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Abstract— The large-scale integration of renewable resources
has recently raised interest in systematic methods for commit-
ting locational reserves in order to secure the system against
contingencies and the unpredictable and highly variable fluctu-
ation of renewable energy supply, while accounting for power
flow constraints imposed by the transmission network. In this
paper we compare two approaches for committing locational
reserves: stochastic unit commitment and a hybrid approach
of scenario-based security-constrained commitment. Parallel
algorithms are developed for solving the resulting models, based
on Lagrangian relaxation and Benders decomposition. The
proposed algorithms are implemented in a high performance
computing environment and the performance of the resulting
policies is tested against a reduced model of the California
ISO interconnected with the Western Electricity Coordinating
Council.

I. INTRODUCTION

The increasing uncertainty of power system operations due

to the large-scale integration of renewable energy resources

and demand response has raised an interest in systematic

methods for committing day-ahead reserves in order to

operate the system reliably within an uncertain environment.

The challenge of committing reserves lies in optimizing the

tradeoff between system security and economic operation of

the system. Any level of security can be achieved in the

system given a sufficient amount of reserves. The challenge

rests in choosing the level of reserves that satisfies certain

operational criteria in an uncertain environment at least

cost. Traditional reserve commitment approaches [1] rely on

reserve requirements and security constraints that are meant

to mitigate continuous fluctuations in demand and renewable

supply as well as discrete disturbances such as generator

and transmission line failures. However, these models often

fail to capture the full range of complexity in an uncertain

environment and rely instead on heuristic practices adopted

by operators through experience.

The power system operations literature has proposed four

fundamental paradigms for representing uncertainty and op-

timizing the commitment of reserves at least cost: stochastic

optimization, security-constrained approaches, robust opti-

mization and probabilistic constraints. Stochastic program-

ming was originally posed in the context of unit commitment

by Takriti and Birge [2] as an approach for mitigating

demand uncertainty and generator outages. Subsequently,

numerous variants of the stochastic unit commitment model

have been proposed [3], [4], [5], [6], [7], [8], [9] that vary

based on the number of stages, the source of uncertainty, the

representation of uncertainty and solution methods that are

used. The drawback of stochastic unit commitment is the

requirement to represent uncertainty in a detailed fashion,

by using a large number of appropriately weighted scenar-

ios. Generating these scenarios requires detailed information

about the stochastic process that generates uncertainty in the

system (e.g. time series models or failure rates). Moreover,

the choice of how many scenarios to select, which ones

to select and how to weigh them is non-obvious and can

have a significant impact on the performance of the resulting

commitment. Moreover, the resulting problems are large-

scale and Lagrangian relaxation is often employed in order

to decompose the problem to tractable subproblems.

Security-constrained unit commitment models require that

the system be capable of withstanding major element failures

without shedding load. Security constraints address discrete

failures of network elements, whereas continuous sources of

uncertainty are addressed either through scenarios or exoge-

nous reserve criteria. Wang et al. [10] account for supply and

demand fluctuations through exogenous reserve criteria [10]

and use Bender’s decomposition to solve the problem, while

Wu et al. [11] account for continuous sources of disturbances

through scenarios and use Lagrangian relaxation in order to

solve the problem.

Two additional systematic approaches to short-term

scheduling under uncertainty that are not explored in this pa-

per include robust optimization and probabilistic constraints.

In robust optimization models [12], [13] the objective is to

commit reserves in order to minimize the cost of operating

the system against the worst-case realization of uncertainty.

The worst-case nature of these approaches reflects more

closely the tendency of operators to operate the system in a

conservative fashion. These models exploit Benders’ decom-

position in order to solve the resulting bilevel programming

problems. Probabilistically constrained models [14], [15]

commit units in order to ensure the satisfaction of demand

within an exogenously defined probability. Both robust opti-

mization and probabilistically constrained models share the

advantage that they require only limited information about

the process that drives uncertainty in operations.

The methods discussed above increase the computational

challenges associated with unit commitment problems. The

solution methods used for solving short-term scheduling

problems can often be parallelized. As a result, these appli-

cations invite the use of distributed computing for addressing

the challenge of short-term scheduling under uncertainty, in

much the same way that mid-term scheduling under uncer-

tainty has thrived in the power system operations community

over the past decades.

