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Abstract-- In this paper, we model topology control through 
transmission switching as a recourse action in the day-ahead 
operation of power systems with large-scale renewable 
generation resources. We prove that transmission switching 
could only reduce the linear objective value of direct current 
optimal power flow (DCOPF) when congestion exists. However, 
we also show, through a simple example, that unit commitment 
cost could be reduced by transmission switching even in the 
absence of congestion.  To solve the stochastic unit commitment 
with topology control within reasonable computational time, we 
proposed a heuristic that first decomposes a practical system 
into zones and then solves the problem for each zone in parallel. 
The benefit of topology control recourse is demonstrated on a 
network representing the Central European System.  We 
compare the costs of the network with different loading and 
renewable generation conditions. The cost reduction of the test 
system can reach 3.34% with heavy load and large-scale 
renewable generation while in a single zone the cost reduction 
can be above 7%. 

 
Index Terms—Renewable generation integration, stochastic 

unit commitment, topology control, transmission switching. 

I.  NOMENCLATURE 

Indices and Sets: 
,i j   Buses (nodes). 

t Time period. 
s Scenario. 
g Conventional generator. 
w Wind generator. 
z Zone.  
G Set of generators. 
GS Set of slow generators. 
GF Set of fast generators. 
N Set of buses. 
M Set of lines. 
Z Set of zones. 
N(i) Set of buses connected to bus i  . 
Nz Set of buses in zone z   
S Set of scenarios. 
T Set of time periods, { }1,2,..., 24T = .  
GW Set of wind generators.  

 
Parameters: 

ijB   The susceptance of line ij .  

,i tD   The demand on bus i  at time t . 

, ,
net
i s tD  The net load on bus i  at time  t  in scenario s . 

ijτ   Cost(revenue) of power import(export) on line ij. 

sπ   The probability of scenario s  . 

gh   The start-up cost of generator g.  

gk  The no-load cost of generator g.  

gc   The fuel cost of generator g.  

iρ   The penalty cost of load shedding at bus i.  
 
Variables: 

, ,g t su   The commitment of generator g at time t in scenario 
s.  

, ,g t sσ  The start-up indicator of generator g at time t in 
scenario s.  

, ,g t sP   The production level of generator g at time t in 
scenario s. 

,g tγ   Reserve of generator g at time t . 

, ,ij t sF   Active power flow on line ij at time t in scenario s. 

, ,i t sθ   Voltage angle of bus i at time t in scenario s. 

, ,ij t sr   On-off status of line ij  at time t in scenario s. 

, ,i t sL   Load shedding on bus i at time t in scenario s. 

II.  INTRODUCTION 
ENEWABLE generation is the fastest growing 

contributor to the electricity portfolio across the world. 
In the United States, different states adopt different 
Renewable Portfolio Standards (RPS). Taking California as 
an example, the RPS program requires investor-owned 
utilities, electric service providers, and community choice 
aggregators to increase procurement from eligible renewable 
energy resources to 33% of total procurement by 2020. 
However, the uncertain and variable nature of renewable 
generation brings new challenges to power system 
operations. In contrast with conventional generations, the 
renewable generation output is constrained by uncertain 
natural resources such as wind and solar. Hence, renewable 
generation cannot be controlled so as to generate the desired 
amount of electricity. Moreover, the forecast accuracy of 
such generation resources is relatively low up to few hours 
ahead of the delivery time. Due to the limitation of large-scale 
storage in current power systems, demand and supply must 
be matched instantaneously. To serve the demand reliably 
with the presence of variability and uncertainty of renewable 
generations, more flexibility, which can be obtained from 
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generation, transmission, and demand, is required.  
Power systems are designed to have some inherent level 

of flexibility in operations to balance supply and demand at 
all times, such that unpredictable load changes and 
unexpected conventional generation failures would not affect 
the reliability of the system. Conventionally, the operational 
flexibility requirements are met by the deploying of a set of 
generators with enough headroom and ramping capability. 
For systems with large-scale renewable generation, resource 
uncertainty must be explicitly accounted for in the day ahead 
unit commitment.  This can be done by optimizing the unit 
commitment as a two-stage stochastic programming problem. 
Such optimization typically differentiates between slow 
ramping resources that must commit before the uncertainty in 
renewable resources is realized, and flexible resources that 
provide recourse capability in response to diverse realizations 
of renewable generation. Recourse actions serve as hedging 
mechanisms that reduce the need for reserves provided by the 
early commitment of slow ramping generators. With large-
scale renewables integration, increased amounts of reserves 
through the commitment of more flexible conventional 
generation resources are required. Such a solution is 
expensive and could undermine the economic and 
environmental objectives of deploying renewable resources. 
In this paper, we focus on the use of topology control through 
switching on/off transmission lines, which has received little 
attention as a means for recourse actions in response to 
uncertain renewable resources. Practical issues such as post-
switching stability must be validated offline and are out of the 
scope of the paper. If the switching of lines undermines the 
stability of the system, we could constrain the line not to be 
switched and resolve the problem. As for N-1 reliability 
criteria, it should be noted that in the context of stochastic 
optimization such criteria is replaced by incorporating 
generators and line contingencies into the  probabilistic 
scenarios such a formulation allows us to consider multiple 
contingencies simultaneously.  Such contingencies can be 
mitigated by transmission switching recourse actions along 
with the response to the renewables generation uncertainty.  
We may also introduce post optimization processing to 
evaluate the robustness of the solution with respect to specific 
contingencies and eliminate switching actions that do meet 
the criterion.  In this paper, we only focus on optimizing the 
recourse switching decisions with respect to renewable 
generation uncertainties and defer the consideration of other 
contingencies to future work.  

