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1. Introduction
Electricity restructuring aims at creating new competitive
environments that provide long-term consumer benefits.
A major obstacle to this goal is market power, both vertical
and horizontal. Vertical market power in electricity markets
has been substantially mitigated through the unbundling of
the generation, transmission and distribution sectors, and
through “open access” to transmission grids. However, hor-
izontal and locational market power remains an important
issue to policymakers due to the nonstorability of electric-
ity, the lack of demand elasticity, high market concentra-
tion, and limited transmission capacities.
Among the many proposed and implemented economic

means of mitigating horizontal market power is a two-
settlement approach, where forward contracts and spot
transactions are settled at different prices. Both theoreti-
cal analysis and empirical evidences in Allaz (1992), Allaz
and Vila (1993), von der Fehr and Harbord (1992), Green
(1999), Newbery (1998), and Powell (1993) have suggested
that forward contracting decreases sellers’ incentives for
manipulating spot market prices because, under two settle-
ments, the volume of trading that can be affected by spot
prices is reduced. Allaz (1992) assumes a two-period mar-
ket and demonstrates that if all producers have access to
a forward market, it leads to a prisoners’ dilemma type of
game among them. Allaz and Vila (1993) show that, as the

number of forward trading periods increases, producers lose
their ability to raise energy prices above their marginal cost.
Kamat and Oren (2004) analyze two-settlement markets
over two- and three-node networks and extend the results
in Allaz (1992) and Allaz and Vila (1993) to a system with
uncertain transmission capacities in the spot market.
Recent work in Yao et al. (2004, 2005) further extends

the above results to more realistic multinode and multizone
networks. Yao et al. (2004) consider flow constraints, sys-
tem contingencies, and demand uncertainties in the spot
market. Their numerical tests show that, like in the simple
cases, generation firms have incentives to engage in forward
contracting, which increases social surplus and reduces spot
prices. Yao et al. (2005) consider two alternative mech-
anisms for capping prices. They observe that a forward
cap, which can be induced by free entry of new generation
capacity, increases firms’ incentives for forward contract-
ing, whereas a regulatory cap in the spot market reduces
such incentives.
This paper continues the study of two-settlement elec-

tricity systems. Our objective is twofold. First, we intro-
duce a new model of Cournot equilibrium in two-settlement
markets that overcomes some shortcomings of the for-
mulations in Yao et al. (2004, 2005). As before, the
model is formulated as an equilibrium problem with equi-
librium constraints (EPEC), where each generation firm
solves a mathematical problem with equilibrium constraints
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(MPEC) (see Luo et al. 1996) parameterized by the other
firms’ forward commitments. The model assumes linear
demand functions, quadratic generation cost functions, and
a lossless DC network, resulting in the preceding equilib-
rium constraints in the form of a parametric linear com-
plementarity problem (LCP) (see Cottle et al. 1992). This
EPEC model presents a computational challenge when
applied to realistic-size systems. Therefore, our second goal
is to study the computational aspect of this EPEC model
and, by exploiting the problem structure, present in detail
the solution approach for the EPEC and MPECs arising in
our formulation.
Solving an EPEC problem amounts to solving simultane-

ously a set of MPEC problems, each parameterized by the
other MPECs’ decision variables (see Pang and Fukushima
2005 for more discussions on related topics). One solution
approach is to derive the optimality conditions for the reg-
ularization scheme of the MPECs (see Fletcher and Leyffer
2004, Scheel and Scholtes 2000, Scholtes 2001), and then
either solve the nonlinear complementarity conditions of
the EPEC as a whole (Hu 2002, Su 2005) or iteratively
solve the nonlinear complementarity conditions of individ-
ual MPECs (Hu 2002, Su 2005).
The second approach we will follow in this research

is to iteratively solve MPECs using MPEC-based algo-
rithms. There has been a growing literature on MPEC
algorithms. The monograph by Luo et al. (1996) presents
a comprehensive study of MPEC problems and provides
first- and second-order optimality conditions; it also
describes some iterative algorithms, such as the penalty
interior point algorithm (PIPA) and the piecewise sequential
quadratic programming (PSQP) algorithm (see also Jiang
and Ralph 1999). More recent advances in MPEC algo-
rithms can be found, for example, in Chen and Fukushima
(2004), Facchinei et al. (1999), Fukushima et al. (1998),
Fukushima and Tseng (2002), Fukushima and Lin (2004),
Hu and Ralph (2004), and Ralph and Wright (2004).
Fukushima et al. (1998) present a sequential quadratic pro-
gramming approach through a reformulation of the comple-
mentarity condition as a system of semismooth equations
by means of Fischer-Burmcister functionals. This algorithm
shares several common features with the PIPA in terms
of computational steps and convergence properties; how-
ever, it differs from the PIPA in the way of updating the
penalty parameters and determining the step sizes. Chen
and Fukushima (2004) consider MPECs whose lower con-
straints are a parametric P-matrix LCP. They smooth out
the complementarity constraints through the use of Fischer-
Burmcister functionals, from which the state variables are
viewed as implicit functions of the decision variables. The
MPECs can thus be solved by a sequence of well-behaved,
though nonconvex, nonlinear programs. Fukushima and
Tseng (2002) propose an �-active set algorithm for solving
MPECs with linear complementarity constraints and estab-
lish convergence to B-stationary points under the uniform

linear independence constraint qualification on the feasi-
ble set. This algorithm generates a sequence of variable
value sets such that the objective value is almost decreas-
ing, while maintaining the �-feasibility of the complemen-
tarity constraints.
The remainder of this paper is organized as follows. The

next section presents the EPEC model of two-settlement
markets. In §3, we give a compact representation of the
computational problem underlying our model. Section 4
summarizes the proposed MPEC and EPEC algorithms, and
§5 reports the computational tests. Finally, we explore some
economic implications of our test cases and draw conclu-
sions. More details of the algorithms are given in the online
appendix. An electronic companion to this paper is avail-
able as part of the online version that can be found at http://
or.journal.informs.org/.