Distributed computation has a rich history in the area



of power systems planning and operations. A review of

the application of high performance computing in power

systems is presented by Falcao [16]. Falcao presents various

applications of parallelization, including security-constrained

optimal power flow and composite generation-transmission

reliability evaluation. Pereira et al. [17] present the appli-

cation of distributed computing in reliability evaluation for

composite outages, scenario analysis for hydro dominated

systems and security-constrained dispatch. Monticelli et al.

[18] formulate the security-constrained optimal power flow

with corrective rescheduling and demonstrate economic ben-

efits in the dispatch on an IEEE system with 118 buses.

Although the authors observe the possibility of parallelizing

their algorithm, they do not present such a parallel implemen-

tation. Kim and Baldick [19] present a parallel algorithm for

solving distributed optimal power flow. The authors present

efficiency and speedup results, although these are estimated

as the authors do not implement the algorithm in parallel.

Bakirtzis and Biskas [20] propose a decentralized Lagrangian

relaxation algorithm for solving the optimal power flow

problem presented by Kim and Baldick [19]. The authors

test three test systems, including a 3-area version of the

IEEE RTS 96 system, a scaled-up version of the latter with

more areas and a full model of the Balkan system. A parallel

implementation of the algorithm in Bakirtzis and Biskas [20]

using PVM is presented by Biskas et al. [21].

Despite the fact that there is a rich body of literature

focused on short-term scheduling under uncertainty, the rel-

ative performance of the models proposed in the literature is

not compared adequately in order to appreciate the tradeoffs

involved in using each paradigm. This paper serves two

purposes. The first objective is to motivate this discussion

by presenting a comparative study of stochastic program-

ming and security-constrained unit commitment models. The

second objective is to demonstrate the benefits of distributed

computation in accelerating the solution of these models, and

validate the great promise that high performance computing

and cloud computing hold for the short-term scheduling of

smart grids under conditions of large-scale renewable energy

and demand response integration. We present our models

in Section II and decomposition methods for solving these

models in Section III. A case study of the California ISO

interconnected with the Western Electricity Coordinating

Council is presented in Section IV. We summarize our

conclusions in Section V.

II. MODEL DESCRIPTION

The problem that this paper is focusing on is the day-

ahead scheduling of generators subject to real-time renewable

power supply uncertainty and outages of transmission lines

and generators. The problem is cast as a two-stage optimiza-

tion, where the first stage represents day-ahead decisions

and the second stage represents the real-time recourse to the

revealed system conditions.

In the following model formulation, u represents a binary

variable indicating the on-off status of a generator, v is a

binary startup variable and p is the production level of each

generator. The minimum load cost of a generator is denoted

as Kg , the startup cost as Sg and the constant marginal cost

as Cg . The model that we present in this paper accounts for

transmission constraints, with power flows over transmission

lines denoted as e. The demand for each hour t at each bus

of the network n is denoted as Dnt. Operating constrains are

denoted compactly in terms of a feasible set D, and vectors

are denoted in bold. Thus, the notation (p, e,u,v) ∈ D
encapsulates the minimum/maximum run limits, minimum

up/down times and ramping rate limits of generators, as well

as Kirchhoff’s voltage and current laws and the thermal limits

of lines.

The objective is to minimize the cost of serving forecast

demand. The problem in the deterministic setting (assuming

an accurate forecast of renewable power production and

demand) can be described as follows:

(UC) : min
∑

g∈G

∑

t∈T

(Kgugt + Sgvgt + Cgpgt)

s.t.
∑

g∈Gn

pgt = Dnt

P−
g ugt ≤ pgt ≤ P+

g ugt

elt = Bl(θnt − θmt)

(p, e,u,v) ∈ D, (1)

The set of generators located in each bus n is denoted by

Gn. The horizon T is 24 hours, with hourly increments. A

detailed formulation of the constraints represented by the

domain D can be found in Papavasiliou and Oren [22].

