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H I G H L I G H T S

• A stochastic distribution system planning with energy storage degradation is solved.

• Energy arbitrage and regulation services are co-optimized for siting and sizing.

• A Gaussian mixture model is adopted to generate stochastic scenarios.

• A modified progressive hedging algorithm which outperforms Gurobi is introduced.
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A B S T R A C T

With the trend of energy storage participating in ancillary service markets, it is still computationally burdensome
to incorporate the rapidly changing real-time signals in the long-run distribution system planning. In this paper,
a two-stage stochastic programming is proposed for the distribution system with energy storage, where the
storage degradation and ancillary service revenue for frequency regulation are both considered. For this purpose,
the problem is formulated as a mixed-integer linear programming optimizing the overall planning cost, including
investment and maintenance cost, power transaction cost and revenue from regulation services. A degradation
penalty is added in the objective to avoid excessive charge/discharge when providing regulation services, thus
further benefiting the economy of the distribution system. The model also considers uncertainties of load de-
mand and electricity prices. A Gaussian mixture model is adopted to characterize these uncertainties and a set of
representative scenarios are sampled. To accelerate the optimization, a modified progressive hedging with
parallel computing is proposed. It is demonstrated through a 33-bus distribution system that the proposed al-
gorithm has a speed approximately 15 times as fast as the state-of-art commercial software Gurobi when solving
the model in 100 scenarios. For this case study, considering degradation penalty has been shown to extend
energy storage lifespan by one year.

1. Introduction

The severe peak-valley load difference and distributed renewable
energy integration have been two of the most crucial issues in dis-
tribution systems. To cope with these challenges, one solution is to
install energy storage systems (ESSs) such that they can shift the peak
load [1] and benefit the renewable penetration at the same time [2].
Since the price of batteries has decreased significantly [3] and proved to
have a startling decline speed in levelized cost of energy [4], ESSs have
reached widespread application in distribution systems, as an effective
means of energy arbitrage. Moreover, considering that ESS’s shorter

duration applications (mainly less than 4 h) remain the most cost-ef-
fective [5], the potential revenue from added ancillary services can
further improve profits of ESS investment [6].

As illustrated in Fig. 1, in today’s wholesale market, e.g. the market
operated by the California Independent System Operator (CAISO), a
large proportion of its revenue consists of energy arbitrage and fre-
quency regulation [5], both of which can be provided by ESSs. Simi-
larly, for a distribution system, these storage units can also play a po-
sitive role in enhancing the grid’s reliability by providing multiple
ancillary services [7]. Besides, ESS’s ability of peak load shaving can
postpone the upgrades of electric installations [8], thus cutting down
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the expenses in the overall planning process [9]. Nevertheless, the
feasibility of ESS’s profiting from ancillary service products [10] still
needs to be further explored in a distribution system scale, among
which the battery aging problem is crucial. Taking lithium-ion batteries
(LIBs) for example, the degradation process is complex and the corre-
sponding model is nonlinear and typically related to both stress cycles
and operating time [11], which poses challenges in the existing dis-
tribution system planning.

A large body of literature exists on the modeling of ESS degradation.
To estimate ESS’s lifespan, some semi-empirical battery degradation
models [11,12] have been proposed and applied to predict long-term
cycle aging of large-format cells [13]. However, in combination with
rainflow uncertainty [14], these models will add excessive computa-
tional burden to an optimization scheme. In this regard, there have
been several attempts to derive a simplified degradation model and
evaluate ESS’s profitability. In [6], a data-driven linear penalty term
denoting the battery degradation rate is co-optimized in the objective,
which maximizes the total revenue of ESS with energy arbitrage and
ancillary services. Ref. [15] linearizes the function of storage capacity
loss within specific domains and considers battery aging effects by a
linear constraint. Ref. [16] embeds the calculation of battery cycle life
into a profit maximization model for optimal bidding and operational

schedules. Based on case studies of a battery and transformer deploy-
ment, [17] co-optimizes four types of services provided by the ESS,
namely, energy arbitrage, regulation service, restoration service and
transformer load relieving, which are applicable to the utility’s trans-
former capacity planning with batteries. However, the trade-off be-
tween the ESS degradation and the income from these ancillary services
is ignored in the model. Apart from the above-mentioned literature, the
taxonomy of major researches relevant to ESS degradation is listed in
Table 1. To the best of our knowledge, distribution system expansion
planning (DSEP) which considers both ESS’s providing ancillary ser-
vices and its degradation is rarely studied so far.

Among studies on optimization for DSEP, convex relaxation [18]
combined with DistFlow [19] has been a popular method although it is
not easy to guarantee an exact relaxation. A mixed-integer linear pro-
gramming (MILP) is an alternative, which can be efficiently solved by
current commercial optimization solvers and applicable to bidirectional
power flow problems [20]. Besides, considering inherent uncertainties
of a realistic distribution system including resource availability, price
fluctuations, load change and policy restrictions, MILP can be further
coupled with robust or stochastic optimization. Ref. [21] illustrates the
uncertainties of PV output and multi-load demand with dual norms to
calculate the worst cases directly, then a two-stage robust optimization

Nomenclature

Abbreviations

INV investment
MAT maintenance
eL existing lines
nL candidate new lines
SUB substation
ESS energy storage system
PT power transaction
LMP locational marginal price
REG regulation (services)
SOC state of charge
deg degradation
cur load curtailment

Sets

ω ω,up dn proportion of ESS capacity committed to regulation up/
down services

ΨeL set of existing lines
ΨnL set of candidate new lines
ΩSUB set of substation candidate nodes
ΩESS set of ESS candidate nodes
ΩD set of load nodes

Indices

j index of the jth existing line
k index of the kth new line
z index of new line option
b index of new substation option
e index of ESS option
i index of planning year
t index of hour in a day
l index of load node
m index of substation node
n index of ESS node
α index of season
s index of stochastic scenario

Parameters

γ annual discount rate
C O, unit cost of investment/maintenance
T total number of hours
S total number of scenarios
θ θ,α s probability of season α/scenario s
Γ total node number of the distribution system
WLMP locational marginal price [$/MWh]
W W,REG

up
REG
dn regulation up/down service price [$/MWh]

Mcur penalty factor for load curtailment
Mdeg penalty factor for ESS degradation
M penalty factor for the Big-M method
φ vector of ESS degradation multipliers [MW-1]
ΞeL node-branch incidence matrix for existing lines
ΞnL node-branch incidence matrix for new lines
D load demand [MWh]
ZeL impedance of each existing line [Ω]
ZnL impedance of each new line [Ω]
σ σ,up dn standard deviation of regulation up/down signals
Fmax maximum of branch current [p.u.]
E E,max max