2. The Model
We view two-settlement markets as a two-period Nash-
Cournot game: the forward market (period 0) and the spot
market (period 1), and we characterize the equilibrium of
this game as a subgame perfect Nash equilibrium (SPNE)
(see Fudenberg and Tirole 1991). In period 0, rational firms
enter into forward contracts, forming rational expectations
regarding the forward commitments of the rivals and the
period 1 equilibrium outcomes. Period 1 is a subgame with
two stages. In stage 1, nature picks a state defined by a real-
ization of the uncertain demand and system contingencies.
In stage 2, the firms whose information sets include the
state of nature and all forward commitments compete in a
Nash-Cournot manner, while the independent system oper-
ator (ISO) transmits electricity and sets congestion prices to
maximize social surplus of the entire system. The dynam-
ics of this model are illustrated in Figure 1, where the solid
lines represent time progress and the dashed lines denote
rational expectations.
From a mathematical perspective, the model is formu-

lated as an EPEC, which comprises a set of MPECs
that characterize the decisions of individual firms. In each
MPEC, the upper level is the firm’s utility-maximization
problem in the forward market, and the lower level,

Figure 1. The model dynamics.
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shared by all MPECs, consists of the period 1 equilibrium
conditions.
The following summarizes the main features of our

model that will be elaborated in the rest of this section.
• We consider a lossless DC approximation of an elec-

tricity network, where flows on transmission lines are
constrained by thermal capacities and random line out-
ages. This simplifies the ISO’s decision problem in the
spot market. Such approximations are reasonable for an
economic-oriented model considering that spot and day-
ahead market settlements in major locational-marginal-
price (LMP)-based systems like PJM, NYISO, and ISO-NE
apply linear programming algorithms to the linearized mod-
els of the transmission system.
• The demand side is price taking with elastic demand

functions subject to uncertainty (in the form of quantity
shifts) at each node. Such an essential assumption in a
Cournot type model might be problematic if the spot mar-
ket represents a real-time balancing market. On the other
hand, if the spot market represents a day-ahead market,
there is sufficient time for demand response to justify
this assumption. Alternative models that do not require
the assumption of elastic demand are conjectural varia-
tion models that lack theoretical support, or supply func-
tion equilibrium (SFE) models that have not yet been
sufficiently developed for application in the context of a
cuneated network.
• The supply side consists of Cournot producers with

multiple generators at various nodes that are subject to ran-
dom outages, who sell energy to a pool at uniform LMPs
set by the ISO.
• Generator outages, transmission line outages, and

demand uncertainty are represented in terms of system
contingent states that have known probabilities in the
forward market and are realized before the spot market
commences.1

• The forward market is organized at zonal hubs as
financial contracts traded at uniform market-clearing prices
and settled at spot hub settlement prices based on the nodal
LMPs. (Such different granularity in the forward and spot
markets is discussed in §2.1.2.)
• In the spot market, producers engage in a Nash-

Cournot competition (i.e., setting quantities) while the ISO,
who maintains the feasibility of the transmission con-
straints, behaves a la Bertrand by setting nodal price pre-
miums or, equivalently, congestion charges between nodes.
• The market is efficient; i.e., risk-neutral speculators

will arbitrage away any difference between the forward hub
prices and expected spot hub settlement prices (see §2.2).
To facilitate the computation, we will also assume that all
the agents, i.e., the firms and the ISO, are risk neutral, as
will be discussed later.

2.1. Period 1: The Spot Market

Electricity restructuring in different markets has been fol-
lowing different blueprints. In the United States, one pre-
vailing design is the so-called centrally dispatched market.

This type of market usually consists of a pool run by an
ISO that serves as a broker, or auctioneer, for wholesale
spot electricity market transactions. The ISO leases the
transmission system from transmission owners and controls
flows so as to maintain the feasibility of the network. It also
sets nodal price premiums and implied congestion charges
for bilateral energy transactions.
We consider a centrally dispatched wholesale spot mar-

ket with demand uncertainty, flow constraints, and sys-
tem contingencies. The network underlying the spot market
consists of a set N of nodes and a set L of transmission
lines. There is a set G of competitive firms, each operat-
ing the units at a subset of locations Ng ⊆ N . We assume
that at most one generation firm operates at a node, and
if necessary, we can introduce artificial nodes to meet this
assumption. We also assume, for convenience, that there is
elastic demand at each node so that pure generation nodes
are represented by a demand function intersecting the quan-
tity axis at a very small value.

2.1.1. The ISO’s Decision Making. In each state
c ∈C, the ISO controls the import/export rci at each
node i ∈N (using the convention that positive quantities
represent imports) and sets the corresponding locational
marginal prices. These quantities must satisfy the network
feasibility constraints, that is, the resulting power flows
should not exceed the thermal limits Kc

l of the transmission
lines in both directions. We model the transmission network
via a lossless DC (i.e., linear) approximation of Kirchhoff’s
laws (see Chao and Peck 1996). Specifically, flows on lines
can be calculated using power transfer distribution factor
(PTDF) Dc

l i, which specifies the proportion of flow on a
line l ∈ L resulting from an injection of one-unit electricity
at a node i ∈N and a corresponding one-unit withdrawal at
some fixed reference node (also known as the slack bus).
Moreover, because electricity is not economically storable,
the load and generation must be balanced at all times so all
import and export quantities must add up to zero.
The ISO’s objective is to maximize social welfare of

the entire system. That is the aggregated area under the
nodal inverse demand functions (IDFs) Pc

i �·�, which repre-
sent the total consumer willingness-to-pay, less the sum of
all generation costs Ci�·�. Mathematically, the ISO solves
the following problem parametric on the firms’ production
decisions ��qc

i �i∈N �:

max
rci � i∈N

∑
i∈N

(∫ rci +qci

0
Pc
i ��i� d�i −Ci�q

c
i �

)

subject to
∑
i∈N

rci = 0 (1)

∑
i∈N

Dc
l ir

c
i �−Kc

l  l ∈ L (2)

∑
i∈N

Dc
l ir

c
i �Kc

l  l ∈ L� (3)

In the above formulation, we have excluded the nonnega-
tivity constraints rci + qc

i � 0, i ∈ N , by implicitly assum-
ing an interior solution with respect to these constraints.
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The numerical results in §5 validate this simplification, but
that might not be true in general. Let pc, �c

l−, and �c
l+

be the Lagrange multipliers corresponding to (1)–(3). The
first-order necessary conditions (the Karush-Kuhn-Tucker
(KKT) conditions) for the ISO’s problem are

Pc
i �q

c
i + rci �−pc −�c

i = 0 i ∈N

�c
i =

∑
l∈L

��c
l+D

c
l i −�c

l−D
c
l i� i ∈N

∑
i∈N

rci = 0

0� �c
l−⊥

∑
i∈N

Dc
l ir

c
i +Kc

l � 0 l ∈ L

0� �c
l+⊥Kc

l −
∑
i∈N

Dc
l ir

c
i � 0 l ∈ L�

The first KKT condition herein implies that

qc
i + rci = �P c

i �
−1�pc +�c

i � i ∈N

and consequently, due to (1),∑
i∈N

qc
i =

∑
i∈N

�Pc
i �

−1�pc +�c
i �� (4)

This equation represents the aggregate demand function
in the network relating the total consumption quantity to
the reference node price pc and the nodal price premiums
��c

i �i∈N , which determine the relative nodal prices. The cor-
responding congestion charges for transmission from node
i ∈ N to node j ∈ N that will prevent arbitrage between
nodal energy transactions and bilateral transactions among
nodes must be �c

j −�c
i .