Both deterministic models and stochastic models have 
been studied for unit commitment with large-scale renewable 
integration. Sioshansi et al. [1] presented a deterministic unit 
commitment model in which explicit constraints on reserves 
and import limit are imposed. The excess generation capacity 
required by those constraints can be utilized to balance the 
supply and demand in the system when contingencies occur, 
or renewable supply has fluctuations. Another way to 
formulate this problem is to adopt stochastic programming 
models where the uncertainty of renewable generation is 
modeled as weighted scenarios, and reserve requirements are 
modeled endogenously [2–4]. In stochastic models, the 
uncertainty is usually represented as a set of scenarios. To 
reduce the computation complexity, various scenario 
reduction techniques have been proposed in [5–7]. To solve 

stochastic unit commitment problems, researchers have 
adopted and developed decomposition algorithms include 
Lagrangian relaxation [4], augmented Lagrangian methods 
[3] and progressive hedging [2]. In general, Lagrangian 
methods are sensitive to the selection of the parameters. 
Progressive hedging has been proven to be a rigorous 
algorithm for convex problems and convergence is 
guaranteed [8]. However, for the unit commitment problem 
that is discrete, cycling phenomenon has been observed in 
some test instances as presented in [9]. When we include 
switching decisions, the symmetry caused by the presence of 
identical parallel lines might lead to more redundant 
computation [10].  These solution techniques are developed 
for solving stochastic unit commitment without transmission 
switching. If switching decisions are included, then scalable 
techniques or heuristics are required to solve the problem 
efficiently. There is also extensive literature on chance-
constrained formulations [11] and robust optimization 
models [12] of the day-ahead scheduling problems for power 
systems with variable renewable resources. Here, we focus 
only on the two-stage stochastic programming formulation. 

Transmission lines are traditionally considered as 
uncontrollable static assets in the operations of power 
systems. However, in practice, system operators can and do 
change the topology of the transmission network as post-
contingency control actions. The switching of transmission 
lines incurs no additional cost other than possible wear of the 
breakers, which is typically small comparing to the potential 
benefits. In this paper, we do not consider the cost of 
switching. The idea of transmission switching has been 
studied for decades. Transmission lines are switched on/off 
as preventive or corrective actions to enhance system security 
by relieving overload conditions [13].  In [14], the authors 
utilized transmission switching as corrective actions to deal 
with both load violation and voltage violation. In the most 
recent paper [15], the authors compared the results of 
contingency in day-ahead unit commitment, with and without 
transmission switching. They showed that corrective 
transmission switching helped not only in post-contingency 
situations but also in achieving N-1-1 reliability. 
Transmission switching has also been studied as a method to 
harness flexibility from existing transmission systems to 
reduce the system operating cost in the context of direct 
current optimal power flow (DCOPF) [16–18]. In DCOPF, 
transmission switching makes it possible to choose the best 
system topology so that the power generation is optimized on 
that topology. In Section III we will show that transmission 
switching reduces the system cost by relieving congestion. In 
[19], the authors extended the optimal switching in real-time 
operations into the context of alternative current optimal 
power flow (ACOPF). They proposed a two-level iterative 
framework, in which a second-order cone programming is 
solved to provide candidate optimal switching solution in the 
upper level and then the solution is screened to achieve AC 
feasibility in the lower level. In [20], the authors proposed a 
model that considers both short-circuit current limit 
constraints and N-1 security constraints in optimal 
transmission switching problem. In the proposed algorithm, 
N-1 criteria is checked after the optimization in each iteration. 
In their model they include the cost of switching lines. In the 
numerical test, results show that switching cost might 
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influence the switching decision but not the performance of 
the proposed model. To solve the problem efficiently, 
researchers have developed heuristics to obtain near-optimal 
switching decisions. Ruiz et al. proposed fast heuristics for 
OPF with topology control instead of solving MIP directly 
[21, 22]. Transmission switching has also been shown to 
reduce the investment cost in power system expansion. In 
[23], the authors formulate the line capacity expansion 
problem as a two-stage stochastic programming problem, and 
switching decisions are made in the second stage with other 
operational decisions, while the investment decisions are 
made in the first stage. Their results showed that with 
transmission switching, the network could be augmented 
cheaper with respect to total cost including both investment 
cost and operational cost. In day-ahead operations of power 
systems without renewable generation [24], the authors 
studied how transmission switching will change the optimal 
deterministic unit commitment as well as the optimal cost. 
The switching decisions and deterministic security-constraint 
unit commitment decisions are optimized iteratively. In this 
deterministic problem, the cost reduction is not as substantial 
as in optimal transmission switching on the IEEE 118 system. 
For day-ahead scheduling problems with large-scale 
renewable integration, more cost reduction is expected since 
the flexibility provided by transmission switching can 
mitigate the uncertainty of renewable generation which may 
lead to more efficient commitment decisions.  We have 
shown in our previous paper [25] that transmission switching 
as a recourse action in response to realized uncertainty of 
intermittent renewable resources could mitigate such adverse 
variability and improve unit commitment efficiency in IEEE 
118 system.  

