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Abstract—This paper presents the distribution locational mar-
ginal pricing (DLMP) method through quadratic programming
(QP) designed to alleviate the congestion that might occur in a
distribution network with high penetration of flexible demands.
In the DLMP method, the distribution system operator (DSO)
calculates dynamic tariffs and publishes them to the aggregators,
who make the optimal energy plans for the flexible demands.
The DLMP through QP instead of linear programing as studied
in previous literatures solves the multiple solution issue of the
aggregator optimization which may cause the decentralized con-
gestion management by DLMP to fail. It is proven in this paper,
using convex optimization theory, the aggregator's optimization
problem through QP is strictly convex and has a unique solution.
The Karush-Kuhn-Tucker (KKT) conditions and the unique
solution of the aggregator optimization ensure that the centralized
DSO optimization and the decentralized aggregator optimization
converge. Case studies using a distribution network with high pen-
etration of electric vehicles (EVs) and heat pumps (HPs) validate
the equivalence of the two optimization setups, and the efficacy of
the proposed DLMP through QP for congestion management.
Index Terms—Congestion management, distribution locational

marginal pricing (DLMP), distribution system operator (DSO),
electric vehicle (EV), heat pump (HP).
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Power consumption of HPs of one
aggregator.

Lower power limit of HPs.

Upper power limit of HPs.

Predicted price.

Price sensitivity coefficient.

Lagrange multiplier (LM) of line loading
limit constraint.
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LM of SOC lower limit constraint.

LM of upper temperature limit constraint.
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LM of EV charging power upper limit
constraint.

LM of EV charging power lower limit
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LM of HP power upper limit constraint.

LM of HP power lower limit constraint.

I. INTRODUCTION

D ENMARK, as one of the countries that strive for
emission reduction and energy supply security, has

adopted energy strategies that aim at achieving independence
from fossil fuels by 2050 [1]. In order to realize such an am-
bitious energy plan, renewable energy sources (RES) such as
wind power (WP), solar power (SP), and distributed energy re-
sources (DER), such as electric vehicles (EVs) and heat pumps
(HPs), will be extensively used and will play an important role
in the future power systems. Impacts of these new components
on the power systems have been widely studied [2]–[4]. In
particular, congestion problems that might occur in distribution
networks due to the high penetration of DER have already
drawn attention from distribution system operators (DSOs),
manufacturers and researchers. A DSO, who has the main
responsibility for resolving the congestion in distribution net-
works, can choose to reinforce the network through long term
planning or employ market methods [5]–[7] so as to incentivize
the DERs to respect the system capacity limits. Compared to
direct control methods for congestion management [8], [9],
market-based methods can maximize social welfare, cause least
discomfort to customers and encourage more participation in
the energy planning.
By extending the locational marginal price (LMP) concept

[10] from transmission networks to distribution networks,
[11]–[15] have developed the distribution LMP (DLMP)
concept and applied it to handle the congestion issues in dis-
tribution networks with distributed generators (DGs). Through
the DLMP concept, the local DGs will be properly subsidized
if they produce more power and reduce the energy requirement
at the local bus from remote areas during congestion periods.
Reference [7] employs a dynamic tariff (DT) concept, which

is derived from the DLMP, to solve the congestion due to flex-

ible demands in distribution networks. The flexible demands
may create congestion if the price is not properly set; on the
other hand, they can help congestion management if they are
controlled through proper price signals. In [7], congestion man-
agement is implemented in a decentralized manner so that the
aggregators independently determine the energy plans for flex-
ible demands without considering network constraints. The net-
work constraint information is contained in the DT. However,
the method proposed in [7] did not consider the inter-temporal
characteristics of flexible demands.
In [16], taking into account the inter-temporal characteristics,

an integrated DLMP method for determining DT was proposed.
The method proposed in [16] works in most cases. However,
the aggregator optimization may have multiple solutions due to
the linear programming (LP) formulation. The multiple solu-
tion issue of the aggregator optimization in the DLMP concept
was discussed in [17]. Such multiple solutions may cause the
centralized DSO optimization and the decentralized aggregator
optimization to diverge, and the decentralized congestion man-
agement to fail.
In order to address the multiple solution issue of the de-

centralized aggregator optimization, this paper introduces a
new quadratic programming (QP) based formulation. The
contributions of this paper are: 1) Prove the existence of a
unique solution to the optimization problem at both the cen-
tralized DSO side and the decentralized aggregator side, and
the equivalence of these two optimizations through convex QP;
2) Demonstrate that the DLMP concept is valid with the cost
function having quadratic terms reflecting price sensitivity of
the DERs; 3) Demonstrate that the DLMP concept can solve
congestion caused by diverse flexible demand characteristics
such as, EVs and HPs.
The paper is organized as follows. Spot price prediction based

on price sensitivity and optimal energy planning of EVs and
HPs are presented in Section II. The non-convergence issue of
the LP formulation and its resolution through QP formulation is
described and analyzed in Section III. In Section IV, case studies
are presented and discussed, followed by conclusions.