SUB ESS maximum of substation/ESS capacity [MWh]
Pmax maximum of ESS power output [MW]
E0 initial value of ESS state of charge [MWh]

Decision variables

x Planning decision on lines, substations and ESSs
y Operating decision on lines, substations and ESSs
pSUB Power from the bulk power system [MWh]
r r,up dn ESS committed capacity for regulation up/down service

[MW]
βESS Vector of ESS operation decision variables
dcur Load curtailment [MWh]
f eL Branch current of existing line [p.u.]
f nL Branch current of new line [p.u.]
p p,ch dis ESS charge/discharge power [MW]
ξ SOC ESS state of charge [MWh]
u Node voltage [p.u.]
χ χ,up dn Ancillary variable in the Big-M method
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model for energy hub planning and operation is merged into a single
stage MILP. Ref. [22] considers both short-term and long-term un-
certainty in the DSEP, which are handled by the K-means clustering
technique and confidence bounds, respectively. Ref. [23] presents a
two-stage stochastic programming model, in which Monte Carlo simu-
lation is utilized for addressing energy demand and supply uncertainty.
In [24], uncertainties due to load fluctuations, power generation of
wind and solar farm, along with generation deficiency are modeled.
Stochastic scenarios are generated by a combined process of Monte
Carlo simulation, Roulette wheel mechanism and scenario reduction
algorithm. However, for every uncertain parameter in these afore-
mentioned DSEP models, the corresponding scenarios are sampled from
a single normal distribution. To deal with uncertainty in this paper, we
adopt a Gaussian mixture model (GMM) [25] which can form smooth
approximations to arbitrary probability density functions.

Moreover, considering uncertainties may lead to excessive compu-
tational burden in DSEP problems. As for stochastic programming fra-
mework, decomposition techniques are used to address the tractability
issue, and are divided into two categories [26]. One is time-stage-based,
known as the L-shaped method, while the other is scenario-based, i.e.
progressive hedging (PH).

In fact, the L-shaped method can be considered as a further exten-
sion of Benders decomposition for stochastic programming [27]. In
1969, it was introduced as Van Slyke and Wets’s method [28], which
was 20 years earlier than the PH idea proposed by Rockafellar and Wets
in 1991 [29]. The basic rule of the L-shaped method is to replace the
nonlinear recourse function in the master problem with a lower bound
variable, and then approximate the nonlinear term by reformulating the
scenario subproblems [30]. This decomposition technique has a
broader application in vehicle routing problems [31,32] rather than
DSEP.

As for the PH algorithm, it provably converges linearly for sto-
chastic programming with continuous decision variables [38], which is
superior to the L-shaped method, since the latter has a significantly
increasing difficulty in calculating the master problem as the iteration
number grows [26]. When comes to power system planning, [39] de-
velops the PH algorithm to solve a scenario-based multi-stage stochastic
planning problem. However, a pipeline model is used to avoid binary
variables; thus it is not applicable for the siting and sizing of other fa-
cilities in DSEP. Ref. [40] designs planning schemes for a transmission
system which considers discrete and continuous decision variables de-
noting transmission and generation investments, respectively. A hed-
ging process is utilized in [41] to resolve decision conflicts in the first
stage of large-scale DSEP with scenario uncertainty, but it is solved by
an evolutionary algorithm. None of these works have modified the PH
algorithm to accelerate its convergence when solving a large-scale
MILP, which is typical of the DSEP model.

In this work, the DSEP considering ESSs is formulated as a two-stage
stochastic programming model, which is also a MILP one, where ESS
degradation is co-optimized in the planning stage. Subsequently, the
effects of ancillary service provision by ESSs and uncertainties lying in
scenarios are investigated in the solutions. Following are our main
contributions:

• A two-stage stochastic DSEP model aims at minimizing the overall
planning cost is proposed. To handle the uncertainties, we adopt a
GMM based on historical data instead of sampling them from a
certain distribution. Besides, the degradation of ESSs and their value
on ancillary services are both considered in distribution system
planning, which is relatively rare in recent studies.

• To better solve the DSEP model with PH algorithms, the idea of
implementing non-anticipativity constraints by computing a rational

Fig. 1. Overview of the relationship between power ancillary service market and ESSs. Data Source: Lazard’s Levelized Cost of Storage Analysis Version 4.0 [5].

Table 1
Review of literature related to ESS degradation (AS: ancillary service).

Motifs Methods & Algorithms

ESS degradation & AS [6,11,16,33,34] Semi-empirical battery degradation
model;
Profit maximization model;
Performance-based regulation
mechanism;
Rainflow cycle-counting algorithm.

DSEP & ESS degradation [21,35–37] Piecewise linearized battery lifetime
model;
Planning-operation co-optimization
model;
Mixed-integer linear programming;
Benders decomposition.

DSEP & ESS degradation & AS [17] Failure threshold of ESS capacity;
Stochastic dynamic programming
model;
Dynamic programming algorithm.
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average solution instead of the mathematical expectation is origin-
ally presented. Moreover, with parallel computing process and gap-
dependent penalty factors, the modified PH algorithm is further
improved in solving the proposed model and has outperformed a
well-known commercial solver Gurobi and the L-shaped method.

The remainder of this paper is organized as follows. Section 2 details
the mathematical formulation of the MILP model for the distribution
system. Based on that, Section 3 reformulates a two-stage stochastic
programming to incorporate uncertainties of load demand, electricity
prices and regulation signals. In Section 4, representative scenarios are
generated via GMM, then the modified PH algorithm is introduced.
Section 5 performs case studies of the deterministic MILP and the two-
stage stochastic model. The conclusion is drawn in Section 6.

2. Model formulation

The DSEP considering ESS degradation and regulation services is
established as a MILP model, illustrated in Fig. 2. The objective includes
five expenses within the planning and operation stage. Network con-
figuration, substation expansion and ESS siting and sizing are decided
in the planning stage, where binary variable x determines whether to
invest the facility or not. As for operation, decision variables can be
divided into three categories, which are binary variable y denoting the
operating lines, substations and ESSs; continuous variables related to
grid operation, i.e. power transmitted by substations pm b t, ,

SUB ; and the
continuous vector βn t,

ESS related to ESS’s behaviors, including the charge/
discharge, regulation up/down and state of charge (SOC).

Fig. 2. Overview of the MILP model.
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2.1. Objective

In the planning stage, we assume that the distribution system will
invest in lines, substations and ESSs, whose maintenance fare is also
covered in the overall cost. Besides, electricity needs to be bought from
a bulk power system as power transaction cost, which will be affected
by ESS operation.

Meanwhile, ESSs will provide regulation services to the bulk power
system. In this paper, the overall cost of distribution system is mini-
mized, and the possible revenue of energy arbitrary and frequency
regulation services should be considered. To prolong ESS’s lifespan, a
penalty term relevant to its degradation model is added to the objective
function.