2.1.2. The Firms’ Decision Making. In the spot mar-
ket, each firm g ∈G determines the outputs from its units
at Ng . A variety of modeling approaches have been pro-
posed to simulate generation firms’ decision making (see,
for example, Hobbs 2001, Neuhoff et al. 2005, Smeers and
Wei 1997, and Wei and Smeers 1999). One modeling con-
sideration regarding the suppliers’ strategic behaviors in
these models is whether or not they game the congestion
prices set by the ISO. Following Hobbs (2001) and Neuhoff
et al. (2005), we classify spot market models into two basic
approaches.
The first approach assumes that generation firms antici-

pate the impact of their production on the congestion prices
set by the ISO and take that effect into account in their
production decisions. The resulting formulation of the spot
market is a multileader, one-follower Stackelberg game
(Neuhoff et al. 2005). Each producer g solves the following
MPEC, in which the optimality conditions for the ISO’s
program are the constraints shared by all the firms:

max
qci � i∈Ng

∑
i∈Ng

P c
i �r

c
i + qc

i �q
c
i −

∑
i∈Ng

Ci�q
c
i �

subject to 0� qc
i � q̄c

i  i ∈Ng

Pc
i �q

c
i + rci �−pc +∑

l∈L
��c

l−D
c
l i −�c

l+D
c
l i�= 0

i ∈N∑
i∈N

rci = 0

0� �c
l−⊥

∑
i∈N

Dc
l ir

c
i +Kc

l � 0 l ∈ L

0� �c
l+⊥Kc

l −
∑
i∈N

Dc
l ir

c
i � 0 l ∈ L�

The equilibrium problem among the above MPECs rep-
resents a “generalized Nash game” (see Harker 1991), and
it could have zero or multiple equilibria (see Borenstein
et al. 2000). On the other hand, even if some pure-strategy
equilibrium is found, it can be degenerate; that is, firms will
find it optimal to barely congest some transmission lines
to avoid congestion charges (see Oren 1997). Moreover,
this formulation would lead to a two-settlement model with
three decision levels, which makes an equilibrium solution
for the two-settlement market computationally intractable.
The second approach assumes that the firms do not

fully anticipate the impact of their production decisions
on congestion charges (see, for example, Metzler et al.
2003), which can be interpreted as a “bounded rational-
ity” assumption. In this approach, the ISO is a Nash player
that moves simultaneously with the generation firms. The
firms determine their supply quantities to maximize their
profits, but they act as price takers with respect to transmis-
sion costs. The market equilibrium is then determined by
aggregating the optimality conditions for the firms’ and the
ISO’s problems, which result in a mixed complementarity
problem or a variational inequality problem.
There are still two modeling options within this simul-

taneous-move framework. The first option assumes that
the ISO, like the generation firms, is a Cournot player
whose strategic variables are the import/export quantities
at the nodes (see Neuhoff et al. 2005; and Yao et al. 2004,
2005). Hence, each firm g ∈G solves the following profit-
maximization problem:

max
qci � i∈Ng

∑
i∈Ng

P c
i �r

c
i + qc

i �q
c
i −

∑
i∈Ng

Ci�q
c
i �

subject to 0� qc
i � q̄c

i  i ∈Ng�

Note that because this program is parameterized by �rci �i∈N ,
it can be decomposed into �Ng� subproblems, each corre-
sponding to the production decision at one node. There-
fore, this model will yield a spot market equilibrium that is
invariant to the generation resource ownership structure (i.e,
it does not matter whether a firm owns one or multiple
generators). Moreover, under this formulation, when the
network constraints (2)–(3) are nonbinding, the equilibrium
solution predicts uniform nodal prices that are systemati-
cally higher than the Cournot equilibrium price correspond-
ing to a single market with the aggregated system demand
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function (Neuhoff et al. 2005). These aspects make the
choice of import/export quantities as the ISO’s strategic
variables (which we have used in our previous work; see
Yao et al. 2004, 2005) unsatisfactory.
The second option we employ in this paper is to use the

locational price premiums as the ISO’s strategic variables.
This option can be viewed as a mixed Cournot-Bertrand
model, where the ISO behaves a la Bertrand while the gen-
eration firms are Cournot players with respect to each other
(i.e., set quantities), but treat the ISO as a price setter. Thus,
each firm chooses its production quantities to maximize
profits with respect to the residual demand defined implic-
itly by (4). In this formulation, the reference bus price pc

is determined implicitly by the aggregate production deci-
sions of all the generation firms, just as in a regular Cournot
game. However, these production decisions and the implied
reference node price also depend on the nodal premiums
��c

i � set by the ISO. The resulting problem solved by each
generation firm is

max
qci � i∈Ngp

c

∑
i∈Ng

�pc +�c
i �q

c
i −

∑
i∈Ng

Ci�q
c
i �

subject to 0� qc
i � q̄c

i  i ∈Ng∑
i∈N

qc
i =

∑
i∈N

�Pc
i �

−1�pc +�c
i ��

This modeling option takes account of the resource
ownership structure and, when the network constraints
are relaxed, the locational price premiums go to zero
so that the model produces the same equilibrium solu-
tion as the Cournot equilibrium applied to the aggregate
system demand. Unfortunately, this approach has another
shortcoming which manifests itself if we reduce the capac-
ity of a radial transmission line to zero or, more realis-
tically, if it is common knowledge that a radial line is
constantly congested. In such situations, subnetworks con-
nected by saturated radial lines are effectively decoupled
from a competitive interaction point of view. The demand
functions on both sides of the saturated line will be shifted
by the import/export quantities, but their slope stays the
same so generators will behave as local monopolists. For
example, in the case of a symmetric two-node one-line
network, reducing the line capacity to zero creates two
symmetric local monopolies. However, in this situation,
our model will produce a symmetric duopoly equilibrium
with prices that are systematically lower than the loca-
tional monopoly prices. Unfortunately, there is no satisfy-
ing solution to this problem because a Nash equilibrium
in a congestion-prone network depends on the conjectured
common knowledge with regard to the extent of possi-
ble competition across transmission lines. Such conjectures
affect the perceived elasticity of the residual demand by
the competing firms and hence their strategic behaviors.
The discontinuities in reaction functions and the resulting
equilibrium prices when a single transmission line separat-
ing two competitors in a two-node system switches from a

congested to an uncongested regime, have been eloquently
demonstrated in Borenstein et al. (2000). Such discontinu-
ities become intractable in a meshed system with multiple
nodes.
We partially address the above issue in a sequel paper

