problem using the dynamic
programming algorithm. Therefore, although it is well known
that wind power production and load (and therefore real-time
prices) exhibit significant autocorrelation [31], [32], [41], [33],
we will simplify the stochastic models of wind power and real-
time prices by representing them as first-order autoregressive
processes in order to control the size of the state space.
Specifically, we assume that wind speed and real-time prices
are driven by two correlated mean-reverting processes:

Xip1 = Xi+ ra(0x — X)) At + oxVAtwy (23)
Y;SJrI = Y+ 'k&w(ew - YVt)At + OAwOwV Atwl +
(1—0%,)0wV Atws, (24)

where X; and Y; are the noise terms of the price and wind
models respectively, w; and ws are independent standard
normal random variables, #, and 6,, represent the average



trends of the price and wind noise respectively, the variance
terms o) and o, capture the effect of random shocks, ry
and ~,, model the rate at which the processes return to their
mean value and o), is a correlation coefficient that couples
the evolution of the two processes.

In our study we employ a discrete model that approximates
the model of Equations (23), (24). The model is presented in
Deng and Oren [42]. The dynamics of the process are given
by:

X, —|—U)\\/§\/At, j=1
Xg+1 == Xta j = 2
X, — U)\\/g\/At, j=3
Vi + (V30aw + /1= 03,)0w /5L, j=1
Y, = Yy — ouy/1- 03, VAL j=2
Y;ﬁ_(\/ga'kw_ \/1—0,2\w)Uw %a Jj=3.
(25)

where X g and Ytj are the noise terms of the discrete price and
wind models respectively and At is the discretization interval.
Each state j is visited with a probability p; that depends on
the current state. The transition probabilities are defined in
[42]. The lattice grows as O(nQ), which enables us to control
the growth rate and therefore the running time of the dynamic
programming algorithm.

The real-time price and wind speed values that are used
in the stochastic optimal control problem of Eq. can be
recovered by using the underlying noise and the systematic
patterns of the underlying data, as explained in [36]:

A = (26)

27

i+ o B V(X))
i + o EH N (YY)

Here 1} and &} represent the hourly mean and standard
deviation of real-time prices for each day type respectively,
as estimated from the available data. The inverse of the non-
parametric distribution of the original data set is denoted as
F)\_ !'and N (-) indicates the cumulative distribution function of
the standard normal distribution. The notation is analogous for
the wind speed production process. Wind power is converted
is converted to wind speed through a static aggregate power
curve, as the authors describe in detail in [34]. The fit of the
model to the data is presented in Fig. [3]

4) Incorporating the Coupling Model in Economic Dis-
patch: For any given realization of uncertainty w, the solution
of the optimal control problem of Section induces a net
demand profile j;(z;) — w; for deferrable loads coupled with
renewable resources. The total demand D,,; in the system is
the sum of this net demand profile and the inflexible demand,
as in Fig. [T} The resulting total demand is satisfied by the
system operator in the economic dispatch phase:
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Fig. 3. Probability distribution function of real-time electricity prices (up)
and wind power production (down).
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IV. RESULTS

We present results for a case study based on a re-
duced model of the Western Electricity Coordinating Council
(WECC), also used in other studies [43], [7], [8]. The model
consists of 124 generators. The average load in the system
is 27298 MW, with a minimum of 18412 MW and a peak
of 45562 MW. The net load profile that needs to be served
by thermal generators and wind power, the generation mix
of the system and a schematic of the WECC model are
presented in Papavasiliou and Oren [8]. The entire thermal
generation capacity of the system is 28381.5 MW. Thermal
units with a capacity greater than 300 MW are classified as
slow generators. There are 82 fast thermal generators with a
total capacity of 9156.1 MW and 42 slow thermal generators
with a total capacity of 19225.4 MW. The value of lost load
is set to 5000 $/MWh.

We use import, hydroelectric, geothermal and biomass pro-
duction data from Yu et al. [43] that correspond to 2004. Since
we are using 2004 import data, we also use load data from
the same year, which is publicly available at the California



TABLE 1
PARAMETERS OF THE DEMAND RESPONSE CASE STUDY.