2.1.1. Investment cost
The DSEP includes the investment cost of lines, substations and

ESSs, denoted in Eq. (1). Where =x 1 represents the corresponding
facility invested in the distribution system and otherwise =x 0.
C C,k z m b,

nL
,

SUB and Cn e,
ESS are the unit costs to built feeders, substations and

ESSs of certain options.

∑ ∑ ∑ ∑

∑ ∑

= +

+
∈ ∈

∈

C C x C x

C x
k z

k z k z
m b

m b m b

n e
n e n e

INV
Ψ

,
nL

,
nL

Ω
,

SUB
,

SUB

Ω
,

ESS
,

ESS
nL SUB

ESS (1)

Note that this work focuses on the expansion planning, hence the
investment of existing lines will be precluded. Instead, their main-
tenance cost is considered in Eq. (2).

2.1.2. Maintenance cost
Similarly, the total operation and maintenance cost needs to involve

all the components in the distribution network. =y 1 denotes that the
facility is in operation and otherwise =y 0.O O O, ,j k z m b

eL
,

nL
,

SUB, andOn e,
ESS are

the yearly maintenance costs of existing lines, newly-built lines, sub-
stations and ESSs.
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∑ ∑ ∑ ∑
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⎛
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⎠
⎟

= ∈ ∈

∈ ∈
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t

T
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k z
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m b
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n e
n e n e

MAT
1 Ψ

eL eL

Ψ
,

nL
,
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Ω
,

SUB
,
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Ω
,

ESS
,

ESS

eL nL

SUB ESS (2)

2.1.3. Power transaction cost
To supply the load demand, power is bought from the bulk power

system and the cost is denoted by CPT as below:

∑ ∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟

= ∈

C θ W p
α

α
t

T

m
α t m b tPT

1 Ω
,

LMP
, ,

SUB

SUB (3)

where pm b t, ,
SUB is the power transmitted from substation node m with op-

tion b at hour t θ, α is the portion of typical seasonal scenario α. WLMP

denotes the locational marginal price (LMP).

2.1.4. Revenue of regulation services
In real time operations, revenue will be earned for ESS’s providing

regulation services to the bulk system, denoted as WREG:

∑ ∑ ∑= +
= ∈

W θ W r W r( )
α

α
t

T

n
α t n t α t n tREG

1 Ω
REG, ,
up

,
up

REG, ,
dn

,
dn

ESS (4)

where nonnegative decision variables r r,n t n t,
up

,
dn determine how much

regulation up/down capacity is committed. W α tREG, ,
up and W α tREG, ,

dn re-
present revenue of ESS providing the unit capacity for regulation up
and down.

2.1.5. Penalty term of degradation
In order to trade off between profits earned by ESSs and the bat-

tery’s cycle degradation cost, a penalty is added in the objective, which
consists of two important vectors shown in Eq. (5) and Eq. (6). The
parameters a a,1 2 and pz in (5) are constants relevant to LIB types, which
will affect the degradation rates of different ESS’s behaviors [6].
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T

,
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,
ch

,
dis

,
up

,
dn

,
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As illustrated in Fig. 2, five expenses are involved in the objective
shown in Eq. (7), with both regulation services and degradation of ESSs
taken into account.

∑ ∑ ∑ ∑⎛

⎝
⎜ + + − + ⎞

⎠
⎟

= ∈

γ C C C W θ M φ βmin ,
i

i

α
α

t

T

n
t α

T
n tINV MAT PT REG

1 Ω
deg, ,

ESS

ESS

(7)

2.2. Constraints

This paper considers major constraints including Kirchhoff’s current
law (KCL), node voltage limits, feeders’ capacity [2], and ESS operation
constraints [6], which will be fully listed in Section 3. Furthermore,
some extra constraints are supposed to be detailed in the planning.

2.2.1. Construction logical constraints
To avoid building redundant projects on the same node, Eq. (8)

denotes that only one option can be chosen among all candidate
choices, where xm b,

SUB is the planning decision for substation on node m
with option b, xn e,

ESS is the planning decision for ESS on node n with
option e. Eq. (9) denotes that the substation and ESS will not be
available ( =y 0) when they are not constructed ( =x 0). Otherwise, if
the facility has been built ( =x 1), its operating variable can be 1 or 0
( = =y y0/ 1).

∑ ∑≤ ≤x x1, 1
b

m b
e

n e,
SUB

,
ESS

(8)

⩽ ⩽y x y x,m b m b n e n e,
SUB

,
SUB

,
ESS

,
ESS

(9)

∑ ∑ ∑+ = −
∈ ∈

y y NΓ
j

j
k z

k z
Ψ

eL

Ψ
,

nL
SUB

eL nL (10)

Eq. (10) guarantees that the number of operating lines are equal to
that of load nodes, i.e. distribution network is a spanning tree. NSUB
represents the number of operating substations.

2.2.2. Reformulation by Big-M method
Note φ βα

T
n t,
ESS in the objective (7) results in some computational dif-

ficulties due to the consideration of ESS siting and sizing. That is, the
binary decision variable yn e,

ESS is multiplied with the continuous variable
r r/n t n t,

up
,

dn, thus the model is no longer MILP.
To this end, we apply Big-M method to reformulate this term, as

illustrated in (11)–(15), where χn e t, ,
up and χn e t, ,

dn are two ancillary decision
variables and M is a big constant (1e+5). Nonnegative variables χn e t, ,

up

and χn e t, ,
dn are introduced to replace and relax the product of yn e,

ESS and
r r/n t n t,

up
,

dn.
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⩽ ⩽χ r χ r,n e t n t n e t n t, ,
up

,
up

, ,
dn

,
dn

(11)

⩽ + −r χ M y·(1 )n t n e t n e,
up

, ,
up

,
ESS

(12)

⩽ +χ M y0 ·n e t n e, ,
up

,
ESS

(13)

⩽ + −r χ M y·(1 )n t n e t n e,
dn

, ,
dn

,
ESS

(14)

⩽ +χ M y0 ·n e t n e, ,
dn

,
ESS

(15)

3. Two-stage stochastic programming approach

To address the uncertainty issue of load demand and electricity
prices in DSEP, we further develop the deterministic MILP model as a
two-stage stochastic program. In the first stage, optimal expansion de-
cisions of the master problem are obtained, then in the second stage, the
subproblem is solved to minimize the expected operation cost under
previous investments. For each of the typical scenarios considered, the
continuous solution of the second-stage economic operation is in-
corporated into the master problem for better planning decisions. When
the difference between two adjacent iterations of the binary decision
variables becomes negligible, the final optimal expansion planning
scheme is attained.