(Yao et al. 2006) through a hybrid approach that requires
a prior identification of “systematically congested” links
(e.g., path 15 in California or the link between France and
the United Kingdom across the English Channel), which
effectively decouples the network into strategic subnet-
works. In this paper, however, we will assume that the net-
work is fully connected physically and strategically so that
competing firms behave as if the demand at all nodes is
contestable.
Our two-settlement model permits different granularity

in the forward and spot markets. This is achieved by divid-
ing the network into a set Z of zones (or trading hubs),
each consisting of a cluster of nodes. By allowing differ-
ent granularity in the forward and spot markets, we are
able to capture the case where the two settlements repre-
sent long-term forward contracts typically traded at hubs
and nodal day-ahead spot markets, as well as the case
where the forward market is in the day ahead and the
spot market is at real time, both of which are typically
nodal. In particular, our model assumes that the spot mar-
ket supply and demand at each node are settled at the nodal
prices, whereas the forward contracts are traded at zonal
hub forward prices and settled at the corresponding spot
hub, or zonal settlement, prices �ucz�z∈Z, which are defined
as weighted averages of the nodal prices in the respective
zones. Thus, the nodal spot prices resulting from the strate-
gic interaction in the spot market will affect the settlement
of the forward contracts, which is debited from the firms’
spot market profits, through these hub prices. The nodal
weights ��i�i∈N are assumed to be exogenous parameters
based on historical load shares at the nodes. This assump-
tion is consistent with common practice, for example, at
the Pennsylvania-Jersey-Maryland (PJM) western hub. In
mathematical terms, each firm g ∈G solves in the spot mar-
ket the following profit-maximization problem parametric
on the locational price premiums ��c

i �i∈N and on its own
forward contracts �xgz�z∈Z:

max
qci � i∈Ngp

c

∑
i∈Ng

�pc +�c
i �q

c
i −

∑
z∈Z

uczxgz −
∑
i∈Ng

Ci�q
c
i �

subject to ucz =
∑

i� z�i�=z

�pc +�c
i ��i

qc
i � 0 i ∈Ng (5)

qc
i � q̄c

i  i ∈Ng (6)∑
i∈N

qc
i =

∑
i∈N

�Pc
i �

−1�pc +�c
i �� (7)

Let !c
i−, !

c
i+, and "c

g be the Lagrange multipliers corre-
sponding to (5)–(7). Then, the KKT conditions for firm g’s
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program are (after substituting the first constraint into the
objective function)

pc +�c
i −"c

g −
dCi�q

c
i �

dqc
i

+!c
i− −!c

i+ = 0 i ∈Ng

"c
g

∑
i∈N

d�Pc
i �

−1�pc +�c
i �

dpc
+∑

i∈Ng

qc
i −

∑
i∈N

�ixgz�i� = 0
∑
i∈N

qc
i =

∑
i∈N

�Pc
i �

−1�pc +�c
i �

0� !c
i−⊥qc

i � 0 i ∈Ng

0� !c
i+⊥q̄c

i − qc
i � 0 i ∈Ng�

Here, the first two conditions are the derivatives of the
Lagrangian function with respect to qc

i and p
c, respectively.

2.1.3. Period 1 Equilibrium Conditions. Aggregating
the KKT conditions for the firms’ and the ISO’s programs
yields the spot market equilibrium conditions, which, in
general, form a mixed nonlinear complementarity problem.
It becomes a mixed LCP when both the nodal demand
functions and the marginal cost functions are linear, as is
assumed in the remainder of this paper.
Let the inverse demand functions and the cost functions

be, respectively,

Pc
i �q�= ac − bci q i ∈N

Ci�q�= diq+
1
2
siq

2 i ∈N�

Then, the market equilibrium conditions become

pc+�c
i −"c

g−di−siq
c
i +!c

i−−!c
i+=0 i∈Ng g∈G (8)

pc = ac −
∑

i∈N �c
i /b

c
i∑

i∈N 1/bci
−

∑
i∈N qc

i∑
i∈N 1/bci

(9)

−"c
g

∑
i∈N

1
bci

+∑
i∈Ng

qc
i −

∑
i∈N

�ixgz�i� = 0 g ∈G (10)

0� !c
i−⊥qc

i � 0 i ∈N (11)

0� !c
i+⊥q̄c

i − qc
i � 0 i ∈N (12)∑

i∈N
rci = 0 (13)
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c
i −pc −�c

i = 0 i ∈N (14)
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l∈L

��c
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c
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0� �c
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l −
∑
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Dc
l ir

c
i � 0 l ∈ L� (17)

Here, (8)–(12) are the aggregated KKT conditions for the
firms’ problems, and (13)–(17) are the KKT conditions for
the ISO’s problem. Under the assumption of linear demand
functions and quadratic convex cost functions, the firms’
and the ISO’s programs are strictly concave-maximization
problems, so (8)–(17) are also sufficient. Note that (9) can
be excluded from the preceding market equilibrium condi-
tions because it is implied by (13) and (14).