A. Stochastic Unit Commitment

The stochastic formulation follows the model of Ruiz

et al. [6] and involves a two-stage process, where the set

of uncertain outcomes is represented as S. First-stage unit

commitment and startup decisions are represented respec-

tively as w and z and apply for those generators Gs for

which commitment decisions need to be made in advance,

in the day-ahead time frame. The problem to be solved is

the following:

(SUC) :

min
∑

g∈G

∑

s∈S

∑

t∈T

πs(Kgugst + Sgvgst + Cgpgst)

s.t.
∑

g∈Gn

pgst = Dnst,

P−
gsugst ≤ pgst ≤ P+

gsugst

elst = Bls(θnst − θmst)

(p, e,u,v) ∈ Ds

ugst = wgt, vgst = zgt, (2)

where decision variables are now contingent on the scenario

s ∈ S. Note that the domain D = ×s∈SDs is decomposable

across scenarios. Scenarios represent the realization of hourly

renewable supply production, which results in uncertain net



demand Dnst in each bus, as well as the loss of generators

for the entire day (in which case the capacity limits of

a generator are P−
gs = P+

gs = 0, which forces a unit to

produce zero output), and the loss of lines (in which case

the susceptance of a line is Bls = 0, which forces power

flow over the line to equal zero).

B. Scenario-Based Security-Constrained Unit Commitment

Note that load shedding is permitted in the stochastic unit

commitment model of Eq. (2), with lost load incurring a high

penalty in the objective function. Loads L are therefore rep-

resented as a dummy generator with second-stage production

decisions plst and a marginal cost equal to the value of lost

load. As a result, the feasible region of each scenario, Ds,

is non-empty for any choice of first-stage decision variables

wgt, zgt.
In a security-constrained model discrete disturbances are

accounted for by requiring that the system be capable of

withstanding any element failure. This implies that each

scenario s now consists of at most a single contingency.

Following the model of Wu et al. [11], we account for

continuous disturbances (net demand forecast errors) by

associating a renewable supply outcome with each scenario

s rather than imposing exogenous reserve requirements.

Scenarios that involve no contingency are weighed with

a positive probability in the objective function πs of Eq.

(3), whereas scenarios that involve contingencies are only

included in the constraint set. The feasible region is equal

to Ds with the additional constraint that plst = 0 for load

shedding, and in contrast to (SUC) there may be choices of

first-stage decisions for which the model is infeasible (i.e.

{Ds, plst = 0, ugst = wgt, vgst = zgt} = ∅).

(SCUC) :

min
∑

g∈G

∑

s∈S

∑

t∈T

πs(Kgugst + Sgvgst + Cgpgst)

s.t.
∑

g∈Gn

pgst = Dnst,

P−
gsugst ≤ pgst ≤ P+

gsugst

elst = Bls(θnst − θmst)

(p, e,u,v) ∈ Ds

plst = 0, l ∈ L

ugst = wgt, vgst = zgt, (3)

C. Scenario Selection

The selection of scenarios in the stochastic unit commit-

ment model of Section II-A is based on an idea inspired

by importance sampling [22]. A large number of candidate

scenarios ω ∈ Ω are evaluated in terms of their cost impact

to the system CD(ω), where this cost impact is evaluated

against an easily computable deterministic unit commitment

model. Candidate scenarios are then selected to enter the

set of selected scenarios S by sampling according to a

probability which is proportional to their cost impact. These

scenarios are assigned a weight πs in the objective function

of (SUC) which is inversely proportional to their cost impact

CD(ω) in order to un-bias their selection. Note that in the

stochastic programming formulation, a scenario s can involve

any number of contingencies and not necessarily a single

contingency.

In the case of the scenario-based security-constrained

model, the set S is generated by the Cartesian product of a set

of renewable supply outcomes with the no-contingency out-

come and the most severe single-element contingencies in the

system. The set of scenarios that involve the no-contingency

outcome are assigned an equal positive probability in the

objective function, whereas the scenarios involving single-

element contingencies have no direct impact on the objective

function through their weight, πs = 0, but only through their

presence in the constraint set.

III. SOLUTION METHODOLOGY

In the following section we present two decomposition

methods for solving (SUC) and (SCUC), as well as dis-

tributed implementations of the decomposition algorithms.

A. Lagrangian Relaxation

The Lagrangian relaxation algorithm relies on the obser-

vation that the relaxation of the non-anticipativity constraints

in (SUC) results in unit commitment subproblems that are

independent across scenarios. The Lagrangian dual function

is obtained as:

L =
∑

s∈S

πs(
∑

g∈G

∑

t∈T

(Kgugst + Sgvgst + Cgpgst)

+
∑

g∈Gs

∑

t∈T

(μgst(ugst − wgt) + νgst(vgst − zgt)) (4)

The problem is solved by maximizing the Lagrangian dual

function using the sub-gradient algorithm. The solution of

the Lagrangian involves one second-stage unit commitment

problem for each scenario (P2s), and one first-stage opti-

mization (P1). The first-stage optimization is formulated as:

(P1) : max
∑

g∈Gs

∑

s∈S

∑

t∈T

πs(μgstwgt + νgstzgt)

s.t.D1, (5)

where D1 represents the minimum up and down time con-

straints of slow units g ∈ Gs.