In this paper, we focus on topology control recourse 
through the switching of transmission lines in two-stage 
stochastic unit commitment. The objective of this paper is to 
demonstrate that topology control as a recourse action may 
provide benefits by mitigating the variability of wind 
generation and reduce the system operating cost in 
commercial-scale power systems. The remainder of the paper 
is organized as follows. In section III, we compare the role of 
transmission switching in optimal power flow and unit 
commitment. In section IV, we propose a scheme that 
decomposes an interconnected commercial system into 
zones. In section V, we provide a demonstration study based 
on a network representing the Central European system. And 
section VI concludes the paper. 

III.  TRANSMISSION SWITCHING, OPTIMAL POWER FLOW AND 
UNIT COMMITMENT 

Transmission switching in a deterministic optimal power 
flow and unit commitment settings for IEEE test cases has 
been proved very effective in reducing the operating cost [16, 
26]. Switching on /off transmission lines can divert flows in 
the system and relieve congestion or potential congestions in 
the system. Hence, generation decisions are able to be 
adjusted optimally to reduce operating
cost. In this section, we will prove that in a single period 
DCOPF, transmission switching can only reduce the 
objective function value when congestion is present. 
However, we will also show, through an example that in a 
multi-period unit commitment, this is no longer the case due 

to the discrete nature of the optimization problem. In fact, 
transmission switching can enlarge the feasible region of 
commitment decisions and hence reduce total cost by 
reducing “potential” congestions. 

A.  Transmission Switching and Optimal Power Flow  
In a DCOPF setting, we formally prove that if there are no 

line congestions, changing the topology brings no benefits to 
the objective.  

The output of generators is denoted as a vector N
GP R∈ . 

When there is no generation connected to a particular bus, the 
corresponding component is zero. The voltage angles of 
buses are represented using vector Nθ . The active power flow 
of transmission lines is represented as MF .   

The optimal power flow (OPF) problem is defined as: 
( )
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where ⋅  represents the cardinality of a set, N MA × is the 
incidence matrix. Matrix B  is a sparse matrix with non-zero 
components: 

, ,
1 1,l i l j

l l

B B
x x

= = −  

where lx  is the impedance of line l  starting from bus i  
ending at bus j . The optimal solution of OPF  is 

T T T T
G N M =  x P θ F  . Due to the optimality of x , there is 

no feasible direction 
G N M

TT T T
P Fθ =  d d d d  such that 

0T
G G <c d  . When there is transmission switching, the 

operating cost will be less than or equal to the operating cost 
of OPF . 

Let us consider an OPF with optimal production GP . 
There is no congestion,  i.e. the line flow capacity constraints 
are not binding. The optimal production level *

GP  of 
transmission switching problem OTS  can be obtained by 
solving the following problem: 
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where M is the set of transmission lines after switching 
on/off transmission lines. The OTS is essentially a OPF
solved on a network with a different set of transmission lines. 

Assume *T T
G G G G<c P c P . Let *

GP G G= −d P P . The feasible 

direction of OPF satisfies: 
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We will get  
'

G NP B θ=d d  

where 'B is the coefficient matrix of DC power flow equation 
and it is of rank 1N − . We can delete the last row and the 
last column. We can first take the inverse of the reduced 
matrix to get 

1Nθ −
d  using 

GPd  and then find the last 

component of 
Nθ

d . Since the line flow capacity constraints in 

OPF is not binding, there exists a feasible direction for OPF
satisfying 0

G

T
G P <c d , which contradicts the optimality of GP

when switching is not allowed. Thus, if there is no congestion 
in optimal power flow, transmission switching will not 
benefit the system. Based on this result, heuristics could be 
developed by monitoring only a subset of transmission lines 
and target the relieving line flow congestions in the OPF 
solution.  

B.   Transmission Switching and Unit Commitment 

 
Fig. 1 3-bus system 

While the above result may seem intuitive, this is presented 
here in order to highlight the contrast with the multi-period 
unit commitment optimization where transmission switching 
could be beneficial even in the absence of congestion, as 
illustrated through the following simple example. It is shown 
that “potential” line flow congestions may lead to an optimal 
commitment decision, such that if we fix the binary 
commitment decisions, no congestions can be observed in the 
optimal solution. Switching on/off some of the lines can still 
reduce the cost.  

Consider a 2-period deterministic unit commitment 
problem for a 3-bus system with 2 units as shown in Fig. 1. 
The impedance of lines is also depicted on the figure. 

TABLE I Generator parameters of the 3-bus system 

Generator G1 G2 
Start-up Cost 100 100 
No-load Cost 70 150 

Production Cost (per Unit of 
Demand) 10 5 

Capacity 30 30 
Ramping Rate (up and down) 5 10 

 
TABLE II Line flow capacities of the 3-bus system 

Line L12 L23 L13 
Flow Capacity 8 30  30 

 
We consider only two time periods. The demand in the two 

periods is 18 and 24. Other related parameters of generators 
and transmission lines are listed in Table I and Table II, for 
brevity, the parameters are all measured as the ratio with 
respect to some base value. 