2.2. Period 0: The Forward Market

The forward market is assumed to be standardized and liq-
uid such that all forward contracts in a zone are settled
at equal prices. It is also assumed that there are enough
risk-neutral arbitrageurs in the markets, and they will elim-
inate any arbitrage opportunity arising between the for-
ward prices and the expected spot zonal settlement prices.
Consequently, the forward price (hz) in each zone z ∈ Z
is equal to the expected values of the corresponding spot
hub prices over all contingent states (c ∈ C) with respec-
tive probabilities (Pr�c�) (we assume for simplicity that the
state probabilities and the market risk-neutral probabilities
are identical). This is referred to as a “no-arbitrage” or
“perfect-arbitrage” condition.
The risk-neutral firms simultaneously determine their

forward contract quantities �xgz�g∈Gz∈Z so as to maximize
the total profit from both the forward contracts and the spot
productions, while anticipating the forward commitments
of the rivals as well as the equilibrium outcome in period 1.
In mathematical terms, each firm g ∈G solves the follow-
ing MPEC program, where {(8)–(17)}c∈C form the inner
problem:

max
(g

∑
z∈Z

hzxg z +
∑
c∈C
Pr�c�)c

g

subject to (g = ��xg z�z∈Z �r
c
i  q

c
i  !

c
i+ !

c
i−�i∈Nc∈C

·��c
l−�

c
l+�l∈Lc∈C�

)c
g =

∑
i∈Ng

�pc +�c
i �q

c
i −

∑
z∈Z

uczxg z −
∑
i∈Ng

Ci�q
c
i �

c ∈C

hz =
∑
c∈C
Pr�c�ucz z ∈Z

ucz =
∑

i� z�i�=z

�pc +�c
i ��i z ∈Z c ∈C and

�8�–�17� c ∈C�

The equilibrium problem among the preceding MPECs
is an EPEC. A solution to this EPEC is a set of the
variables, including the firms’ forward and spot decisions,
the ISO’s redispatch decisions, and the aforementioned
Lagrange multipliers, at which all firms’ MPEC problems
are simultaneously solved, and no market participant is
willing to unilaterally change its decisions in either market.
It is worth noting that, from a philosophical point of

view, the above formulation might appear internally incon-
sistent because firms seem to base their decisions in the
forward market on information that is not available to them
in the spot market. To resolve this inconsistency, we might
assume that forward commitments are based on correct
forecast of the expected spot market outcomes rather than
on the detailed information we use to replicate that forecast.
Furthermore, it is also reasonable to assume that forward
contracting decisions and spot market production decisions
are made by functionally independent entities within a firm
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operating on different time horizons and employing differ-
ent forecasting tools. So while the decisions made in the
spot market are informed of the forward contracting posi-
tions of the firm, they do not necessarily account for all the
global information that led to these contracting decisions.

3. A Compact Representation of
the Model

In this section, we compact the notation to streamline
the subsequent algorithmic presentation by grouping and
relabelling the variables, including the dual variables, as
follows:
• xg (∈R�Z��: vector of the forward commitments by firm

g ∈G.
• rc (∈R�N ��: vector of the ISO’s import/export quanti-

ties in state c ∈C.
• qc (∈R�N ��: vector of the firms’ generation quantities

in state c ∈C.
• !c

− !
c
+ (∈R�N ��: vectors of the Lagrange multipliers

associated with the generation capacity constraints in state
c ∈C.
• �c

−�
c
+ (∈R�L��: vectors of the Lagrange multipliers

associated with the flow capacity constraints in state c ∈C.
In addition, the parameters are relabelled as
• + �∈R�N �×�Z��: a matrix where the �i z�th element is

−1 if z�i�= z, and 0 otherwise.
• q̄c �∈R�N ��: vector of the generator capacity bounds in

state c ∈C.
• Bc �∈R�N �×�N ��: a diagonal matrix for state c ∈ C,

where the �i i�th element is bci .• d �∈R�N ��: vector of the marginal generation costs.
• Dc �∈R�L�×�N ��: A PTDF matrix for state c ∈C, where

the �l i�th element is Dc
l i.• kc �∈R�L��: vector of the flow capacities of the trans-

mission lines in state c ∈C.
• Xg �∈R�Z��: feasible region of xg for each firm g ∈G.

3.1. Compact Representation of the Inner
Problem ��8�–�17��c∈C

Let e ∈ R�N � be a vector with all 1s. Then, (13) and (14)
become[
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]
−
[
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]
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[
Bc e

eT 0

][
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]

+
[
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0
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Solving rc and pc yields
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Hence,
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Now, consolidating conditions (8)–(10), we have
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where Hc is a matrix such that

�hc�ij =




2+ si
eT B−1

c e
if i= j

2
eT B−1

c e
if i �= j and the units at nodes i
and j belong to the same firm,

1
eT B−1

c e
otherwise.

Next, let wc and yc be two variable vectors, and tc, Ac,
and Mc be constants such that

wc =




q̄c − qc
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The preceding applied to (8)–(17) leads to

wc = tc +Ac

∑
g∈G

xg +Mcy
c

wc
� 0 yc � 0 �yc�T wc = 0� (18)

Finally, aggregating (18) for all states c ∈C, we present
the inner problem {(8)–(17)}c∈C as

w= t+A
∑
g∈G

xg +My w� 0 y � 0 yT w= 0
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where y and w are variables, and t, A, and M are constants
as follows:

y = 9yc c ∈C: w= 9wc c ∈C: t = 9tc c ∈C:

A= 9Ac c ∈C: M =



M1 0

M2

· · ·
0 M�C�


 �

3.2. Compact Representation of
the MPEC Problems

In period 0, each firm g ∈ G solves the following MPEC
problem:

�g�x̄−g�� min
xg yw

fg�xg yw x̄−g�

subject to xg ∈Xg

w= t+Ax̄−g +Axg +My

w� 0 y � 0 yT w= 0� (19)

In this program, xg is the decision variable, �yw� are the
state variables, and x̄−g =

∑
k∈G\�g� x̄k is a parameter that is

the sum of other firms’ forward contract quantities.
We denote the EPEC problem in period 0 as ��g�·��g∈G.

An equilibrium of this EPEC problem in period zero is a
set ��x̄g�g∈G yw� that solves �g�x̄−g� for all g ∈ G, i.e.,
�x̄g yw� ∈ SOL��g�x̄−g��, where SOL��g�x̄−g�� denotes
the solution set of �g�x̄−g�.

4. Solution Approach
To solve the EPEC as stated above, we propose an iterative
scheme that solves in turn the MPEC problems by holding
fixed the decision variables of the other MPEC problems.

4.1. The MPEC Algorithm

The MPEC algorithm is motivated by the following prop-
erties of �g�x̄−g�.
(1) fg�xg yw x̄−g� is quadratic with respect to

�xg yw�.
(2) M is positive semidefinite. To show this, we first

note that Hc is symmetric positive-definite. Second,

vTQcv= vT B−1
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c eeT B−1
c v
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c e
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c e�2
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Hence, Qc is symmetric positive semidefinite. Now,
because
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0
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we conclude that Mc is positive semidefinite.