No Wind | Moderate Deep
Wind capacity (MW) 0 6688 | 14143
DR Capacity C' (MW) 0 5000 | 10000
Daily wind energy (MWh) 0 46485 | 95414
Daily DR energy R (MWh) 0 40000 | 80000
Flexible/firm demand (%) 0 6.1 12.2

ISO Oasis database. We use a retail price of \* = 130
$/MWh for the calibration of the demand function model,
according to data provided by the U.S. Energy Information
Administration [44]. The three wind integration cases that we
consider are summarized in Table [ The load represented
in Table [I| appears as additional flexible load in the system,
as opposed to replacing existing load. For each level of
wind integration, we assume a demand response integration
level that is approximately one-for-one in terms of energy
demand and capacity. We assume that deferrable requests span
24 hours, from midnight to midnight. This implies that the
optimal control problem of Eq. is solved for a 24-hour
horizon from midnight to midnight. Analogously, the time
horizon of the constraints in Egs. (EI), @]) span 24 hours, from
midnight to midnight. We consider 6 levels of power supply
for the control problem. The penalty of unserved energy is
p = 5000 $/MWh. We use 12 scenarios for the formulation of
the stochastic unit commitment model. The wind data that is
used for the calibration of the statistical models is based on the
National Renewable Energy Laboratory (NREL) 2006 Western
Wind and Solar Integration Study [45]. The moderate and deep
wind integration studies correspond to the 2012 and 2020 wind
integration targets of California. We consider one day type for
each season and in addition we differentiate between weekdays
and weekends.

A. Costs, Load Loss, Capacity Requirements and Spillage

As we discuss in Section deferrable demand can
produce great economic value by limiting the requirements
for balancing capacity. Callable forward contracts can be used
for limiting the extent to which deferrable loads participate in
the real-time market. The strike price of the callable forward
contracts determines the extent to which loads can participate
in the market. As the strike price of the contracts decreases, the
participation of loads in the real-time market is increasingly
limited. The strike price that mobilizes deferrable demand to
the greatest possible extent is presented in Table [[I] for each of
the day types for each integration study. In order to obtain
these strike price thresholds, we have gradually decreased
the strike price of the stochastic optimal control of Eq. (I9).
As we explain in the appendix, as the strike price decreases
the procurement margin and the ability of the aggregator to
serve deferrable demand decreases as well. Below a certain
strike price threshold, the aggregator cannot serve the entire
amount of deferrable demand under all possible realizations
of uncertainty. This is the threshold reported in Table In
order to simplify the analysis, we assume a common strike
price for each hour of the day.

TABLE I

STRIKE PRICE THRESHOLD FOR DEFERRABLE LOAD CALLABLE FORWARD

CONTRACTS ($/MWH).

INTEGRATION.

Moderate | Deep
WinterWD 45 47
SpringWD 45 49
SummerWD 49 53
FallWD 49 54
WinterWE 45 45
SpringWE 45 47
SummerWE 48 51
FallWE 49 52
TABLE III
DAILY COST OF OPERATIONS AND LOAD SHEDDING FOR EACH DAY TYPE -
NO WIND.
Daily Cost ($) | Shed (MWh)
WinterWD 7,390,206 0.001
SpringWD 7,145,737 4.317
SummerWD 13,684,880 30.869
FallWD 9,589,506 0
WinterWE 6,079,003 0.001
SpringWE 5,855,883 0
SummerWE 11,839,573 0
FallWE 7,868,146 154.285
Total 9,012,031 17.301
TABLE IV

DAILY COST OF OPERATIONS FOR EACH DAY TYPE - MODERATE

Cost ($) A Cost ($) | A Cost (3)
Centralized Coupled Bids

WinterWD 7,320,620 256,740 300,051
SpringWD 6,408,355 172,006 139,589
SummerWD 13,625,136 155,096 219,124
FallWD 9,640,017 316,089 157,159
WinterWE 5,890,755 300,701 246,408
SpringWE 3,637,240 707,223 244,353
SummerWE 11,739,177 176,230 234,101
FallWE 7,735,502 277,817 189,465
Total 8,677,857 265,128 211,010
relative (%) 3.06 243

In table we present the operating costs and daily load
losses for the case with no wind and no demand response in
the system. These costs consist of minimum load, startup and
fuel costs, namely > ;e (Kgugt + Sqvgt + Cgpge). The
operating costs do not include the cost of lost load.

In Tables we present the daily operating cost of
each policy for the moderate and deep integration cases
respectively. As in the case of Table these costs consist
of minimum load, startup and fuel costs. The column with
bold figures, that corresponds to centralized load dispatch
by the system operator, represents absolute cost values. Cost
figures corresponding to the other policies are relative to the
centralized operating costs. The row with total costs weighs the
cost of each day type with its relative frequency in the year in
order to yield annual results. The last row shows the relative
performance of centralized control with respect to the other
policies, normalized by the cost of centralized control. Note
that the operating costs of demand-side bidding outperform
those of the coupling mechanism. This can be attributed to
the diversification benefits of including flexible demand in the
market.