 

 
Fig. 2. UC solution without transmission switching 

 

 
Fig. 3. UC solution with transmission switching 

The results are depicted in Fig. 2 and Fig. 3. Though there 
is no line congestion observed in the optimal solution of UC 
without transmission switching, the cost can be reduced in 
both periods by switching off L12. From the optimal solution 
of UC with transmission switching, we can see that for both 
time periods it is optimal to commit only G2. Without 
switching, L12 would be congested if we only had G2. Hence, 
only G1 is committed in t1. Since the binary decision is 
changed, the potential congestion could not be observed. An 
important implication highlighted by this example, which is 
significant for the main problem explored in this paper, is that 
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heuristics based on relieving congestions on specific lines 
cannot be directly applied in this case. For stochastic unit 
commitment with transmission switching recourse, the 
problem is even more complicated. 

IV.  FRAMEWORK FOR SOLVING STOCHASTIC UNIT 
COMMITMENT WITH TRANSMISSION SWITCHING RECOURSE 

Regional transmission organizations, like ENTSO-E in 
Europe and PJM in the US, coordinate the transaction of 
electric power through different regions or zones subject to 
different regulatory frameworks. Taking ENTSO-E as an 
example, each zone in the interconnected system has its own 
transmission system operator (TSO). Cross-border electricity 
exchange is cleared in the day-ahead market without 
considering renewable generation. Inspired by the current 
operation of this large-scale power system, we propose a 
framework to solve stochastic unit commitment with 
transmission switching recourse (TCSUC) for commercial-
scale interconnected power systems, in which TSOs of each 
zone co-optimize generator commitment and dispatch 
decisions as well as transmission line switching decisions.  

 
Fig. 4. Framework for solving TCSUC for commercial-scale 

interconnected system 

In the proposed framework shown in Fig. 4, the problem 
we solve in each step is a two-stage stochastic programming 
problem. Each zone first solves a stochastic unit commitment 
(SUC) problem without transmission switching. In SUC, the 
inter-zone flows are modeled as electricity imports and 
exports. The generators are divided into two sets: fast 
generators and slow generators. The commitment of slow 
generators is the first-stage decision. The commitment of fast 
generators is determined after the realization of renewable 
generation. The SUC can be formulated as: 
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In SUC, the last term of the objective represents the 
cost/revenue for exchanging electricity with other zones. The 
vector z

sF  represents line flow within the zone z  while c
sF

represents line flows between zones.  For brevity, we do not 
list all constraints for SUC. The first constraint represents the 
on/off transition, minimum up time, and minimum down time 
constraints of slow units.  ( ),z z

GF s GS∆ W u  represents the 
feasible set of the second stage decisions that depend on the 
renewable generation scenarios and the first-stage decisions. 
All constraints are linear. The detailed formulation can be 
found in our previous paper [25].   

The binary commitment decisions are submitted to the 
interconnected system coordinator. The coordinator has 
access to the model and the data of each zone. It then solves 
a stochastic economic dispatch (SED) problem in the day-
ahead market for the entire system. The SED is a two-stage 
stochastic programming problem. The cross-border flows are 
first stage decisions forced by non-anticipativity constraint 
since this value is settled in day-ahead before the realization 
of uncertainty; generation dispatches are second stage 
decisions: 

( ) ( )
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Noted that here we have ( ),Z C
s∆ W F  defining the feasible 

region. In ( ),Z C
s∆ W F , decision variable CF is the first-stage 

decision and it does not depend on scenarios. It is equivalent 
to using ( ) ( ),s , , ,Z Z Z Z

G s s s
C
s∈∆P F L W F  for all scenarios and 

zones and then forcing C C
s =F F for any scenario s  . In SED, 

we have market clearing constraints, line flow constraints, 
line flow capacity constraints, generation capacity 
constraints, and ramping constraints. The SED is a stochastic 
linear programming problem. Different time periods are 
coupled by the ramping constraints. Different scenarios are 
coupled by the cross-border line flows. 

Finally, the cross-border flows are broadcast to zones, and 
each TSO solves TCSUC with the cross-border flows fixed. 
For each renewable generation scenario, the cross-border 
flows are same as the solution in SED. The formulation of 
TCSUC is similar as that of SUC other than line flow 
constraints and flow capacity constraints. The two constraints 
are modeled as: 

( ) ( ) ( ), , , , , , , , , ,M 1 M 1 ,

, , ,
ij ij t s ij t s ij i t s j t s ij ij t s

z

r F B r

i j N t T s S
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∀ ∈ ∈ ∈
  (1) 

max max

, , , , , , , , , ,ij t s ij ij t s ij t s ij zr F F r F i j N t T s S− ≤ ≤ ∀ ∈ ∈ ∈   (2) 

We allow switching for all lines within each zone. Cross-
boarder lines are always on. Constraint (1) represents the 
modified linear approximation of Kirchhoff’s current law. 
The parameter ijM  in this constraint has to be greater or equal 

to ( )maxij i jB θ θ− , so that if a line is off, the voltage angles 

of the two buses are no longer related. We want ijM  to be as 
small as possible to generate efficient cuts. In normal 
operating states of power systems, the voltage angle 
difference between connected buses is below 5 . Using the 
topology information of the system, we can estimate 

( )max i jθ θ− and a sufficiently small value of ijM . 

Constraint (2) states that if a line is off, the line flow is zero. 
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If a line is not switched off, the flow on it should be within 
the flow limit. 