To reduce excessive decision variables as the number of scenarios
increases, we assume that in the following context all facilities should
go into operation once being built, which means the binary operating
variable y equals to the planning decision x. For convenience, we use x
to represent all these investment/operating decisions on lines, substa-
tions and ESSs.

3.1. Master problem: first-stage expansion decisions

We assume that the substations, ESSs and feeders are invested,
owned and operated by the distribution system operator (DSO). The
first-stage objective function (16) aims to minimize the overall cost
spent during the planning stage, which can be divided into two groups:
1) the investment cost CINV and maintenance cost CMAT for distribution
facilities. 2) the mathematical expectation of the operation cost in
multiple scenarios, denoted by the recourse function Q x y( , )s . The
variable ys which is continuous herein represents the optimal value of
all decision variables in the second stage.
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Eqs. (17)–(20) are constraints for the master problem, which have
been explained in Section 2.2.1. Besides, as indicated in Eq. (20), all the
first-stage decision variables of the MILP model are binary.

3.2. Subproblem: second-stage operation decisions

After a solution is obtained in the master problem, a subproblem can
be solved where all decision variables are continuous. In the recourse
function (21), we add the power transaction cost W ps t m b s t,

LMP
, , ,

SUB , the

penalty due to unserved loads M dl s tcur , ,
cur and the battery degradation

term M φ βt s
T
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, ,
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, ,
dn , where Mcur is a large

number to avoid load curtailment. Compared with model formulation
in Section 2, the subscript s is added to denote that the operation de-
cision variables in Q x y( , )s are different among scenarios. It is necessary
to determine the operation state of feeders, substations and ESSs in each
scenario s.
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l s t
m

m b s t

l
l s t

n
n s t n s t s t n s t s t n s t

eL eL nL nL

Ω
, ,
cur

Ω
, , ,

SUB

Ω
, ,

Ω
, ,

dis
, ,

ch
,
up

, ,
up

,
dn

, ,
dn

D

D

SUB

ESS

(22)

+ ⩽ − ∀ ∈Z f u M x j| [Ξ ] | ·(1 ), Ψj j s t Rowj
T

s t j
eL

, ,
eL eL

,
eL

eL (23)

+ ⩽ − ∀ ∈Z f u M x k| [Ξ ] | ·(1 ), Ψk z k s t Rowk
T

s t k z,
nL

, ,
nL nL

, ,
nL

nL (24)

⩽ ⩽ ∀ ∈d D l0 , Ωl s t l s t D, ,
cur

, , (25)

∑⩽ ⩽ ∀ ∈p x E m0 , Ωm b s t
b

m b b max, , ,
SUB

,
SUB

,
SUB

SUB
(26)

∑⩽ ⩽ ∀ ∈ ∀ ∈f x F f x F j k, , Ψ , Ψj s t j j max k s t
z

k z k z max, ,
eL eL

,
eL

, ,
nL

,
nL

, ,
nL

eL nL
(27)

= − − + −

∀ ∈ = …
+ξ ξ p p ω r ω r hr

n t

( )·(1 .),

Ω , 1, 2, ,23
n s t n s t n s t n s t s t n s t s t n s t, , 1
SOC

, ,
SOC

, ,
dis

, ,
ch

,
up

, ,
up

,
dn

, ,
dn

ESS (28)

∑⩽ ⩽ξ x E0 n s t
e

n e e max, ,
SOC

,
ESS

,
ESS

(29)

∑⎛

⎝
⎜ + ⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ⩽ −r p hr x E ξ· 1 .n s t n s t

e
n e e max n s t, ,

dn
, ,

ch
,

ESS
,

ESS
, ,

SOC

(30)

+ ⩽r p hr ξ( )·(1 . )n s t n s t n s t, ,
up

, ,
dis

, ,
SOC

(31)

∑+ − ⩽ω r p ω r x Ps t n s t n s t s t n s t
e

n e e max,
up

, ,
up

, ,
dis

,
dn

, ,
dn

,
ESS

,
ESS

(32)

∑+ − ⩽ω r p ω r x Ps t n s t n s t s t n s t
e

n e e max,
dn

, ,
dn

, ,
ch

,
up

, ,
up

,
ESS

,
ESS

(33)

∑+ ⩽r p x Pn s t n s t
e

n e e max, ,
up

, ,
dis

,
ESS

,
ESS

(34)

∑+ ⩽r p x Pn s t n s t
e

n e e max, ,
dn

, ,
ch

,
ESS

,
ESS

(35)

∑= =ξ x E t, 1, 24n s t
e

n e e, ,
SOC

,
ESS

,0
ESS

(36)

⩾p p r r, , , 0n s t n s t n s t n s t, ,
ch

, ,
dis

, ,
up

, ,
dn

(37)

There are two groups of the second-stage constraints: Eqs. (22)–(27)
are for distribution system operation, and Eqs. (28)–(37) are for ESS
operation. In the first group, we adopt a distribution system power flow
model with DC-approximated voltage deviation by introducing KCL in
(22), and node voltage limit in (23), (24). Constraints (25)–(27) impose
limits on maximal load curtailment, substation’s capacity and feeder’s
capacity, respectively.
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By partitioning the battery’s capacity into two parts, ESSs can
achieve energy arbitrage by charging and discharging, while selling
ancillary services by providing the regulation capacity. Eqs. (28)–(35)
are physical constraints aligned with the settings of Ref. [6]. Eq. (36)
forces all ESSs to maintain the same SOC at the beginning and end hour
in a daily scene. The last constraint (37) pertains to the non-negativity
of ESS decision variables. It is noteworthy that a Big-M method is also
adopted as Eqs. (11)–(15), which is omitted in this section.

4. Solution method

4.1. Modeling of uncertainties

Monte Carlo simulation (MCS) based on single normal distribution
may not well describe the diversity in power output, load demand,
relevant prices and policies, hence generate scenarios which result in
deviation of the optimal solution from the actual economic scheme. In
this work, a GMM is introduced with the assumption that the original
data follow a linear superposition of K normal distributions [42] instead
of a single one. Specifically, we suppose that scenarios are drawn from a
joint distribution P X Y( ) where the yi is a random variable indicating
from which normal distribution this scenario xi is drawn. Therefore, the
learning of GMM parameters ̂μk and ̂σk lies in the maximal likelihood
estimate scheme:

∏= ∈ …
=

μ σ P x y P y y K{^ , ^ } arg min ( )· ( ), {1, , }k k
K

i

n

i i i i1
1 (38)

which is tractable through the expectation–maximization algorithm. A
scenario is sampled from one of the K normal distributions as:

= …N μ σ k K( , ), for 1, ,k k (39)

In this work, we set =K 4 and for each K generate scenarios ac-
cording to the weights of different normal distributions. For a given S
and K, this sampling process can be described as:

= = …=
=x y k N μ σ k K{ } ~ ( , ), for 1, ,i i i

S P y k
k k1

· ( )i (40)

hence, we obtain S scenarios from these distributions. Fig. 3 illustrates
the whole procedure, where scenario xi is a continuous vector, and the
GMM is a weighted sum of four Gaussian distributions, with the cor-
responding weights = = = =P y P y P y P y( 1), ( 2), ( 3), ( 4)i i i i , respec-
tively. Based on the well estimated parameters of the GMM, we can
easily generate adequate scenarios via MCS method.