The solution of the Lagrangian dual provides a lower

bound for the model. By introducing redundant second-

stage decision variables on startup decisions, we are able

to enforce minimum up and down times on slow units, as

in Eq. (5). Given these unit commitment schedules, we can

solve an economic dispatch model (EDs), which is (P2s)
with ugst, vgst fixed for g ∈ Gs. This provides an upper

bound that can be used for obtaining feasible solutions at

each iteration as well as a duality gap. This duality gap is

used as a termination criterion. The algorithm is parallelized

both in the solution of (P2s), as well as the solution of

(EDs), as indicated in Fig. 1. Further details about the



Fig. 1. The parallel implementation of the Lagrangian relaxation algorithm.

solution methodology are discussed in Papavasiliou et al.

[5].

B. Benders Decomposition

Security constraints are enforced in power system oper-

ations in order to protect the system against the failure of

any given transmission or generation element. The security

constraints require that the system be capable of withstanding

the loss of any single component in the system while fully

satisfying demand. Security-constrained unit commitment

can be approximated as a special case of the (SUC) model

presented in Eq. (2) when πs > 0 for the no-contingency

scenarios, and πs = 0 for scenarios involving contingen-

cies. This implies that the constraints associated with each

contingency scenario are enforced in the constraint set, but

are not weighed in the objective function. This remains an

approximation of (SCUC) since the constraint plst, l ∈ L,

is not enforced in (SUC).
In principle, this approximation of the security-constrained

unit commitment problem can be solved by using the solu-

tion algorithm of Section III-A. In practice this approach

presents convergence problems when solved by Lagrangian

relaxation. The dual function is not increasing even when

the step size is reduced to a very small amount, and the unit

commitment schedule of slow generators is inverted after

each iteration. This numerical instability is due to the fact

that the dual function is very steep, which results from the

fact that the operating cost terms vanish in Eq. 4 since πs = 0
for the scenarios associated with contingencies.

This motivates a Benders decomposition scheme for solv-

ing the problem. This can be justified by the fact that all fea-

sibility constraints can be satisfied with only a few feasibility

cuts associated with the most severe contingencies in the

system. Optimality cuts can be defined by solving only those

few scenarios associated with the no-contingency outcome.

The advantage of using a Benders decomposition scheme is

that the generation of feasibility cuts and optimality cuts can

be parallelized, which implies that the second stage of the

model is no more the computational bottleneck.

Fig. 2. The parallel implementation of the Benders decomposition
algorithm.

The algorithm that we propose in this paper requires two

assumptions:

Assumption 1:. In order to maintain the convexity of the

second-stage value function, it is necessary to assume that

second-stage problems are continuous. Therefore, we impose

the assumption that unit commitment decisions have to be

fixed for all generators in the network from the first stage.

This is contrasted to the Lagrangian relaxation algorithm that

can involve integer decisions in the second stage for fast

generators g ∈ Gf = G−Gs.

Assumption 2: The generation of feasibility cuts accord-

ing to Van-Slyke and Wets [23] removes one candidate

integer solution at each iteration, however this process can

easily stall when there is a large number of candidate

integer solution combinations that need to be tested before

a feasible solution can be obtained, as is the case in the

stochastic unit commitment problem. By assuming away

ramping constraints in (SCUC), we obtain a feasible region

(Dst) that is decomposable both by time period as well as

scenario. Rather than using the feasibility cuts of Van-Slyke

and Wets [23], we then impose the constraints represented

by Dst in the first-stage problem for the scenario and time

period that represents the most severe contingency given

the current candidate integer solution. The motivation is

that accounting for the most severe contingency in the first

stage of the problem is capable of satisfying most operating

constraints associated with less severe contingencies. The

algorithm is presented in Fig. 2.