The proposed model decomposes the large-scale mixed 
integer programming problem into sub-problems with fewer 
decision variables and significantly reduce the complexity of 
solving the problem. The sub-problems can be solved in 
parallel, and the decomposition can be fit into the 
coordination framework of interconnected power systems. 
Moreover, solutions to SUC serve as warm-starts of TCSUC, 
which helps reduce the solution time. 

 Since we fix the cross-border flows between zones and 
only allow the switching of lines within a zone, the solution 
to the decomposed model is sub-optimal. For the central 
European system that we used in the numerical test with 10 
scenarios, there are over 400,000 binary variables without 
decomposition. Even if we use scenario based decomposition 
method such as Progressive Hedging, there are around 80,000 
binary variables in each sub-problem. For an interconnected 
practical power system with thousands of buses, such 
heuristics that reduce the complexity of solving the problem 
is essential. Given that realtime coordination between zones 
is still limited in the current European market, we think it is 
reasonable to model power exchanges between zones as day-
ahead pre-fixed values instead of decisions, and it is 
appropriate to leave the switching decisions in the zonal level 
where detailed transmission system configuration 
information is accessible.             

V.  NUMERICAL TEST 
In this section, we conduct numerical tests on a network 

representing the Central European system [26]. We compare 
the costs for each zone with and without topology control 
recourse in two settings of renewable generation and loading 
conditions. In the first setting (Case 1), we use base values for 
both loads and renewable generations. In the second setting 
(Case 2), we increase the load by 10% and increase the 
renewable generation by 5% to create more congestions in the 
system. 

 

Fig. 5. Central European System 

A.  Test System and Data Description 
There are 679 buses, 667 conventional units, 1036 

transmission lines and 1437 renewable units in our test 
system. The interconnections between different countries 
within and outside the Central European system are shown in 
Fig. 5. 

There are 7 countries in the network. Detailed information 
on the grid of those countries is listed in Table III. Among all 
7 countries, Germany has the largest number of buses, lines, 
and units. The peak load of Switzerland and Luxembourg is 

much larger than the maximum generation capacity (Max. 
Gen. Cap.). We need to combine the two countries with other 
interconnected countries as zones to balance the load and 
generation. There are 9 lines connecting Switzerland and 
France and 5 lines connecting Switzerland and Germany. 
Switzerland is connected more tightly with France than 
Germany. When we solve the problem, we take France and 
Switzerland as a single zone. Similarly, we also consider 
Belgium and Luxembourg as a zone. In our numerical tests, 
we decompose the system into 5 zones.  

TABLE III System Zonal Information 

 AT BE CH DE FR LX NL 
Buses 36 24 47 228 317 3 24 
Lines 42 23 76 312 518 2 26 
Fast 
Units 11 25 4 94 22 0 19 

Slow 
Units 25 45 5 254 108 1 46 

Peak 
Load 
(MW) 

8044.9 1.3e4 7328 65018 69043 839 13959 

Max. 
Gen. 
Cap. 

(MW) 

7656.8 1.7e4 4335.1 1.1e5 9.0e4 375 24690 

 

 

 

 
Fig. 6.  Renewable Generation Scenarios 

We select 10 renewable generation scenarios from 120 
simulated scenarios using historical data. Since our goal is to 
justify the benefit of topology control recourse in stochastic 
unit commitment, we want scenarios with high variance, so 
that they cover extreme realizations of renewable generation. 
The total renewable generation in each scenario of a day is 
plotted in Fig. 6. From the figure, we can see that renewable 
generation varies a lot. The highest renewable generation 
scenario can be as much as roughly 10 times the lowest 
renewable generation scenario. The negative value of the 
renewable generation represents pumped hydroelectric 
storage. Taking the two largest zones FR+CH and DE as 
examples, the maximum penetration of renewable generation 
in the second setting among all scenarios and all time periods 
is 17.1% in FR+CH and 60.5% in DE. 
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B.  Test Results and Analysis 
The test results of the two cases are listed in Table IV and 

Table V. The solver we used is CPLEX. The optimality gap 
of SUC is set to be 0.5% for all zones. The optimality gap of 
TCSUC is set to be 4% for DE and FR+CH, and 2% for the 
other three zones to ensure all sub-problems can be solved 
within the similar amount of time. The lower bound of 
TCSUC is from solving a relaxation of the problem. Solutions 
with high optimality gap are feasible solution whose 
objective value is greater than or equal to the optimal one. We 
did not choose a uniform gap for different zones in TCSUC 
but the result is still comparable since the higher optimality 
gap induce a lower bound for cost reduction. The larger the 
optimality gap is in TCSUC, the more conservative the cost 
saving is. From the results, we can see that with topology 
control recourse, the total cost of the system will be reduced 
by 0.2944 million euros in Case 1 and 1.8794 million euros 
in Case 2. 

TABLE IV Case 1 Test Results 

 SUC 
(MEUR) 

TCSUC 
(MEUR) 

Cost Saving 
(MEUR) 

AT 3.2257 3.2123 0.0134 
BE+LX 3.2130 3.2119 0.0011 

DE 15.1121 15.0078 0.1043 
FR+CH 13.5106 13.3395 0.1711 

NL 4.1957 4.1912 0.0045 
Total 39.2571 38.9627 0.2944 

 
From the results, we can see that the total cost of Case 2 is 

higher than that of Case 1, but the percentage cost saving is 
3.34% with topology control recourse which is much higher 
than 0.75% in the first case. The zone FR+CH has the largest 
cost saving with transmission switching recourse in both 
cases. In contrast, no cost saving is observed in the zone 
BE+LX in Case 2 and the cost saving in the zone representing 
NL is close to zero in Case 1.  