4.2. Progressive hedging algorithm

To simulate real conditions of distribution systems considering un-
certainties in different seasons, days and hours, numerous daily op-
eration scenarios are randomly generated by the MCS method.
However, the computation time will become intractable when too many
scenarios are included. Hence, we adopt a decomposition technique to
address the tractability issue and promote the convergence. To de-
termine a better option between the L-shaped method and the PH al-
gorithm, we compare their basic rules and come to a conclusion.

As for the L-shaped method, the algorithm efficiency relies on
iterations between the master problem and subproblem, i.e. the feasibility
cuts and optimality cuts. It is effective for some economic dispatch
problems because the feasibility check of the subproblem can be omitted.
Nevertheless, for a DSEP, the feasibility check of the first-stage planning
results is unavoidable. Besides, considering sitting and sizing of facil-
ities like ESSs will add even more computational burden, which prob-
ably makes the L-shaped method less efficient in solving DSEP pro-
blems.

The significant feature of the PH algorithm, however, lies in the
scenario-based decomposition technique. That is, for large-scale MILP
model with numerous scenarios, the PH algorithm can solve the sub-
problem in a paralleled way, thus improving the efficiency dramatically.
Here, based on the PH algorithm in [38], we decompose the two-stage
stochastic model in Section 3 and apply PH to accelerate its con-
vergence.

For notation simplicity, in the following context we define the set of
planning decision variables as a new vector Xs in (41) and (42). A
modified formulation of � s( ) in the subproblem of scenario s is denoted
by (43).

∑

∑ ∑ ∑ ∑

≔ ⎧
⎨
⎩

≤

≤ + = −

∈
∈ ∈

X x x x x x

x x x N

x x x x

, , , 1,

1, Γ ,

, , , {0, 1}}

s j s k z s m b s n e s
b

m b s

e
n e s

j
j s

k z
k z s

j s k z s m b s n e s

,
eL

, ,
nL

, ,
SUB

, ,
ESS

, ,
SUB

, ,
ESS

Ψ
,

eL

Ψ
, ,

nL
SUB

,
eL

, ,
nL

, ,
SUB

, ,
ESS

eL nL

(41)

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

=

=

=

=

X q

x q

x q

x q

x q

( )

1

2

3

4

s

j s

k z s

m b s

n e s

,
eL

, ,
nL

, ,
SUB

, ,
ESS

(42)

Fig. 3. Procedure of uncertainty modeling (PDF: the probability density function; MCS: the Monto Carlo simulation method based on GMM).
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� ∑ ∑= ⎛

⎝
⎜ + + ⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

− −
=

s γ C C θ Q x y( ) min ,

s.t. Constraints (22) (37)&(11) (15).

X y i

i

s

S

s s
,

INV MAT
1s s

(43)

4.2.1. Computing rational vector X
When making an investment plan, the decision maker may know

nothing about which scenario will be realized in the future. To avoid
decisions dependent on specific scenarios, the non-anticipativity con-
straints are introduced as Eq. (44).

⎧

⎨

⎪⎪

⎩
⎪
⎪

= ∀ ∈

= ∀ ∈

= ∀ ∈

= ∀ ∈

x x j

x x k

x x m

x x n

¯ Ψ

¯ Ψ

¯ Ω

¯ Ω

j s j

k z s k z

m b s m b

n e s n e

,
eL eL

eL

, ,
nL

,
nL

nL

, ,
SUB

,
SUB

SUB

, ,
ESS

,
ESS

ESS (44)

In PH algorithms, these constraints are implicitly implemented.
After calculating the average solution X of the first-stage decision
vector Xs over all scenarios, the deviation −X Xs will be punished in
the objective to ensure that all planning decisions in ∈s S are prone to
approaching a common X after finite iterations. In general, X is a
mathematical expectation derived from ∑ ∈ θ X·s S s s, and will be affected
by every Xs. However, in DSEP problems, especially those considering
large uncertainties, chances are that overload happens in some rare
cases where distribution facilities such as feeders, substations and ESSs
with larger capacity are necessary. Given this circumstance, if we
continue to average planning decision variables over all scenarios, it is
more likely to see non-convergence or unacceptable long run-time in
the PH algorithm, since X will tend to approach the solution with less
investment but more frequent occurrence, leading to a large punish-
ment on decision variables of overload scenarios. Nevertheless, the
overload scenario has little chance to converge to the average solution,
otherwise the subproblem will become infeasible.

The solution of a DSEP problem is supposed to be feasible in all
scenarios involved. Hence, we give higher priority to the overload
scenarios, in other words, the most radical investment solutions and
calculate their expectations as a rational vector X shown below:

∑

∑

∑

∑

=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

=

=

=

=

∈

∈

∈

∈

X q

θ x q

θ x q

θ x q

θ x q

( )

· 1

· 2

· 3

· 4

v

s S
s j s

v

s S
s k z s

v

s S
s m b s

v

s S
s n e s

v

,
,eL

, ,
,nL

, ,
,SUB

, ,
,ESS

nL

SUB

ESS (45)

where X q( )v is the new average solution of decision variables in
iteration v, and S S S, ,nL SUB ESS are scenario sets producing planning
results with feeders, substations and ESSs of largest capacity, respec-
tively. As for decision variables denoting existing lines’ investment, the
corresponding X is still the mathematical expectation of xj s

v
,
,eL in all

scenarios since the original feeders can not address extreme cases like
overload effectively.

As a result, the algorithm converges to a rational solution faster, for
the DSEP with more distribution facilities to built is always feasible in
normal load scenarios. To avoid over investment in this scheme,
sometimes only the average solution of the most crucial and complex
decision variables, i.e. ESS investment, will be handled as Eq. (45) does.

4.2.2. Parallel computing process
Since each subproblem is independently solved in PH algorithms, the

optimization in one scenario does not rely on others. Parallel
Computing ToolboxTM with MATLAB interface is adopted here by
parfor-loops in multiple threads.

Algorithm 1. PH Algorithm with Parallel Computing.

1. Input: PH parameters =ε ρ q ρ ρ ρ ρ, ( ) { , , , }eL nL SUB ESS .
2. Initialization: ← ← ← ∀ ∈−v w g s S1, 0, 0,s

v v1 .
3. parfor ∈s S do:
4. �←X sargmin ( )s

v
Xs ys, s.t. (22)–(37) & (11)–(15).