IV. RESULTS

In this section we analyze a test system of the Califor-

nia Independent System Operator interconnected with the

Western Electricity Coordinating Council. The system is

composed of 225 buses, 375 lines and 130 generators. The

fuel mix of the generators and their classification among fast

and slow units is shown in Table I. The schematic of the

system under consideration is presented in Fig. 3. The value

of lost load is assumed equal to 5,000$/MWh [5].



TABLE I

GENERATION MIX FOR THE TEST CASE

Type No. of units Capacity (MW)
Nuclear 2 4,499
Gas 88 18,745.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (moderate) 5 6,688
Wind (deep) 10 14,143
Fast thermal 82 9,156.1
Slow thermal 42 19,225.4

Fig. 3. A schematic of the WECC model studied in the Results section.

The wind penetration level that we analyze corresponds

to the 2030 wind integration targets of California for a

typical spring weekday. The wind model is calibrated against

one year of data from the National Renewable Energy

Laboratory. The wind power production time series model is

described in detail by Papavasiliou and Oren [24]. The model

captures temporal correlations of wind speed, the nonlinear

conversion of wind speed to wind power, the locational

correlations of the wind sites under consideration, as well

as systematic seasonal and diurnal characteristics of the data

set. The wind power production time series model was used

both in order to generate scenarios for the unit commitment

optimization models, as well as for generating outcomes for

the Monte Carlo simulation of the performance of the two

different unit commitment policies. The set of outcomes that

were used for the Monte Carlo performance evaluation were

different from the scenarios that were used as input to the

unit commitment models.

Both formulations were solved for 30 scenarios in order

to compare the two models on a fair basis. The scenario

selection algorithm of Section II-C was used for selecting

and weighing the scenarios of (SUC). The input for the

(SCUC) model was generated from the Cartesian product of

ten wind power production scenarios with the no-contingency
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Fig. 4. The evolution of the Lagrangian Relaxation algorithm bounds.

case as well as the two most severe contingencies in the

network, namely the failure of each of the two nuclear

units in the network. Both algorithms were implemented in

the Java callable library of CPLEX 12.4, and parallelized

using the Message Passing Interface (MPI). The code was

implemented on a high performance computing cluster in

the Lawrence Livermore National Laboratory on a network

of 1,152 nodes, 2.4 GHz, with 8 CPUs per node and 10 GB

per node.

Each unit commitment policy was evaluated against 1,000

Monte Carlo outcomes of wind power production and contin-

gencies. We assume a probability of generator failure equal

to 1% [25] and a probability of transmission line failure equal

to 0.1% [26].

For the implementation of the (SUC) algorithm described

in Fig. 1, (P1) and (P2s) were run for 80 iterations. For

the last 40 iterations, (EDs) was run for each scenario in

order to obtain a feasible solution and an upper bound to the

problem. The evolution of the duality gap is shown in Fig.

4.

The Benders decomposition algorithm required 31 iter-

ations to converge. During these iterations, either feasibil-

ity cuts were added to the first-stage program, or a new

approximation of the value function was generated, along

with an estimate of the gap in the current candidate unit

commitment solution. The evolution of the gap is shown

in Fig. 5, with zeros representing an iteration at which a

feasibility cut was added. Note that the first feasible unit

commitment schedule is detected in iteration 19. The gap at

iteration 19, which cannot be shown in the bounds of Fig.

5, is equal to 5.855 $M. Subsequently, the value function

approximation improves around the neighborhood of the

optimal solution, and although 4 more feasibility cuts are

added in the remaining iterations, the algorithm eventually

terminates after 31 iterations.

A. Relative Peformance

The hourly day-ahead capacity committed by each model

in each hour of the day is shown in Fig. 6. We note

that the (SCUC) model is committing significantly more

capacity than the (SUC) model. This can be attributed

to Assumption 2 of Section III-B. Due to the fact that

the Benders decomposition algorithm requires that all units

be committed in the day-ahead time frame, the resulting
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Fig. 6. Hourly day-ahead capacity committed by each model.

TABLE II

DAILY OPERATING COST ($1,000)

Startup Min. load Load shed Fuel Total
Benders 66.5 1,205.3 0 4687.3 5,959.1

LR 106.0 699.4 0.3 4,831.5 5,637.2

policy is quite conservative. The cost performance of the

two approaches in the Mote Carlo simulation is shown in

Table II. We note that the (SUC) model outperforms the

(SCUC) model by 5.4% relative to the average daily cost of

the (SCUC) model in terms of expected cost performance.