TABLE V Case 2 Test Results 

 SUC 
(MEUR) 

TCSUC 
(MEUR) 

Cost Saving 
(MEUR) 

AT 7.0057 6.8244 0.1813 
BE+LX 6.2083 6.2083 0.00 

DE 14.2089 14.0540 0.1549 
FR+CH 17.3961 16.0753 1.3478 

NL 10.5475 10.3793 0.1682 
Total 55.3665 53.5141 1.8521 

 
In Case 2, the load on each bus is increased by 10%. Not 

only more generation is required to balance the demand, but 
also more congestion is created. Due to the congestion, more 
expensive units have to be scheduled to meet the demand. 
Hence, the total cost increase is high. Moreover, with 5% 
more renewable generation, more flexible units with higher 
costs need to be deployed to mitigate the variability without 
topology control recourse. Thus, topology control plays a 
more important role in Case 2. In the following analysis when 
we compare the cost savings in different zones, we will focus 
on Case 2. 

To understand why the percentage cost saving in FR+CH 
is above 7% while that of BE+LX is zero, we will examine 
the loading conditions, ramping capabilities, congestions of 
the two zones. We also define other metrics to analyze the 

results. The net load ramping (NLR) requirement is defined 
as: 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ){ }
( )

, 1 ,

, , 1

max min

max min

max , ,

max

Up net net
s t s ts Ss S

Down net net
s t s ts Ss S

Down up

t T

NLR t D D

NLR t D D

NLR t NLR t NLR t t T

NLR NLR t

+ ∈∈

+∈∈

∈

= −

= −

= ∀ ∈

=

  (3) 

 
Fig. 7 provides a graphical illustration on how NLR is 

defined. The NLR measures the variability of renewable 
generations. Moreover, it is designed to capture the extremes 
among different scenarios, which reflects the extreme 
ramping requirements in the second stage that the operators 
need to consider when the first stage decisions are made. In 
the two-stage stochastic unit commitment, the first stage 
commitment decisions need to accommodate such variability 
in the second stage among different scenarios.  For a system 
with high NLR value, if the ramping capacity of fast units is 
small, more first-stage commitment decisions will be cut-off, 
and the number of feasible solutions will be smaller.  Thus, 
the higher the value of NLR is, the fewer the feasible slow 
generator commitments there are.  

 

 
Fig. 7.  Illustration of NLR 

We also calculated the congestion rate for zone z  defined 
as: 

( )( ) ( )max
,t,s

,

1
# #

z

z s ij ij
s S t T i j Nz

CR F F
T M

π
∈ ∈ ∈

= =∑ ∑ ∑ 1   (4) 

where #  represents the cardinality of a set, ( )⋅1  is the 
indicator function, ⋅  is the absolute value of a variable, and 

, ,ij t sF  is the line flow of the stochastic unit commitment 
without topology control recourse. This quantity represents 
the average percentage of lines congested per time period. It 
attempts to quantify how congested the network is.  

Statistics of the two zones are listed in Table 6. We can see 
that the NLR of BE+LX is much higher than the ramping 
capacity of slow units while the NLR of FR+CH is closed to 
the ramping capacity of slow generators. Thus, in BE+LX, 
the variability of the renewable generations is mitigated by 
fast units. Moreover, the CR of FR+CH is much lower than 
that of BE+LX. The zone of BE+LX is more congested than 
FR+CH. Topology control recourse can change the 
commitment schedule through reducing potential congestions. 
However, if there are too many lines congested in a network, 
by switching on/off lines might not enlarge the feasible set of 
the first stage commitment decisions to provide a better 
solution.  
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TABLE VI Loading, generation and congestion statistics of BE+LX and 
FR+CH  

 BE+LX FR+CH 
Total Max Cap. of Slow Generators 13899.6 84952 
Total Max Cap. of Fast Generators 3086.5 9730 

Total Slow Ramping Cap. 1424.4 10034.7 
NLR 2381.4 12809.4 

Max. Net Load 12451.3 77447.2 
Min. Net Load 9682.8 50682.3 

CR 0.1916 0.0254 
 
The comparison of detailed cost information in zone 

FR+CH is shown in Fig. 8 and Fig. 9. To compare different 
cost components of slow units and fast units, we scale each 
component through dividing it by the corresponding value of 
SUC. The values in the figures represent the cost component 
in TCSUC corresponding to that of SUC. From Fig. 8, we can 
see that by including topology control as a recourse action, 
the first stage commitment decisions have been altered so that 
both start-up cost and no-load cost have been reduced. 
Moreover, almost the same amount of generation from slow 
units is dispatched in the second stage. But the average fuel 
cost of TCSUC is lower than that of SUC. The expected fuel 
cost of slow units is decreased with topology control recourse. 
Similarly, the expected start-up cost expected no-load cost, 
and expected fuel cost are all reduced. Around 1.5% less fast 
generation is dispatched in TCSUC. That reduction in fast 
generation is covered by slow units with cheaper fuel costs. 
From the results, we can see that with topology control 
recourse in stochastic unit commitment, we can utilize the 
flexibility provided by switching on/off transmission lines to 
mitigate the variability introduced by renewable generation.  