5. end parfor
6. Update: X̄ v according to Eq. (45).
7. for ∈s S do: ← + ∑ −−w w ρ q X X( )( ¯ )s

v
s
v

s
v v1 .

8. end for
9. Update: ← ∑ −∈g θ X X· ¯v

s S s s
v v .

10. while ≥g εv do: ← +v v 1.
11. parfor ∈s S do:
12.

�⎜ ⎟← ⎛
⎝

+ + − ⎞
⎠

− ∑ −X s w X X Xargmin ( ) · · ¯s
v

Xs ys s
v

s
ρ q

s v
,

1 ( )
2

1
2

.

13. end parfor
14. repeat Step 6–8.
15. Update: =g q g g g g( ) { , , , }v v v v v

eL nL SUB ESS in Step 9.
16. for q =1:4
17. if < ≤g q0 ( ) 1v do: = +ρ q A q g q ρ q( ) (1 ( ) ( ) )· ( )v .
18. else do: = + −ρ q B q g q ρ q( ) (1 ( )( ( ) 1))· ( )v .
19. end if
20. if ≥ −g q g q( ) ( )v v 1 do: = +ρ q A q g q ρ q( ) (2 ( ) ( ) )· ( )v .
21. end if
22. end for
23. end while

Theoretically, if there are enough processors available, the optimi-
zation can be solved concurrently with one scenario in a single thread.
Consequently, the parallel processing can be applied to the PH designed
for Eq. (43) as illustrated in the Algorithm 1 above.

4.2.3. Gap-dependent penalty factor
Empirically, planning results are found sensitive to the penalty

factors. While a large ρ can push to the early termination, it can also
harm the economy of facilities to be invested, i.e. the optimality of final
solutions. By contrast, a small ρ cannot effectively penalize the devia-
tion of planning variables from their average solution X . What is worse,
for MILP models with binary planning decisions, sometimes the opti-
mization falls into endless loops due to g q( )v in Step 15 of Algorithm 1
becoming fixed after several PH iterations. In this case, a belated
change of penalty factors can hardly address the situation since the
oscillation of some integer variables has occurred, and thus lead to
endless cycling.

To deal with it, we adopt gap-dependent ρ q( ) values for better
convergence rates while ensuring the solution quality. In Step 16–22 of
the pseudocode, the gap values g q( )v of the line, substation and ESS
planning decisions are divided into two groups: for those smaller than
1, we perform Step 17 to increase their ρ q( ) values; for others larger
than 1, Step 18 is conducted. A q( ) and B q( ) here represent vectors
including the tuning parameters for ρv

eL, ρ v
nL, ρ v

SUB, ρ v
ESS, and can be

adjusted for different models while their values are usually around 1.
Both in Step 17 or Step 18, all ρ q( ) values are increased to a rela-

tively small extent, and the initial ρ q( ) should be consequently smaller
than the magnitude of the unit cost (C and O) of different distribution
facilities. For early iterations, the PH algorithm will yield large reduc-
tions in gaps, then Step 18 will be effective to punish the deviation of
binary variables among different scenarios, by increasing the penalty
factors with a degree depending on current gaps. Here, B q( ) is used to
rescale the distance between g q( )v and 1 for a faster convergence.

However, the majority of PH iterations actually act in narrowing the
already tiny gaps which are usually smaller than 1. Then Step 17 comes
into play, where we use + A q g q(1 ( ) ( ) )v as the coefficient of ρ q( ), to
ensure the penalty factors’ linearly increasing with the changing gap.
Instead of A q g q( ) ( )v, the coefficient in Step 17 guarantees the con-
tinuous growth of ρ q( ) values even if g q( )v becomes quite small. In this
case, though, the increment of ρ q( ) may not promote a convergence
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efficiently. Hence, Step 20–21 act as a soft means of slamming compared
with that in [38], to avoid a rising g q( )v.

The rapid increase in penalty factors probably results in premature
convergence of some decision variables due to excessive punishment in

−X Xs
v v . As a result, B q( ) tends to be less than A q( ), since in early

iterations the gaps are large and cause significant growth in the penalty
factors of Step 18. In fact, a relatively small ρ q( ) can be adopted at first,
then increased progressively, yielding less impact on solution quality
while ensuring convergence.

5. Case study

5.1. A modified 33-bus distribution system

A 33-bus distribution system [19] has been modified and tested to
verify the effectiveness of the proposed method. As shown in Fig. 4,
these 5 dotted lines are alternatives for building new feeders, and 32
solid ones represent existing lines. In the planning stage, the topology
can be changed with some new feeders built and other existing lines
abandoned. As mentioned in Section 2.2.1, no isolated node and loop
are allowed in the operation stage, which means only 32 feeders will be
operating in the system.

In terms of facility investment, we consider lines with three options
varying in impedance, power capacity and unit cost, and relevant
parameters are available in [43]. ESSs are considered to be built at the
rest 32 nodes except the first one (slack bus), which is the substation
node. Options of these facilities in the distribution system are given in
Table 2. Besides, data sets for LMP named as Wα t,

LMP in Eq. (3) and the
regulation price named as W W/α t α tREG, ,

up
REG, ,
dn in Eq. (4) are referred to

[44].

5.2. Cases of deterministic MILP model

Assuming that the planning scheme will last for 14 years, four cases
are designed with the framework of the deterministic MILP proposed in
Section 2 as below:

• Case 1: both regulation service revenue and degradation penalty of
ESSs are included in the objective;

• Case 2: ESS degradation penalty is omitted;

• Case 3: regulation services of ESSs are ignored;

• Case 4: no ESS is built in the distribution system.

5.2.1. Network topology
The network topologies of four cases are shown in Fig. 5, where the

capacity of Option1<Option2<Option3 for different facilities. For line
construction, Case 1 and Case 2 both upgrade one feeder while the
number for Case 3 and Case 4 is 2 and 6 respectively. The substation,
meanwhile, expands to the highest capacity in Case 3 and Case 4. From
the view of ESS deployment, the former two cases build more ESSs with
larger capacity than that of the latter two.

These differences demonstrate that without enough storage units,
peak shaving in the distribution system will be severely weakened, thus
leading to the inevitability of feeder upgrades. Besides, ESSs can dis-
charge to satisfy the increasing load demand and lower the require-
ments of substation capacity. Apart from Case 4 which does not con-
sider ESSs, less ESSs are constructed in Case 3, which indicates that the
revenue from regulation services is crucial to the economy of ESS in-
vestment.