II. OPTIMAL ENERGY PLANNING FOR EV AND HP
EVs and HPs meet their energy needs for driving and heating

by procuring energy in the day-ahead electricity market. Such
purchases can be done through an aggregator representing the
EV and HP users by submitting bids on their behalf in the day-
ahead electricity market. As such, the individual users shift the
burden of market participation to aggregators, and the aggrega-
tors get enough capacity to participate in different markets. The
day-ahead spot price prediction, and the optimal EV charging
and HP planning based on the spot price prediction are ex-
plained in this section.

A. Spot Price Prediction
Before submitting their bids, the aggregators need to deter-

mine an optimal energy plan based on the predicted spot prices.
The electricity prices are plan-dependent, which poses some dif-
ficulty in determining an optimal energy plan because the price
is a discontinuous function of the energy plan. A price sensi-
tivity based spot price prediction method was proposed in [18]
and [19] to deal with such difficulty. Specifically, the predicted
price consists of a baseline price plus a linear component pro-
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Fig. 1. Concept of the price sensitivity.

portional to the demand so that the predicted spot price at time
(hour) is given by

(1)

The price sensitivity coefficient is determined by evaluating
the merit order of the power plants in the electricity market [18].
The production of renewable energy resources, such as WP and
SP, is deducted from the conventional demand first. Then the
net demands and the flexible demands are met by conventional
power plants according to the order of their marginal cost. The
function of marginal cost versus demand can be fit by an expo-
nential function and is the first order coefficient of the Taylor
expansion of the fit function. The concept of the price sensitivity
is illustrated in Fig. 1. The coefficient estimated in the above
method is scaled up by the total number of available flexible de-
mand (EVs and HPs) in order to be used for individual flexible
demand.

B. Optimal EV Charging

The optimal EV charging aims to meet the energy needs of
EVs with minimum energy cost. Taking into account the price
sensitivity, the cost function of the EV charging becomes a
quadratic function. The total charging cost of an EV is

(2)

In our framework we assume that the charging plan of the
EVs managed by aggregator at period can be expressed as

.
As such, the optimal EV charging plan can be found by

solving the following optimization problem:

(3)

(4)

(5)

Fig. 2. Heat transferring process of the house.

Constraint (4) ensures that the SOC levels of the batteries
are within the specified range. Equations (3)–(5) form a QP
problem.

C. Optimal HP Planning
The optimal HP planning is to schedule the energy consump-

tion of HPs so as to maintain the house temperature within a
specified range at the minimum energy cost. The heat transfer
process of the air source HP can be represented by an electric
circuit [20] which is illustrated in Fig. 2. Thus, the following
thermal balance equations can be derived [20]:

(6)

(7)

Equations (6) and (7) can be solved iteratively. As a result,
the house inside air temperature will be a linear combination
of all the previous and the current thermal energy plus an
initial state. Because has a linear relation (by the coefficient
of performance (COP)) to the active power consumed by the
HP, the house inside air temperature can be expressed as

(8)

Finally, the optimization problem of the HP energy plan can
be formulated as

(9)

(10)

(11)

where is a diagonal matrix, .

III. DLMP AND DT THROUGH QP

A. Decentralized Congestion Management Through DLMP
and DT
According to [7] and [16], the procedure of using the DLMP

and DT concepts to solve the congestion problem in a decen-
tralized manner can be summarized as follows. Firstly, the DSO
obtains the flexible demand data, such as energy requirements
and supply availability, from the aggregators or by its own pre-
diction. The DSO also needs the distribution network informa-
tion and the predicted spot prices at the relevant transmission
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busses. Secondly, the DLMPs are calculated through the optimal
plan respecting the network constraints, and the DTs (DLMPs
minus the predicted spot prices) are published to all the aggre-
gators. Thirdly, after receiving the DTs, the aggregators make
their own optimal plans independently with both the predicted
spot prices and the DTs. At last, the aggregators submit their en-
ergy plan/bids to the spot market.