It is interesting to note that both models are outperforming

each other relative to the objectives that they are optimizing.

The (SUC) model is outperforming (SCUC) in terms

of expected cost performance, while the (SCUC) model

achieves zero load shedding, as we demonstrate in Table

II, where we note that the (SUC) model is shedding small

quantities of load. The tradeoff for the increased reliability

of the (SCUC) model is the over-commitment of day-ahead

capacity, which reduces the operational flexibility of the

system in real time, resulting in excessive startup, minimum

load and fuel costs.

B. Running Time

The running time of the Benders decomposition algorithm

is shown in Fig. 7. The speedup of the algorithm is due

to the parallelization of the continuous DC optimal power

flow problems that are required for generating feasibility

and optimality cuts (see Fig. 2). The marginal benefits

vanish beyond 15 processors. The entire model requires 26.6

minutes to solve in a fully serial implementation, versus 14.8
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Fig. 7. The running time of the Benders decomposition algorithm as a
function of processor number.

minutes in a fully parallel implementation. We note that the

benefits of parallelism are expected to increase as we increase

the number of contingencies or wind scenarios considered

in the model. However, as an excessive number of second-

stage problems is added to the (SCUC) model, additional

feasibility cuts are required in order to generate feasible

unit commitment schedules. This may result in a non-

decomposable first-stage problem that is excessively large,

and for which distributed computation can offer no speedup

benefits. In that case, the first-stage problem will dominate

the total running time of the problem. The motivation of

using Benders decomposition in unit commitment problems

is that the most severe contingencies in the system often

suffice for withstanding most minor contingencies. How-

ever, Van Slyke and Wets [23] note the possibility that the

Benders decomposition algorithm may not suffice to solve

the problem if an excessive number of feasibility cuts are

required. We have encountered this behavior in an instance of

the (SCUC) problem with 100 contingencies (which results

in 1,000 scenarios when the contingencies are interleaved

with 10 wind scenarios), and in future research we intend to

explore alternative approaches for solving larger instances of

the problem.

The running time of the Lagrangian relaxation algorithm

is shown in Fig. 8. The marginal benefits of parallelization

vanish beyond 15 processors. The solution time of the

Lagrangian relaxation algorithm ranges between 15.8 hours

for the fully serial implementation to 47.7 minutes in the

fully parallel implementation. The benefits of parallelization

are evident in this example, as they enable us to reduce

the solving time of the original problem to a time horizon

that is acceptable for operational purposes. In contrast to

the (SCUC) model, the proposed Lagrangian relaxation can

scale to a very large number of scenarios provided that a

sufficient number of processors is available.

V. CONCLUSIONS

We present two approaches for solving the unit commit-

ment problem in order to mitigate the uncertainty stemming

from continuous sources of uncertainty (renewable energy

or demand forecast error) as well as discrete disturbances

(generator and transmission line failures). The stochastic

unit commitment model optimizes the expected cost of
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Fig. 8. The running time of the Lagrangian relaxation algorithm as a
function of processor number.

operation of the system, while the scenario-based security

constrained unit commitment model minimizes the cost of

system operations while guaranteeing that the system can

withstand major contingencies without shedding load. We

present a Lagrangian relaxation algorithm for solving the

stochastic unit commitment model and a Benders decom-

position algorithm for solving the security-constrained unit

commitment model and we implement both algorithms in

a high performance computing environment. The Benders

decomposition algorithm is implemented by passing power

flow constraints associated to the most severe contingencies

in the system to the first-stage problem.

We compare the two approaches on a test case of the

California ISO interconnected with the Western Electric-

ity Coordinating Council. We observe that the security-

constrained model commits significantly greater quantities

of day-ahead capacity and outperforms the stochastic unit

commitment model in terms of load shedding. Instead, the

stochastic unit commitment model outperforms the security-

constrained model in terms of expected cost by reducing

minimum load, startup and fuel costs. We also find that the

parallel implementation of the stochastic unit commitment

problem reduces the running time of the model to a level

that is acceptable for operational purposes. The Benders

algorithm also benefits from parallelization, although running

time in the Benders algorithm is dictated by the first-stage

subproblem. In contrast to the Lagrangian relaxation algo-

rithm which can scale to a very large number of scenarios

provided a sufficient number of processors is available,

further research is required in order to solve larger instances

of the security-constrained model.
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