TABLE V
DAILY LOAD LOSS FOR EACH DAY TYPE - MODERATE INTEGRATION.

Shed (MWh) | Shed (MWh) | Shed (MWh)

Centralized Coupled Bids
WinterWD 0 0 177.257
SpringWD 1.532 1.869 701.828
SummerWD 3.617 4.346 821.719
FallWD 1.661 1.661 799.323
WinterWE 0 0 642.105
SpringWE 0 0.249 453.791
SummerWE 0.059 1.100 215.816
FallWE 6.792 10.005 976.766
Total 1.705 2.217 609.914

TABLE VI

DAILY COST OF OPERATIONS FOR EACH DAY TYPE FOR THE DEMAND
RESPONSE STUDY - DEEP INTEGRATION.

Cost ($) A Cost ($) | A Cost ($)
Centralized Coupled Bids
WinterWD 6,656,665 633,164 556,775
SpringWD 5,692,860 978,182 572,465
SummerWD 13,661,862 505,869 835,609
FallWD 9,321,281 772,659 404,523
WinterWE 5,220,109 711,882 616,931
SpringWE 4,251,600 910,253 576,010
SummerWE 12,136,223 329,929 472,930
FallWE 7,930,823 700,205 515,431
Total 8,419,322 705,497 578,909
relative (%) 8.38 6.88
TABLE VII

DAILY LOAD LOSS FOR EACH DAY TYPE FOR THE DEMAND RESPONSE
STUDY - DEEP INTEGRATION.

Shed (MWh) | Shed (MWh) | Shed (MWh)

Centralized Coupled Bids
WinterWD 0.001 8.290 552.769
SpringWD 0 351.782 1382.459
SummerWD 0.001 36.643 1952.332
FallWD 33.660 143.629 1210.443
WinterWE 0 0 929.960
SpringWE 0 32.601 1008.222
SummerWE 2.081 58.725 1157.565
FallWE 57.005 132.134 1260.137
Total 10.231 112.452 1221.492

The ‘cost of anarchy’ that results from using price signals in
order to control load response, rather than centralized control,
ranges from 2.43% - 6.88% for the case of demand-side
bidding and 3.06% - 8.38% in the case of coupling. Although
demand bids result in lower operating costs, demand-side
bidding results in excessive load shedding. This is due to
the failure of demand bids to capture the inter-temporal
dependencies of deferrable demand. Instead, the centralized
dispatch model accounts for such inter-temporal dependencies
in Eq. @I) while the deferrable demand model accounts for
such dependencies through the initial conditions of the system
expressed in Eq. (20). Note that the lost load presented in Table
[V]accounts for the shortfall of power supply to deferrable loads
throughout the entire day from the daily target demand R.

In Table we present a breakdown of operating costs
by type for each of the demand response policies that we
consider for each integration level. We note that the demand-
side bidding and coupling models result in cost increases in
all cost categories.

In Table we present the amount of capacity that is

TABLE VIIL
BREAKDOWN OF DAILY OPERATING COSTS FOR EACH DEMAND RESPONSE
POLICY FOR EACH INTEGRATION LEVEL ($).

[ [ Min load | Fuel | Startup [ Total |
No wind 1,382,156 | 7,549,491 80,384 9,098,537
Centralized Moderate | 1,246,552 | 7,364,815 | 66,489 8,677,857
Bids Moderate 1,317,383 | 7,471,363 100,123 | 8,888,866
Coupled Moderate 1,330,130 | 7,532,898 | 79,958 8,942,958
Centralized Deep 1,194,606 | 7,174,611 50,105 8,419,322
Bids Deep 1,360,543 | 7,494,472 | 143,217 | 8,998,232
Coupled Deep 1,432,948 | 7,592,595 | 99,276 9,124,819

TABLE IX

CAPACITY REQUIREMENTS AND WIND POWER SPILLAGE FOR EACH
DEMAND RESPONSE POLICY.

Capacity (MW) | Spillage (MWh)
No wind | 26,123 N/A
Moderate | 26,254 0
Deep 26,789 2

committed by each policy as well as the amount of renew-
able supply spillage. Capacity requirements do not change
significantly for each integration study, which suggests that
the additional deferrable demand can be fully absorbed by the
installed renewable capacity. Wind spillage is negligible across
all cases.