 

 
Fig. 8.  Cost Comparison of Slow Units 

 

 
Fig. 9.  Cost Comparison of Fast Units 

VI.  CONCLUSION AND FUTURE WORKS 
We have studied modeling topology control through 

transmission switching as a recourse in a two-stage stochastic 
unit commitment model for power systems with large-scale 
renewable generation. We analyzed how the switching 

decisions could affect the commitment decisions and the 
dispatching decisions in OPF and unit commitment. To solve 
TCSUC for practical system efficiently, we also proposed a 
decomposition heuristic. Numerical tests conducted on a 
network representing the Central European System 
demonstrate that with topology control recourse, the expected 
operating cost will be reduced. The flexibility provided by 
topology control allows the commitment of cheaper units in 
both stages in the stochastic unit commitment problem. But 
such flexibility is limited by other conditions of the system. 
We observed that, for heavily congested systems, the 
operating cost could not be reduced significantly by purely 
introducing topology control recourse.  

For future research, system contingencies traditionally 
monitored trough N-1 security criteria should be included in 
the probabilistic scenarios so that they are accounted for in 
the first-stage decision of stochastic unit commitment.  
Further work is also needed for developing efficient scenario 
based decomposition algorithms, accounting for switching 
cost and preventing cycling. 

VII.  ACKNOWLEDGMENT 
The authors would like to thank the Lawrence Livermore 

National Laboratory for granting computing resources on the 
Sierra and Cab cluster. We would also like to thank Ignacio 
Aravena for the help in understanding the dataset. This work 
was supported by NSF EAGER Grant ECCS 1549572 and by 
TBSI, at UC Berkeley. 

VIII.  REFERENCES 
[1] R. Sioshansi and W. Short, “Evaluating the impacts of real-time pricing 

on the usage of wind generation,” IEEE Trans. Power Syst., vol. 24, 
no. 2, pp. 516–524, 2009. 

[2] S. Takriti, J. R. Birge, and E. Long, “A stochastic model for the unit 
commitment problem,” IEEE Trans. Power Syst., vol. 11, no. 3, pp. 
1497–1508, 1996. 

[3] P. Carpentier, G. Cohen, and J. C. Culioli, “Stochastic optimization of 
unit commitment: a new decomposition framework,” IEEE Trans. 
Power Syst., vol. 11, no. 2, pp. 1067–1073, 1996. 

[4] A. Papavasiliou, S. S. Oren, and B. Rountree, “Applying high 
performance computing to transmission-constrained stochastic unit 
commitment for renewable energy integration,” IEEE Trans. Power 
Syst., pp. 1–12, 2014. 

[5] N. Growe-Kuska, H. Heitsch, and W. Romisch, “Scenario reduction 
and scenario tree construction for power management problems,” in 
2003 IEEE Bologna Power Tech Conference, 2003. 

[6] S. Mitra, “A white paper on scenario generation for stochastic 
programming,” 2008. .[Online] Available: http://www.optirisk-
systems.com/papers/opt004.pdf 

[7] K. Ryan, S. Ahmed, S. S. Dey, and D. Rajan, “Optimization Driven 
Scenario Grouping,” 2016.[Online] Available: http://www2.isye.
gatech.edu/~sdey30/Grouping.pdf 

[8] R. T. U. of W. Rockafellar and U. of C. Roger J-B Wets, “Scenarios 
and policy aggregation in optimization under uncertainty,” Math. Oper. 
Res., vol. 16, no. 1, pp. 119–147, 1991. 

[9] J. Goez, J. Luedtke, and Y. Heights, “Stochasic unit committment 
problem” 2008. .[Online] Available: http://domino.watson.ibm.com
/library/CyberDig.nsf/papers/A83A70DC9573F7F48525753D0052
6CC8/$File/rc24713.pdf 

[10]  J. Ostrowski, J. Wang, and C. Liu, “Exploiting Symmetry in 
Transmission Lines for Transmission Switching”,  IEEE Trans. 
Power Syst., vol. 27, no 3, pp.1708-1709, 2012  

[11] H. Wu, M. Shahidehpour, Z. Li, and W. Tian, “Chance-constrained 
day-ahead scheduling in stochastic power system operation,” IEEE 
Trans. Power Syst., vol. 29, no. 4, pp. 1583–1591, 2014. 

[12] L. Zhao and B. Zeng, “Robust unit commitment problem with demand 
response and wind energy,” in IEEE Power Energy Soc. Gen. Meet., 
pp. 1–8. 

[13] C. A. Rossier and A. Germond, “Network topology optimization for 
power system security enhancement,” in CIGRELFAC Symp. Control 

http://domino.watson.ibm.com/libra%E2%80%8Cry/%E2%80%8CCyber%E2%80%8CDig%E2%80%8C.nsf%E2%80%8C/pa%E2%80%8Cpers%E2%80%8C/A83%E2%80%8CA7%E2%80%8C0D%E2%80%8CC9573F7F%E2%80%8C485257%E2%80%8C53D0052%E2%80%8C6CC8%E2%80%8C/$Fi%E2%80%8Cle/rc24713.pdf
http://domino.watson.ibm.com/libra%E2%80%8Cry/%E2%80%8CCyber%E2%80%8CDig%E2%80%8C.nsf%E2%80%8C/pa%E2%80%8Cpers%E2%80%8C/A83%E2%80%8CA7%E2%80%8C0D%E2%80%8CC9573F7F%E2%80%8C485257%E2%80%8C53D0052%E2%80%8C6CC8%E2%80%8C/$Fi%E2%80%8Cle/rc24713.pdf
http://domino.watson.ibm.com/libra%E2%80%8Cry/%E2%80%8CCyber%E2%80%8CDig%E2%80%8C.nsf%E2%80%8C/pa%E2%80%8Cpers%E2%80%8C/A83%E2%80%8CA7%E2%80%8C0D%E2%80%8CC9573F7F%E2%80%8C485257%E2%80%8C53D0052%E2%80%8C6CC8%E2%80%8C/$Fi%E2%80%8Cle/rc24713.pdf