(3) Given x̄−g , the constraint set (19) is an LCP param-
eterized by xg . Moreover, for any xg ,

wc =




q̄c

(
−ace+d+ +x−g ++xg

eT B−1
c e

)+

kc

kc





yc =




(
−ace+d+ +x−g ++xg

eT B−1
c e

)−

0

0

0



 c ∈C

satisfy the linear constraints of this LCP. By Theorem 3.1.2
in Cottle et al. (1992), the LCP problem (19) is always
solvable. Recall that such solvability is achieved by assum-
ing that the demand functions are linear and unconstrained
and that the cost functions are quadratic.
In addition, we assume that for each state in period 1, the

active constraints at the optimal solutions to the period 1
problems are linearly independent. By Theorem 3.1.7 in
Cottle et al. (1992), (19) is always uniquely solved for all
xg ∈ Xg , i.e., its solution �yw� is an implicit function of
xg , and �g�x̄−g� can be reduced to an optimization problem
with respect only to xg .
We developed an algorithm for solving �g�x̄−g� via a

“divide-and-conquer” approach (see Figure 2). The pro-
posed MPEC algorithm is a variant of the PSQP algorithm
in Jiang and Ralph (1999) and Luo et al. (1996), but it
specializes the PSQP algorithm by taking advantage of the
preceding properties of �g�x̄−g�. Specifically, the partition
of Xg is determined by the feasible complementary bases
(see Cottle et al. 1992, Definition 1.3.2) of the LCP prob-
lem (19). In each polyhedron, we derive the explicit affine
functions for the state variables in terms of xg , and solve
a quadratic program involving only xg for determining a
stationary point within this polyhedron. An xg is a station-
ary point of �g�x̄−g� if and only if it is a stationary point

Figure 2. A typical partition of Xg .

A

Pg(α1)

Pg(α2)

Xg
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with respect to all polyhedra containing itself. Through
parametric LCP pivoting, the proposed MPEC algorithm
searches in the space of feasible xg for a B-stationary point
of �g�x̄−g� along adjacent polyhedra. Details of the algo-
rithm are described in online Appendix 1.

4.2. The EPEC Scheme

To find a B-stationary equilibrium of ��g�·��g∈G, we start
with an arbitrary set �x̄0g ∈Xg�g∈G. At each outer iteration k,
we compute x̄kg from �g�x̄

k
−g� for each g ∈G while taking

x̄k−g as given. The algorithm terminates when the improve-
ment of the design variables in two consecutive iterations
is reduced to a predetermined limit, or when the number
of iterations reaches a predetermined upper bound. Online
Appendix 2 discusses this scheme. Unlike the approach
described in Hobbs et al. (2000), the current scheme carries
�yw�, which always solves (19), among the MPEC prob-
lems. This offers the flexibility of terminating the MPEC
algorithm before it reaches a B-stationary point.

5. Computational Results
We implemented in MATLAB the MPEC and EPEC algo-
rithms that utilize the optimization toolbox for solving
quadratic programs. In the implementation, we treat any
number below 10−16 as zero to account for round-off errors.
Tests of the algorithms are performed on both randomly
generated problems and representative test cases specific to
the context of electricity markets.

5.1. Tests of the MPEC Algorithm

The main computational effort involved in the EPEC
scheme is to solve the MPECs. While our MPEC algorithm
is guaranteed to terminate in finite steps, its actual perfor-
mance is not known. Indeed, linear and also quadratic pro-
grams with linear complementarity constraints are shown to
be NP-hard in Luo et al. (1996). In this section, we test the
algorithm on a randomly generated set of generic MPEC
problems with quadratic objective functions. Specifically,
these MPEC problems are of the form

min
x y

1
2
9x y:P

[
x

y

]
+ cT

[
x

y

]

subject to Ax+ a� 0

w=Nx+My+ q

w� 0 y � 0 wT y = 0

where P , A,M (a positive semidefinite matrix), N , c, a, and
q are constant matrices and vectors with suitable dimen-
sions. We use the “QPECgen” package by Jiang and Ralph
(1999) to generate these MPEC programs.
In the tests, we launch the MPEC algorithm from random

starting points. Table 1 summarizes the test results. The
first three columns list the dimensions of the decision and

Table 1. Test results of the MPEC algorithm.

Iterations
Total

Dim(x) Dim(y) Dim(w) dimension Min Max Average

25 50 50 125 3 34 16
50 50 50 150 7 35 18
50 100 100 250 2 49 22
100 100 100 300 10 43 23
150 100 100 350 2 30 14
100 200 200 500 3 38 23
200 200 200 600 2 88 29
200 500 500 1200 2 76 43

state variables, and columns 5 to 7 report the minimum,
maximum, and average numbers of iterations, respectively.
We observe that:
• The average number of iterations increases moderately

as the dimension of the MPEC problems grows (except for
the case of n= 150 and m= 100), but there does not exist
such a trend for the minimum and maximum numbers of
iterations.
• The algorithm is able to effectively solve MPEC

problems with relatively large dimensions. Note that all
instances in Table 1 have greater dimensions than those
reported in Jiang and Ralph (1999).

5.2. Tests of the EPEC Scheme

We now test the MPEC/EPEC algorithms on an EPEC
problem derived from the stylized Belgian electricity
system which was also used in our previous work (Yao
et al. 2005). This system is originally composed of 92
380 kv and 220 kv transmission lines including some lines
in neighboring countries for capturing the effect of loop
flow. Parallel lines between the same pairs of nodes have
been collapsed into single lines with equivalent electric
characteristics. In total, the stylized network comprises 71
transmission lines and 53 nodes (see Figure 3). Generation
units in this system are located, respectively, at the nodes
�7 910 1114 222431 333537 404142 44 47,
485253�. The ownership structure, zonal aggregation in
the forward market, and contingency states are fictitious
and so are the nodal demand functions, although they are
calibrated to actual demand information.
Table 2 lists the nodal information for this test prob-

lem, including the IDF slopes, the marginal generation
costs (marginal costs are constant in this example), and the
capacity bounds of the generation units. Table 3 summa-
rizes the impedance of the transmission lines and the cor-
responding thermal limits. Only lines 22-49, 29-45, 30-43,
and 31-52 are assumed prone to congestion in this exam-
ple. The method for calculating the state-dependent PTDF
matrices from the network data can be found in standard
electrical engineering textbooks (e.g. Hambley 2004) and
will be omitted here due to space limitation.
We assume six independent contingency states in the

spot market.2 The first three states correspond to demand
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Figure 3. Belgian high-voltage network.
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uncertainty, while all generation units and all transmission
lines are rated at their full capacities. States 4, 5, and 6 have
the same demand levels as state 2, but they represent the
system contingencies resulting from transmission or gener-
ator outages. State 4 denotes a transmission breakdown on
lines 31-52. States 5 and 6 capture the unavailability of two
generation units at nodes 10 and 41, respectively. The price
intercepts of the hypothetical IDFs and the probabilities of
the six states are given in Table 4.
The stylized system has the dimension 2�C�× ��N �+ �L��

= 684 of y (and w), and the total number of possible parti-
tions is 2684. In this implementation, we terminate the EPEC
algorithm at an outer iteration k if the relative improve-
ment of the MPECs’ decision variables (forward commit-

Table 2. Nodal data.