B. Multiple Solution Issue of the Aggregator Optimization
with LP Formulation
The multiple solution issue of the aggregator optimization

in an LP formulation was highlighted by the discussant in [17]
based on the observation of the case study results in [16]. Ac-
cording to that observation, there are an infinite number of op-
timal solutions in the aggregator optimization problem due to
the equal DLMPs at some load points. The multiple solution
issue in the aggregator LP optimization is further illustrated
bellow.
Assume that there is one EV (or HP) in the distribution net-

work and it is available for energy planning in two periods. It
is also assumed that the energy requirement cannot be fulfilled
by consuming power in only one period due to the network con-
straints. For such a case, the DSO optimization is

(12)
(13)
(14)
(15)
(16)

Constraints (13) and (14) are network constraints for the two
periods, constraint (15) is the energy requirement [derived from
(4) and (10) parameter is the summation of all constants of (4)
and (10) the upper limit is ignored for simplicity], and constraint
(16) is to set the lower limit of the consumed power (the
upper limit is ignored for simplicity). Coefficients and are
positive ( when it is EV).
According to the KKT conditions, the DLMPs are calculated

as (note that and , because the energy
requirement cannot be fulfilled by any one of them)

(17)

where the terms and are the DTs and should be
sent to the aggregator.
The aggregator optimization (no network constraints) is

(18)

subject to (15) and (16) It can be seen that such a linear program
has an infinite number of optimal solutions due to the propor-
tional coefficients. Hence, the aggregator optimization and the
DSO optimization may diverge and the decentralization scheme
fails. For instance, the optimal energy plan of the aggregator op-
timization, where , is infeasible for the DSO optimization
because the energy requirement cannot be fulfilled by any one
of , as stated in the assumption.
When there are many flexible demands in the distribution net-

work, the above analysis is still valid, as there is at least one

flexible demand behaving like the one in the above example.
As such, the decentralized congestion management formulated
through LP fails due to degeneracy.

C. QP Formulation and the Proof of Convergence
1) DSO Optimization through QP: The DSO optimization in

the second step of the procedures in Section III-A is

(19)

(20)

together with (4), (5), (10), and (11).
The conventional household demands are assumed to be in-

flexible. Therefore, they are not included in the objective func-
tion (19), but reflected in the line loading limits , which are
the total line capacities excluding the loadings induced by the
conventional demands.
The DTs, defined as , will be published by the DSO be-

fore the day-ahead market clears. Parameters and used by
the DSO are shared with the aggregators since the aggregators
need them in their optimization problems.
2) Aggregator Optimization Through QP: Aggregator first

forms the DLMP for each of his customers, i.e., .
Then, the optimal energy plan of aggregator can be formulated
as

(21)

(22)
(23)

(24)
(25)

3) Proof of the Convergence of the DSOOptimization and the
Aggregator Optimization Through QP: The KKT conditions of
the DSO optimization are

(26)

(27)

(28)
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(29)

(30)
(31)
(32)

(33)

(34)
(35)
(36)
(37)

(38)

together with the constraints (4), (5), (10), (11), and (20).
Similarly, the KKT conditions of the aggregator optimiza-

tion are

(39)

(40)

(41)

(42)
(43)
(44)

(45)

(46)

(47)
(48)

together with (22)–(25) and (38).
It can be seen that the objective function (19) of the DSO

problem is a quadratic function with all quadratic terms being
positive and no cross terms. Therefore, the Hessian matrix can
be found by observation. Particularly, it is a diagonal matrix
with the elements being the coefficients of the quadratic terms
in (19), which are all positive. A diagonal matrix with all ele-
ments being positive is a positive definite matrix; therefore, the
Hessian matrix of (19) is positive definite.
Since the objective function (19) is a quadratic function

with positive definite Hessian matrix and all the constraints,
i.e., (4), (5), (10), (11), and (20) are affine functions, the DSO
optimization problem is a strictly convex QP problem, which
has a unique minimizer [21] assuming the problem is fea-
sible. Moreover, the KKT conditions of the DSO optimization
problem are necessary and sufficient [21].
Similarly, it can be inferred from (21)–(25) that each aggre-

gator optimization problem is also a strictly convexQP problem.
Therefore, each of them has a unique minimizer and the KKT
conditions are necessary and sufficient.
Now, suppose