5.2.2. Comparison of ESS degradation
To further study the influence of degradation penalty in the objec-

tive function, normalization degradation curves of three cases with ESSs
are compared in Fig. 6. In practice, the threshold of ESS remaining
capacity for the DSO to end its use is set as 80% of the nominal value
[11], such that ESSs in Case 2 only work for 7 years before retiring,

while the periods for Case 1 and Case 3 are 8 and 11 years, respectively,
hence the degradation penalty can prolong ESS lifetime for one year.

On the other hand, without providing regulation services, ESSs tend
to have a longer lifespan as the curve of Case 3. Though ESS regulation
capacity is much less than that of energy arbitrage, frequent regulation
up and down in micro cycles are more harmful to the cell capacity than
relatively slow and macro charge–discharge cycles.

To better observe the aging process, ESS’s behaviors and its SOC in a
typical day of Case 1 are illustrated as Fig. 7. Generally, the number of
full charge–discharge cycles is about once per day, which adds up to
3000 to 4000 times in its 8-year lifespan. Besides, the comparison be-
tween the LMP and charge/discharge bars demonstrates the energy
arbitrage of ESSs, which leverages the electricity price difference be-
tween peak and valley load hours.

5.2.3. Economic analysis
In Table 3, all discounted expenses constituting the overall planning

cost are listed. Case 1 is the cheapest, while Case 4 is the most expensive
one without ESS being built. The second-highest expense is that of Case
3, because no extra revenue can be earned from regulation services,
which is crucial to ESS’s profitability in a distribution system. And Case
2 is less economical than Case 1 due to ESSs’ early retirement.

Considering low ESS profitability in Case 3, higher fare on the
substation and feeders is spent, because limited capacity of ESS can not
shave the peak load effectively. In Case 1 and Case 2, the ESS invest-
ment cost is the same. In other words, once regulation services are
considered in the DSEP, the valuation of ESSs is improved significantly.
Since Case 2 retires ESSs one year in advance, its total maintenance cost
will be reduced. The highest maintenance cost is spent in Case 3, for it
invests feeders and the substation with higher capacity. Subsequently,
the least cost on purchasing electricity is found in Case 1 since its ESSs
can carry out energy arbitrage one year longer than Case 2 and have
higher capacity than Case 3. Additionally, the early disposal of ESSs in
Case 2 earns less regulation revenue due to the radical charge and
discharge behaviors.

In Fig. 8, Case 1–3 are compared with Case 4 (No ESS), where their
profits of energy arbitrage is calculated by differences in the power
transaction cost shown in Table 3. It is observed from (a) that the in-
vestment and maintenance cost of ESSs is always less than their re-
duction on the upgrade cost of substation and lines, proving the
economy of investing ESSs in these cases. In (b), Case 1 with the highest
degradation cost also has the highest regulation revenue for a longer
storage lifespan. Comparing to energy arbitrage, frequency regulation
services provided by ESSs earn more money in the distribution system.
This normally happens when the regulation price dominates over the
LMP or the LMP has relatively smooth peak and valley.

5.3. Cases of two-stage stochastic MILP model

As for the two-stage stochastic model in Section 3, it is solved in 4,
20, 40 and 100 scenarios by two algorithms mentioned in Section 4.2.
Considering uncertainties from load demand, LMP, regulation signals
and prices, we try to find a planning scheme of higher reliability and
practicability.

Fig. 4. A modified 33-bus distribution system.
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5.3.1. Impact of considering uncertainties
In Fig. 9, the topologies of the two-stage stochastic MILP model in 4,

20, 40 and 100 scenarios are illustrated as (a), (b), (c) and (d). When
considering more scenarios involving a wider range of uncertainties,
the planning scheme tends to become conservative with more feeders
built in (c) and (d), which may cope with some extreme cases of
overload.

As illustrated in Table 4, planning results in different scenarios are
listed and compared with that of deterministic MILP model. As the
number of scenarios increases, the overload or unusual regulation sig-
nals will be more likely to appear. To ensure the load balancing all the
time, more expensive feeders and ESSs need to be built. Consequently,
the overall planning result in 100 scenarios is more reliable in real
conditions, however, not the most economical one.

Moreover, a positive correlation between the total cost spent in
DSEP and the considered scenarios does not exist. Actually, the highest
expense is shown in the result of S = 40 as 6.6729 million dollars, since
less scenarios generated from normal distributions have a higher ran-
domness which may lead to a deviation from the optimal solution. With
more scenarios included in S = 100, the power transaction cost and
regulation revenue reflecting ESS’s participation in energy arbitrage
and regulation services tend to be the closest to real expectation values
among all the cases listed here.

5.3.2. Evaluation of algorithm performance
The performance of the L-shaped method and the modified PH al-

gorithm is compared with the Gurobi 8.1.1 in Table 5. With a 2.40 GHz
Intel Core i5 processor and 8 GB of memory, the speed of the modified
PH is proved to be nearly 2–8 times of Gurobi optimizer, and 3–15
times of the L-shaped method. However, the superiority of the L-shaped
method is revealed in its consistent approximation to the optimum

solutions, while the modified PH is more heuristic as discussed before.
Frankly, chances are that time savings obtained by PH-based algo-

rithms may come with a larger final optimality gap (S = 100).
Repeated experiments on more effective penalty factors are needed but
even so the optimal ρ is not easy to find. Considering that, there still lies
space in improving the solution quality of PH without harming its ef-
ficiency, with which we are trying to come up in Section 4.2. For DSEP
with numerous decision variables, the PH algorithm can accelerate the
convergence but not ensure the optimality of planning results.

For our model proposed in Section 3, tuning parameters of the
modified PH are listed in Table 6. As mentioned in Section 4.2, we
develop three algorithmic enhancements to the basic PH proposed in

Table 2
Options for substation and ESSs in the distribution system.

Facilities Different Options

Candidate
nodes

Capacity
(MVA/MWh)

Power
(MW)

Construction cost
(104US$)

SUB 1 10 – 40
15 – 70
20 – 110

ESS 2-33 2 0.8 30
3.5 1.4 50
5 2 90

Fig. 5. Final topology of the deterministic MILP in four cases.

Fig. 6. Capacity degradation behaviors of ESSs in Case 1–3.

Fig. 7. Relationship between ESS behaviors and the LMP in Case 1.
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[38]. To prove their effectiveness, four PH algorithms are defined and
compared as follows:

• Basic PH: neither computes a rational average solution in Section
4.2.1 nor adopts gap-dependent penalty factors in Section 4.2.3;

• Average-solution PH: adopts the average solution to implement non-
anticipativity constraints;

• Gap-dependent PH: adopts gap-dependent penalty factors and uses
the same tuning parameters as those in Table 6;

• Modified PH: adopts both algorithmic enhancements and is illu-
strated as the pseudocode in Section 4.2.2.