IDF slope Marg. cost Capac. IDF slope Marg. cost Capac. IDF slope Marg. cost Capac.
Node $/MW2 $/MW MW Node $/MW2 $/MW MW Node $/MW2 $/MW MW

1 1 — 0 19 0�68 — 0 37 1 10 1399
2 0�82 — 0 20 1�05 — 0 38 0�85 — 0
3 1�13 — 0 21 1 — 0 39 1 — 0
4 1 — 0 22 1�1 19 602 40 1�15 10 1,378∗
5 0�93 — 0 23 1 — 0 41 1 21 522
6 0�85 — 0 24 0�75 10 2985 42 0�79 18 385
7 1 45 70 25 1 — 0 43 0�68 — 0
8 1 — 0 26 0�8 — 0 44 1�03 20 538
9 0�88 18 460 27 1�13 — 0 45 1 — 0
10 0�9 18 121∗ 28 1 — 0 46 1 — 0
11 1 20 124 29 0�93 — 0 47 1 — 0
12 0�73 — 0 30 0�85 — 0 48 0�73 22 258
13 1 — 0 31 1 18 712 49 1�2 — 0
14 0�85 13 1164 32 1 — 0 50 1�5 — 0
15 1 — 0 33 0�88 20 496 51 1 — 0
16 1�3 — 0 34 0�5 — 0 52 1 20 879
17 1 — 0 35 1 25 1053 53 0�7 58 95
18 0�79 — 0 36 0�73 — 0

∗These numbers are zeros in states 5 and 6, respectively.

ments) is no greater than 10−8, i.e., ��x̄kg − x̄k−1g �g∈G� �

10−8��x̄k−1g �g∈G��
We ran the tests with different numbers of zones and

firms, and for each test we start with randomly generated
decision variables of the MPECs. In the implementation,
the MPEC algorithm was limited to execute a single inner
iteration. We also tried some other rules for terminating the
MPEC algorithm; however, they do not provide compara-
ble results.3 The test results are summarized in Table 5.
Columns 4 to 9 list the minimum, maximum, and average
numbers of outer iterations and quadratic programs, respec-
tively. In addition, Tables 6 and 7 report the outer iterations
of the firms’ total forward commitments for the cases of
two zones and two or three firms. We find that:
• For all test problems, the EPEC scheme converges

rapidly.
• There exists no clear relationship between the problem

dimension and the number of iterations. However, the total
number of quadratic programs grows as the number of firms
increases.
• In the tests, the EPEC scheme quickly reaches the

proximity of the B-stationary equilibrium, after which it
only improves the significant decimal digits (see, for exam-
ple, Tables 6 and 7).

6. Economic Interpretation of the Results
The EPEC algorithm is not guaranteed to locate a (global)
Nash equilibrium; however, as we will demonstrate in this
section, it produced results that are consistent with eco-
nomic intuition.
In particular, we considered two hypothetical generator

ownership structures with two zones in the stylized Belgian
network: nodes 1 through 32 belong to zone 1, and the
remaining nodes to zone 2. The first structure has two firms,
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Table 3. Belgian transmission network data.

Imped. Capac. Imped. Capac. Imped. Capac.
Line (Ohm) (MW) Line (Ohm) (MW) Line (Ohm) (MW)

1-2 23716 345 16-17 2633 5154 34-37 7048 1350
1-15 6269 345 17-18 4236 1715 34-52 12234 1350
2-15 8534 345 17-19 1939 5140 35-41 14204 1350
3-4 5339 240 17-20 8071 1179 35-52 9026 1420
3-15 11686 240 18-19 1465 13710 36-41 15777 2770
4-5 6994 510 19-52 11321 1179 36-42 11186 2840
4-12 5887 405 20-23 13165 1316 36-43 15408 2770
4-15 3644 240 21-22 47621 1420 37-39 66471 1420
5-13 6462 510 22-23 11391 1350 37-41 21295 1350
6-7 23987 300 22-49 9138 1350 38-39 10931 1650
6-8 9138 400 23-24 41559 5540 38-51 17168 946
7-21 14885 541 23-25 16982 1420 39-51 8596 1650
7-32 5963 410 23-28 8610 1350 40-41 11113 2770
8-9 45360 400 23-32 33255 1350 41-46 11509 2840
8-10 26541 800 25-26 134987 1420 41-47 13797 1420
8-32 11467 400 25-30 11991 1420 43-45 34468 1350
9-11 20157 410 27-28 64753 1420 44-45 47128 1420
9-32 10012 375 28-29 38569 1350 46-47 34441 1420
11-32 18398 375 29-31 284443 1350 47-48 14942 1420
12-32 4567 405 29-45 14534 1350 48-49 6998 1420
13-14 121410 2700 30-31 269973 1420 49-50 5943 3784
13-15 5094 790 30-43 10268 1420 50-51 2746 5676
13-23 5481 2770 31-52∗ 1453 400 52-53 1279 2840
15-16 8839 400 33-34 40429 1420

∗This line breaks down in state 4.

where the units at the node set �9112231353741
475253� belong to the first firm and the remaining units
to the second firm. The second structure is composed
of three firms, operating the units at �711333741
5253�, �101424404448�, and �92231354247�,
respectively.
We observe that, under both resource structures, firms

have strategic incentives for forward contracting as reported
in Tables 6 and 7. However, unlike in the single-node case
where all firms have strategic incentives for short forward
positions (i.e., to sell forward) as shown in Allaz (1992),
here some firms might take long forward positions (i.e.,
buy forward). In the duopoly case, for example, firm 1

Table 4. States of the Belgian spot market.