is a solution of the KKT conditions of the DSO problem [(4),
(5), (10), (11), (20), and (26)–(38)], implying that is
a solution of the problem. By comparing the KKT conditions, it
can be seen that, with respect to aggregator

is also satisfying (22)–(25) and (38)–(48), i.e., the KKT condi-
tions of the aggregator problem. This means is also
a solution of the aggregator problem. Because any solution of
the DSO problem must satisfy the KKT conditions of it, it can
be concluded that any solution of the DSO problem is also a so-
lution to the aggregator problem.
On the other hand, a solution that satisfies the KKT condi-

tions of the aggregator problems does not necessarily satisfy
the KKT conditions of the DSO problem, because the switching
condition (28) of the DSO problem is not respected by the aggre-
gator problems. However, due to the uniqueness of the solution
to the DSO problem and the aggregator problems, any solution
of the aggregator problems must also be a solution of the DSO
problem. This can be proven by contradiction.
Suppose is a solution of the aggregator problems

but not to the DSO problem. Suppose is a solution
to the DSO problem. Then, according to the previous conclu-
sion, is also a solution to the aggregator problems.
Due to the uniqueness of the aggregator problems, there is

and it contradicts the assumption that
is not a solution to the DSO problem. Therefore, it

can be concluded that any solution to the aggregator problems
is also a solution to the DSO problem. Based on the above
conclusions, the DSO problem and the aggregator problems are
equivalent.
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Fig. 3. Single line diagram of the distribution network.

TABLE I
LOAD POINT DATA

IV. CASE STUDIES
Case studies were conducted using the Danish driving pat-

tern and the Bus 4 distribution system of the Roy Billinton Test
System (RBTS) [22]. The details of the case studies are pre-
sented in this section.

A. Grid Data
The single line diagram of the Bus 4 distribution network is

shown in Fig. 3. Line segments of the feeder one are labeled in
Fig. 3, among which L2, L4, L6, L8, L9, L11, and L12 refer to
the transformers connecting the corresponding load points (LP1
to LP7). The study is focused on this feeder because of its diver-
sity: 5 residential load points with different peak conventional
demands and two commercial load points. The detailed data of
these load points are listed in Table I. The peak conventional
demands of residential customers are assumed to occur at 18:00
when people come home and start cooking (shown in Fig. 5).

B. EV and HP Data
The key parameters of EVs and HPs are listed in Table II. The

EV availability shown in Fig. 4 is from the driving pattern study
in [23]. The household area is a random number between 100
and 200 .

C. Case Study Results
In the case study, it is assumed that there are two aggregators.

The aggregator “aag1” has contracts with 40 customers per load
point while the other has contracts with the rest 160 customers
per load point. The line loading limits of all line segments are
listed in Table III, which are higher than the peak conventional
demands but lower than the peak demands including EVs and
HPs.
The simulation was carried out using the General Alge-

braic Modeling System (GAMS) optimization software [24]
although many other tools can be used such as QUADPROG in

TABLE II
KEY PARAMETERS OF EVS AND HPS [23], [25]

Fig. 4. EV availability.

TABLE III
LINE LOADING LIMIT

Fig. 5. Line loading of the DSO problem.

MATLAB, Gurobi and AMPL. Firstly, the DSO optimization
problem was carried out and the results are shown in Fig. 5 (due
to the space limitation, only the results of line L2-L4 were
plotted). Because the line loading limits are respected in the
optimization, the line loadings of all line segments are lower
than the limits.
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Fig. 6. System prices and DLMPs at LP1.

TABLE IV
DLMPS (DKK/KWH) DUE TO MULTIPLE CONGESTIONS

ON L2, L3, L4, L8, AND L9 (“-” MEANS EQUAL TO BASE PRICE)