B. Computational Details

The stochastic unit commitment algorithm was implemented
in AMPL. The mixed integer programs were solved with
CPLEX 11.0.0 on a DELL Poweredge 1850 server (Intel Xeon
3.4 GHz, 1GB RAM). The Lagrangian relaxation algorithm
that was used for solving the problem, which is presented in
detail by Papavasiliou et al. [7], was run for 80 iterations,
where the first 40 iterations were run without seeking for a
feasible solution and the latter 40 iterations were run with
feasibility recovery. The average elapsed time for this entire
process was 7,047 seconds. The average duality gap %
was 0.8%. Note that if a MIP gap ¢ is used for the computation
of the lower bound, then this gap should also be accounted for.
In our case study we used a MIP gap of € = 1%. The average
bound on the optimality gap, when also accounting for the
MIP gap, is then computed as % = 1.81%.

V. CONCLUSIONS

In this paper we present a stochastic unit commitment model
that accounts for the large-scale integration of renewable
energy sources and demand response resources. We consider
three types of load response in our analysis, centralized
load dispatch, demand-side bidding and coupling. We analyze
the case of no wind in the network, as well as cases of
wind integration that correspond to the 2012 and 2020 wind
integration targets of California, with a corresponding one-for-
one increase in flexible demand. Our analysis is performed
on a model of the Western Electricity Coordinating Council
that consists of 124 generators. We find that the ‘cost of
anarchy’ incurred by decentralizing demand response ranges
between 3.06% - 8.38% for the case of coupling. Demand-
side bidding outperforms coupling with respect to operating



costs, resulting in a cost increase ranging between 2.43%
- 6.88% of the cost corresponding to centralized load dis-
patch. However, demand-side bidding fails to capture the
cross-elasticity of demand across time periods, resulting in
excessive load losses. Arguably, if we assume that customers
may adjust their response to avoid unserved load the price
response functions should have been calibrated to reflect such
behavior rather than matching expected energy served. In that
case one would expect that cost would rise and unserved
load decline, making the coupling strategy more competitive
from a cost perspective. The ‘cost of anarchy’ imposed by
coupling renewable resources with deferrable demand is the
price for overcoming the institutional and regulatory barriers
associated with the large-scale integration of demand response
[30] that can in turn facilitate the large-scale integration of
renewable resources. For the case studies that we consider,
the additional integration of deferrable demand imposes no
additional capacity requirements to the system. Renewable
supply capacity is adequate for satisfying the added demand,
which represents 6.1% - 12.2% of firm power demand for the
2012 and 2020 renewable integration targets respectively. The
waste of available renewable power supply is negligible for
the demand response integration study.

APPENDIX

A. Notation for the Stochastic Unit Commitment and Eco-
nomic Dispatch Problems

In this section we introduce the notation that is used in the
unit commitment and economic dispatch models.
Sets

G: set of all generators, Gs: subset of slow generators

L: set of load segments

S: set of scenarios

T set of time periods
Decision variables

Ugse: COMMItMeNt, Vgt Startup, pys¢: production of gener-
ator g in scenario s, period ¢

Wg¢: commitment, zg;: startup of slow generator g in period
t

est: supply to deferrable loads in scenario s, period ¢

dj: power draw of load segment [ in period ¢
Parameters

ms: probability of scenario s

K4 minimum load cost, Sy: startup cost, Cy: marginal cost
of generator g

R: total energy energy demand, C: power rating of de-
ferrable loads

Dg;: demand in scenario s, period ¢

B;:: benefit of load segment [ in period ¢

B. Procurement Margin in the Aggregator Optimal Control
Problem

The computation of the margin M, of Eq. is explained
in Fig. 4 The figure displays the merit order curve of the
system. Given a strike price k, the megawatt capacity that
corresponds to the given strike price is computed by inverting
the merit order curve of the system. The resulting capacity
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Fig. 4. The computation of the procurement margin M; for Eq. of the
aggregator stochastic optimal control problem.

P, represents the conventional capacity that is available up
to marginal cost k. Total system load consists of net inflex-
ible demand P, (which is equal to inflexible demand minus
imports minus non-wind renewable resources) plus deferrable
demand. Therefore, the procurement margin of the aggregator
is computed as M; = P, — Ps.
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