IDF
intercept

State ($/MW2) Probability Type and description

1 1000 0.20 Demand uncertainty: Demands
are on the peak.

2 500 0.50 Demand uncertainty: Demands
are at shoulder.

3 250 0.20 Demand uncertainty: Demands
are off-peak.

4 500 0.03 Contingency of line breakdown:
Line 31-52 goes down.

5 500 0.03 Contingency of generation outage:
Plant at node 10 goes down.

6 500 0.04 Contingency of generation outage:
Plant at node 41 goes down.

buys 552 MWh in the forward market, but firm 2 is short
1,747 MWh, so the supply side as a whole sells forward,
which is qualitatively consistent with the result in Allaz
(1992). A generation firm could take long forward positions
when an arbitrage opportunity is raised from a discrepancy
between its expected generator-location-weighted average
nodal price in a zone and the zonal settlement price. In
such a case, a firm’s speculative incentive for long positions
may overwhelm the strategic “Allaz-Vila”-type incentive
for selling forward. Such an action, however, will typi-
cally induce rival firms to increase forward sales due to
the increased treat of low spot prices, as observed in our
duopoly example.
In Figure 4, we plot the expected spot nodal prices under

two settlements and contrast them with the corresponding

Table 5. Test results of the EPEC algorithm.

Quadratic
Outer iterations programs

�Z� �G� Dim(y) Min Max Average Min Max Average

2 2 684 4 8 6 15 29 24
2 3 684 8 11 9 47 65 55
2 4 684 7 12 10 55 94 77
3 2 684 2 4 3 7 15 11
3 3 684 4 6 5 23 34 29
3 4 684 4 10 8 32 79 62
4 2 684 3 9 7 11 36 27
4 3 684 7 21 13 41 126 80
4 4 684 9 25 15 70 197 122



Yao, Adler, and Oren: Modeling and Computing Two-Settlement Oligopolistic Equilibrium
Operations Research 56(1), pp. 34–47, © 2008 INFORMS 45

Table 6. Iterations of the firms’ total forward
commitments (two firms).

Outer iteration Firm 1 Firm 2

0 0�000000 0�000000
1 −513�063752 575�219726
2 −331�223467 1546�721883
3 −545�254227 1747�692181
4 −552�287608 1747�692181
5 −552�287608 1747�692181

nodal prices in the equilibrium of a single-settlement mar-
ket which is obtained by constraining all firms’ forward
positions to zero. We first note that, whether or not there
exists a forward market, the three-firm structure yields
lower spot equilibrium prices than the Duopoly structure,
as one would expect. Moreover, under both the two- and
three-firm structures, a two-settlement equilibrium results
in lower spot equilibrium prices at most nodes than a sin-
gle settlement. However, nodes 29 and 31 do not follow
this trend. Consequently, two settlements increase social
welfare and consumer surplus. These results suggest that
the welfare-enhancing effect described in Allaz (1992) and
Allaz and Vila (1993) generalizes to the case with flow
congestion, system contingency, and demand uncertainty,
although that effect is quantitatively different due to gener-
ator capacities and transmission limits.

7. Concluding Remarks
We study the Nash-Cournot equilibrium in two-settlement
electricity markets. We develop an EPEC model of this
equilibrium, in which each firm solves an MPEC problem
parameterized by the design variables of the other MPECs.
We propose an MPEC algorithm by taking advantage of

the special properties of the problems at hand. This algo-
rithm partitions the feasible region of the decision variables
into a set of polyhedra, and projects the state variables into
the space of the decision variables. The algorithm solves a
quadratic program for a stationary point in each polyhedron
and pivots through adjacent polyhedra while maintaining

Table 7. Iterations of the firms’ total forward commit-
ments (three firms).

Outer iteration Firm 1 Firm 2 Firm 3

0 0�000000 0�000000 0�000000
1 6739�889190 −16�249658 −288�471837
2 6739�889190 246�601419 −103�536223
3 6851�687937 556�357457 71�319790
4 7001�487699 849�405693 154�719273
5 7154�268773 1001�093059 149�846951
6 7237�416442 1006�167745 149�619740
7 7239�775870 1006�342137 149�611431
8 7239�859233 1006�348165 149�611140
9 7239�862110 1006�348374 149�611129
10 7239�862110 1006�348382 149�611130
11 7239�862110 1006�348382 149�611130

Figure 4. Expected spot nodal prices.
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feasibility of the linear complementarity constraints. We
establish the finite global convergence of this MPEC algo-
rithm. An EPEC scheme is constructed by deploying the
MPEC algorithm iteratively. Numerical tests on randomly
generated quadratic MPECs and on the EPEC derived
from a stylized Belgian electricity network demonstrate the
effectiveness of the algorithms.
One limitation of our model is the assumption of risk

neutrality on the part of the generating firms. Unfortunately,
introducing risk aversion will make the objective functions
of the MPECs nonquadratic, which significantly increases
the computational complexity of the model.
On the other hand, we like to point out that although

the MPEC and EPEC algorithms are presented here in the
context of two-settlement electricity markets, they can be
applied to other quadratic EPEC problems, provided that
the linear complementarity constraints yield unique values
of the state variables.
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8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. This is a limited representation of uncertainty that can
capture major contingencies and, to some extent, demand
variations within the forward contract period such as sea-
sonal variations. Because we assume that uncertainties are
realized before the spot market decisions occur, we do not
capture uncertainties that are not common knowledge in
the spot market and are revealed implicitly through the
spot prices. SFE models are better suited to capture uncer-
tainties that are revealed after spot market decision mak-
ing, but using SFE models with transmission constraints is
at this point not well understood and is computationally
prohibitive.
2. In this example, we simplify the problem by assuming
that forward contracts are for fixed quantities, and we repre-
sent systematic demand variation within the contract period
as demand uncertainty that is realized prior to the spot mar-
ket decisions. In reality, systematic demand changes can be
handled through forward contracts with variable quantities
that attempt to follow systematic variations in load. To han-
dle contracts that specify different forward quantities and
prices for peak and off-peak periods, for example, we could
break up the problem into two separate problems for peak
and off-peak demand periods.
3. The idea of not solving subproblems to completion is
quite common in mathematical programming. Examples
of such approaches include nonlinear programming pro-
cedures with inexact line search and sequential quadratic
programming, which can be interpreted as a penalized
Lagrangian method where a single Newton step is per-
formed each time and the estimates of the Lagrange multi-
pliers are updated.
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