It can be seen from Fig. 5 that the line loadings reach (but
not exceed) the limits at hour 16–18 (only line L2) and hour
23–24. This means that the corresponding inequality constraints
of the optimization problem are “active” and the Lagrange mul-
tipliers of these constraints are positive. Therefore, according
to the DLMP calculation method described in Section IV-C,
the DLMPs are higher than the base price (shown in Fig. 6 and
Table IV). The prices of LP1 at hour 17–18 are very high and
are chopped in Fig. 6 (they can be found in Table IV) in order
to have a better illustration of DLMPs of other hours. The high
prices of LP1 at hour 17–18 can be explained by analyzing the
nature of the congestion caused by HPs. HPs are less sensitive
to the prices compared to EVs because of the significant thermal
leakages of the households; therefore, higher DLMPs are re-
quired to solve the congestion caused by them.
Secondly, the aggregator optimization was performed. Two

aggregators carried out their own optimization problem inde-
pendently.
In order to clearly show the effect of the DLMP, two case

studies were conducted. In Case One, the DLMP was not ap-
plied; in Case Two, the DLMP was applied.
As expected, when the DLMP is not applied, congestions

occur at 24:00 and 18:00 (shown in Fig. 7). At 24:00, because
the system price is the lowest, every EV wants to charge its bat-
tery as long as it is available for charging. The simultaneous
charging leads to the very high peak. Overloading of line L2 at
18:00, however, is not due to the low price. In fact, it is the peak
conventional demand that has consumed most of the capacity
of the line and the available capacity is not enough for the HP
demands.

Fig. 7. Line loading without DLMP.

Fig. 8. Line loading with DLMP.

When the DLMP is applied, the congestions are alleviated
(shown in Fig. 8). Due to the posed DTs, the DLMP at load
points LP1 at 24:00 is as attractive as the ones at 23:00 and 5:00.
Therefore, the EV charging demands are spread at those hours
and the resulted peak is not higher than the limits. The previous
congestion of line L2 at 18:00 also disappears due to the DLMP.
The DLMP at LP1 at 18:00 is so high that the HPs choose to
produce more heat before 18:00 and due to the dynamics of the
thermal objects (house inside air, house structure), the tempera-
ture at 18:00 is maintained between the lower and upper limits.
Hence, the HP demands are shifted to the previous hours when
the conventional demands are lower enough to accommodate
them.
In order to illustrate the divergence issue that might occur

with the LP formulation, a simulation was conducted where the
price sensitive part was excluded. Without the price sensitive
part, the DSO optimization problem and the aggregator opti-
mization problems are LPs. The DLMPs were calculated and
shown in Table V. It can be seen that the DLMPs of LP1 are the
same at time 5, 23 and 24 hour. This will lead to infinite solu-
tions to the aggregator problems. As a result, the aggregator may
not act as the DSO expects. This is confirmed by the simulation
results in Fig. 9 and Fig. 10. In Fig. 9, for the DSO optimization,
there is no congestion, however, in Fig. 10, for the aggregator



HUANG et al.: DISTRIBUTION LOCATIONAL MARGINAL PRICING THROUGH QUADRATIC PROGRAMMING 2177

TABLE V
DLMPS (DKK/KWH) WITH MULTIPLE CONGESTIONS AT L2, L3, L4, L8,
AND L9 (“-”: EQ. TO BASE PRICE), CALC. WITHOUT QUADRATIC TERMS

Fig. 9. Line loading of the DSO problem excluding quadratic terms.

Fig. 10. Line loading of the aggregator problems excluding quadratic terms.

optimization, congestions occur at line L2; loading of line L3 at
5 hour is different.

V. CONCLUSIONS AND FUTURE WORK

Though the DLMP and DT concepts are efficient in allevi-
ating congestions in distribution networks with high penetration
of flexible demands, the formulation of the decentralized aggre-
gator optimization must be carefully handled. With an LP for-
mulation of the aggregator optimization, there might bemultiple

solutions to the decentralized aggregator optimization due to de-
generacy. The multiple solutions to the aggregator optimization
may cause the centralized DSO optimization and the decentral-
ized aggregator optimization to diverge, and the decentralized
congestion management approach to fail.
The multiple solution issue of the aggregator optimization is

addressed in this paper by introducing price sensitivity which
leads to strictly convex QP formulation for both the DSO op-
timization and the aggregator optimization. The equivalence of
the centralized DSO optimization and the decentralized aggre-
gator optimization with the QP formulation is proven which en-
sures that the aggregators act as the DSO expects. The case study
results have demonstrated the equivalence of the DSO optimiza-
tion and the aggregator optimization with a strictly convex QP
formulation, and the efficacy of the DLMP through QP for con-
gestion management.
For future work, more practical features of the distribution

network can be considered, such as high R/X ratio, losses, single
phase loads and unbalance. It is interesting to study how these
factors will affect the DLMP for congestion management. In
addition to the line loading constraints, voltage constraints shall
also be studied in the future work.
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