 9 

Application for Power System Security, 1983. 
[14] A. G. Bakirtzis and A. P. Sakis Meliopoulos, “Incorporation of 

switching operations in power system corrective control 
computations,” IEEE Trans. Power Syst., pp. 669–675, 1987. 

[15] M. Abdi-Khorsand, M. Sahraei-Ardakani, and Y. M. Al-Abdullah, 
“Corrective transmission switching for N-1-1 contingency analysis,” 
IEEE Trans. Power Syst., pp. 1606–1615, 2016. 

[16] E. Fisher, R. O’Neill, and M. Ferris, “Optimal transmission switching,” 
IEEE Trans. Power Syst., pp. 1–10, 2008. 

[17] K. Hedman, R. O’Neill, E. B. Fisher, and S. S. Oren, “Optimal 
transmission switching-sensitivity analysis and extensions,” IEEE 
Trans. Power Syst., vol. 23, no. 3. pp. 1469–1479, 2008. 

[18] K. Hedman and R. O’Neill, “Optimal transmission switching with 
contingency analysis,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 
1577–1586, 2009. 

[19] Y. Bai, H. Zhong, Q. Xia, and C. Kang, “ A two-level approach to AC 
optimal transmission switching with an accelerating technique,” IEEE 
Trans. Power Syst., pp. 1616–1625, 2016. 

[20]  Z. Yang, H. Zhong, Q. Xia and C. Kang, “Optimal Transmission 
Switching with Short-Circuit Current Limitation Constraints”, IEEE 
Trans. Power Syst., vol. 31, no. 2, pp. 1278-1288, 2916 

[21] P. A. Ruiz, J. M. Foster, A. Rudkevich, and M. C. Caramanis, “On fast 
transmission topology control heuristics,” IEEE Power Energy Soc. 
Gen. Meet., pp. 1–9, 2011. 

[22] P. A. Ruiz, J. M. Foster, and G. S. Member, A. Rudkevich, and M. C. 
Caramanis, “Tractable transmission topology control using sensitivity 
analysis,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1550–1559, 
2012. 

[23] J. C. Villumsen, G. Brønmo, and A. B. Philpott, “Line capacity 
expansion and transmission switching in Power systems with large-
scale wind power,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 731–
739, 2013. 

[24] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S. Oren, 
“Co-optimization of generation unit commitment and transmission 
switching with N-1 reliability,” IEEE Trans. Power Syst., vol. 25, no. 
2, pp. 1052–1063, 2010. 

[25] J. Shi and S. S. Oren, “Wind power integration through stochastic unit 
commitment with topology  control recourse.”, PSCC, 2016. 

[26] I. Aravena and A. Papavasiliou, “Renewable energy integration in 
zonal markets.”, IEEE Trans. Power Syst,. vol. 32, no. 2, pp. 1334–
1349, 2017. 

 
 

IX.  BIOGRAPHIES 

Jiaying Shi (S’12) received the B.S. and M.S. 
degrees in electrical engineering from Tsinghua 
University in 2011 and 2013. She got her M.S 
degree in Operations Research from University of 
California at Berkeley in 2014. She is currently 
pursuing the Ph.D. degree in the Department of 
Industrial Engineering and Operations Research 
(IEOR) at the University of California at Berkeley. 

Her research interests are stochastic 
programming, renewable generation integration 
and power system operations. 

 
Shmuel Oren (F’02) received his B.Sc. and M.Sc. 
degrees in mechanical engineering and in materials 
engineering from the Technion Haifa, Israel, and 
the MS. and Ph.D. degrees in engineering economic 
systems from Stanford University, Stanford, CA. 

 He is the Earl J. Isaac Chair Professor in the 
IEOR department at the University of California, 
Berkeley.  He is the Berkeley site director of the 
Power System Engineering Research Center 
(PSERC) and former member of the Market 
Surveillance Committee of the California ISO. He 

has published numerous articles on aspects of electricity market design and 
has been a consultant to various private and government organizations. Dr. 
Oren is a member of the NAE, Fellow of INFORMS and Life Fellow of the 
IEEE. 


	I.   Nomenclature
	II.   Introduction
	III.   Transmission Switching, Optimal Power Flow and Unit Commitment
	A.   Transmission Switching and Optimal Power Flow
	B.    Transmission Switching and Unit Commitment

	IV.   Framework for Solving Stochastic Unit Commitment with Transmission Switching Recourse
	V.   Numerical Test
	A.   Test System and Data Description
	B.   Test Results and Analysis

	VI.   Conclusion and Future Works
	VII.   Acknowledgment
	VIII.   References
	IX.   Biographies