Considering that parallel computing technique has been widely
used, we develop all above algorithms with parfor-loops. Besides, they
start with the same initial values of penalty parameters ρ. In Table 7,
the performance of four kinds of PH is compared and the superiority of
the modified one is reflected in terms of computation time and solution
quality.

To save time, we set the maximal iteration as 100. In fact, the
running time of one iteration is almost the same among four PH algo-
rithms in single scenario, hence we omit the results of those fail to
converge within 100 iterations because their computation time should
exceed others significantly. It is noteworthy that both the modified PH
and the average-solution PH can converge within 100 iterations in cases
with 4–100 scenarios, while the gap-dependent PH only converges in 4
and 20 scenarios. The use of a rational average solution, therefore, is
proved superior in stable convergence than computing the mathema-
tical expectation. By cutting down iterations to a certain degree, both
average-solution PH and gap-dependent PH are able to accelerate
convergence compared with the basic one. That the modified PH

reaches the lowest optimality gap with the lowest iteration time among
all four algorithms, further demonstrates the effectiveness of combining
above-mentioned algorithmic enhancements.

These four PH convergence profiles for the experiments performed
in 20 scenarios are given in Fig. 10, in which we provide plots of
iteration number versus objective values, to represent the total planning
cost in each iteration. The modified PH and average-solution PH have
decreasing trends of objective values before convergence, since they
both adopt the average solution which reflects more distribution fa-
cilities invested to address overload cases. As illustrated in the plot,
only basic PH tends to display cycling behaviors within 100 iterations.
And the effective use of algorithmic enhancements in Section 4.2.1 and
4.2.3, both yield improvement in convergence rates regarding to ob-
jective values of the average-solution PH and gap-dependent one, re-
spectively.

6. Conclusion

In this paper, both regulation services and degradation penalty of
energy storage systems are considered to minimize the overall planning
cost of the distribution system. The line configuration, substation ex-
pansion, storage siting and sizing on the 33-bus distribution network in
fixed planning years are optimized via a mixed-integer linear pro-
gramming model. Subsequently, this deterministic model is re-
formulated as a two-stage stochastic one when a Gaussian mixture
model is adopted to handle with various uncertainties. Then, a modified
progressive hedging algorithm is proposed to solve the model with
parallel computing process, with which we improve the computation
efficiency by 2–8 times compared with the Gurobi optimizer. Moreover,
the deterministic planning results demonstrate that with the degrada-
tion penalty in the objective, the storage lifetime will be prolonged for
one year, and in turn cut down the overall cost during the planning
stage.

Numerical results for this method have shown that energy storage
systems earn a big potential source of revenue by providing ancillary
services, which is comparable with profits of energy arbitrage. Hence,
the construction of storage units should be promoted in a distribution
network due to their higher profitability. It is noteworthy that con-
sidering the storage degradation over a planning horizon is more sui-
table for real applications and extends lifespan of the expensive energy
storage. The use of our modified progressive hedging also allows us to
solve the planning problem efficiently in multiple stochastic scenarios,
which provides a more reliable investment scheme for practice. For
further study, this method will be applied and tested in larger

Table 3
Discounted planning cost in four cases.

Terms (104US$) Case 1 Case 2 Case 3 Case 4

Regulation service ✓ ✓ × ×
ESS degradation ✓ × ✓ ×

Total cost 527.14 527.52 535.37 618.37
Line investment 19.80 19.80 39.61 158.43
SUB investment 39.61 39.61 62.24 62.24
ESS investment 79.21 79.21 33.95 0
Total maintenance cost 17.11 16.71 18.03 15.53
Power transaction cost 380.51 380.71 381.18 382.18
Regulation revenue 9.74 8.52 0 0
Degradation penalty 0.63 0 0.37 0

Fig. 8. Profitability of ESSs in Case 1–3.
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Fig. 9. Network topology of the two-stage stochastic DSEP in scenario 4–100.

Table 4
Comparison of planning results of the deterministic MILP and two-stage sto-
chastic MILP.

DSEP Models Deterministic Two-stage stochastic MILP

(104US$) MILP S=4 S=20 S=40 S=100

Total cost 527.14 598.46 603.05 667.29 664.04
Line investment 19.80 19.80 19.80 39.61 39.61
SUB investment 39.61 62.24 62.24 62.24 62.24
ESS investment 79.21 90.53 101.85 147.11 147.11
Total maintenance cost 17.11 19.94 20.39 22.04 22.04
Power transaction cost 380.51 415.78 409.38 409.66 406.26
Regulation revenue 9.74 10.37 11.19 14.07 13.92
Degradation penalty 0.63 0.54 0.58 0.70 0.70

Table 5
Comparison of computation time and solution quality among three solution
methods in different scenarios.

Scenario Method Time (s) Objective Gap
(104US$) (%)

4 Gurobi 46.213 598.46 0.0027
L-shaped Method 79.009 598.47 0.0048
Modified PH 22.112 598.46 0.0023

20 Gurobi 430.607 603.05 0.0122
L-shaped Method 672.774 603.05 0.0122
Modified PH 141.251 603.05 0.0122

40 Gurobi 2478.567 667.29 0.0109
L-shaped Method 2979.775 667.29 0.0109
Modified PH 312.311 667.29 0.0107

100 Gurobi 4501.718 664.04 0.0416
L-shaped Method 13916.344 664.04 0.0416
Modified PH 872.529 672.69 1.3262

Table 6
Tuning parameter values of the modified PH algorithm.

Scenario Tuning parameters

A q( ) B q( )

4 1, 1, 1, 1 0.4, 0.4, 0.5, 0.8
20 1, 1, 1, 1.2 0.4, 0.4, 0.4, 0.3
40 1.2, 1.2, 1, 1 0.7, 0.8, 0.5, 0.5
100 1.2, 1.5, 1, 1 0.5, 0.8, 0.5, 0.4

Table 7
Comparison of computation time and solution quality among four kinds of PH
algorithms in different scenarios.

Scenario Method Iteration Time (s) Gap
(%)

4 Basic PH 17 85.481 0.0023
Average-sol PH 7 34.913 3.4157
Gap-dependent PH 5 27.389 0.0023
Modified PH 4 22.112 0.0023

20 Basic PH >100 – –
Average-sol PH 15 454.266 0.0122
Gap-dependent PH 13 432.274 0.0122
Modified PH 6 141.251 0.0122

40 Basic PH >100 – –
Average-sol PH 70 6161.924 0.0107
Gap-dependent PH >100 – –
Modified PH 5 312.311 0.0107

100 Basic PH >100 – –
Average-sol PH 9 1236.343 1.4447
Gap-dependent PH >100 – –
Modified PH 5 872.529 1.3262

Fig. 10. Objective values throughout iterations of four kinds of PH algorithms.
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