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ABSTRACT

This paper surveys some of the unifying ap-
proaches used to derive formulae for updating the
inverse Hessian approximations in quasi-Newton al~
gorithms and presents a new approach of this kind
based on geometric considerations. The paper dis-
cusses the intuitive motivations for these ap-
proaches and their potential in providing expla-
nations for observed behavior of such algoritims.

1. INTRODUCTION

The quasi-Newton algorithms, known also as
Variable Metric Methods, are considered to be the
most sophisicated algorithms for solving the un-
constrained minimization problem

min £(x) where x € E® and f€C2.

These methods, which assume the availability of the
gradient g(x) for any given x, are based on
the recursion

Xy T ¥ T A DBy - (1)

In this recursion, an analog to the one used in
the Newton Raphson method, o, is a positive
step size parameter selected to satisfy certain
descent conditions, while is an _n X nmatrix
approximating the inverse Hessian [vzf(x)]'l.
The basic principle in these algoritims is to ob-
tain some of the advantages of Newton's method
while using only first order information about the
function. Thus, the approximations Dy are in-
ferred from the gradients at previous iterations
and updated as new gradients become available.
The updating is done such that Dyyjax = Py

where qy = €1x+1 "8k and Py = Xyy) " Xge This
condition, which is often referred to as the
"quasi-Newton condition," is motivated by the fact
that if the function was quadratic, then
[vPr(x)] g = py-

The first algorithm of this type was invented
by Davidon [1] and further developed and simpli-
fied by Fletcher and Powell [2]. In this method,
referred to as the DFP algorithm, Dy is updated
by the rank two formula

— - 1 1 1 1]
Dy = Dy - Dya D /oDy a, + PPL/PLay

and i 1is selected such as to minimize

f(x, - 0Dugy). When applied to a positive defi-
nite quadratic function with Hessian H, the di-
rections px generated by the above algoritim

(2)
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are H conjugate implying n-step convergence.
Furthemmore, the nth approximation D, equals H.
Since the picneering works by Davidon and by
Fletcher and Powell, the field of quasi-Newton
algorithms has been a very active research area
and the subject of a vast number of publications.
Many of these contributions proposed alternative
updating formulae, and some of them ([3], [L],
[5], [6]) introduced unifying approaches that led
to general classes of such formulae. These ap-
proaches often offer interesting interpretations
to some of the well known formulae that are spe-
cial cases of the more general classes, and might
prove valuable in explaining some of the puzzling
behavior of these formulae.

It is the purpose of this paper to survey
some of the existing approaches mentioned above
and introduce a new approach that leads to some
commonly used updating formulae. This deriva-
tion offers geometric interpretations to the role
of the various terms in these formulae.

2. APPROACHES BASED ON GENERATING CONJUGATE
DIRECTIONS

The most common approaches used to derive up-
dating formulae for variable metric algorithms
are based on viewing these formulae as means of
generating conjugate direction. Thus, the objec-
tive in these approaches is to construct general
classes of such formulae that will produce, in a
quadratic case, conjugate directions of search.
In constructing such classes, it is always assumed
that the objective function is a positive definite
quadratic of the fomm

f(x) = -é-x'Hx +bx +c (3)

and that the step size o in (1) is "perfect,"
i.e., it minimizes f(xy ~ ODygy ).

Using the notation introduced earlier, the
directions of search are defined by py = 04 D1+
Suppose the vectors pny.-., n- form a set of
mutually conjugate vecgors (mtﬁ respect to H),
and the points Xxy,...,x, are obtained by apply-
ing (1) with a perfect @ to (3). Then

p!Hp; = 0 for i 4 3 and g!,.p, = O for all
A d i+1%1
il Consequently, 1-1
1
1 - — ' .
gip; = (Hx; +0) py = (g5, +2 Hpy ) py = 0

k=3+1 (l{,)

for j <i-1.



From the conjugacy condition, we have
PHp Hps = 0 for id3.

5= - o, giD; (5)

Satisfying (4) and (5) is a necessary and suffi-
cient condition for the p's to be conjugated.
Thus, the desired updating formulae have to gener-
ate matrices Dy that satisfy

1 — 1 s
ngkaj = 0 and gkpj 0 for j<k
P

(6)

1

where . - a.D.g. .
J JJd7d
Broyden [3] was the
classes of formulae, but
condition Dyax = P to
sidered updatings of the

Dk+l =D

first to investigate such
he added the quasi-Newton
his requirement. He con-
form

L}
where wy and 2z; are vectors chosen such as to
satisfy %6) and the quasi-Newton condition. This

led to a one parameter family of updating formulae.

L -
ke * Pk

A more general class that contains Broyden's
family was developed by Huang [4]. To satisfy con-
dition (6), Huang required that

DHp. = Dya, = p.p, for j < k-1 8
WPy = Dydy = P3b; J < (8)

and considered updates of the general form,
= L} 1 1 | 1
Dyv1 = Dk * 3PPk * PrPi%eticPy + GPx %kl
+ dyDgaxPk (9)
where py, a,, bk, cx, dg are arbitrary scalars.
Imposing condition (8) on( 9) and requiring that

Dy be symmetric leads to a two parameter family
of formmulae that can be written in the form:

—_ - ] 1 1 1 t
Dya1 = Die ™ Dty D/ Uy + BV + AR PL/ PGy
(10)
where vy = DPi/PLQc - Dp%e/ 2Dy while and
are arbitrary scalars. If opp =1, or all

kX, (10) reduces to Broyden's class mentioned
above, and if in addition ¢ = O, it becomes the
DFP formula. One should point out that though (10)
does not satisfy the gquasi-Newton condition unless
pg = 1, it can be modified to satisfy that condi-
tion by multiplying the right hand side by 1/py
(assuming # 0). Such a modification, which
clearly would not affect the directions of search,
may be useful when these formulae are used with a
predetermined « =1 for all k. (See Oren[T71).

Many of the updating formulae proposed in the
past were special cases of (10) or its modifica-

tion mentioned above. Most of these formulae use
P = 1 for all k, since this guarantees Dy =H.
Some of the more recent contributions take advan-
tage of the freedom in choosing ¢ to impose ad-
ditional requirements such as positive definite-
ness of and low condition number of Dy (see
Spedicatobfs] and Shanno [9]). It was shown, how-
ever, by Dixon [10] that if gy is fixed, and Oy
perfect then the points generated by Huang's algo-
rithm are independent of o even for a nonquad-
ratic function.
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Algorithms of Huang's class that use variable
pk have been considered only recently and seem to
perform consistently better than the ones using
fixed values of px. One algoritim of this type
was given by Biggs [11], who adjusts pp to ac-
count for nonquadratic terms in the objective func-
tion. A different criterion was proposed by Oren
and Luenberger [12], who suggested to select py
such as to ensure monotonic decrease in the condi-
tion number of HL 2DkHl7E. This approach led to
the Self Scaling Variable Metric Algorithm given
by Oren, {131, [14].

In spite of its generality, (9) is not the
only possible form of updating formulae that will
satisfy condition (8). This fact was noticed by
Adachi [ 5], who introduced three more general
families of formulae that satisfy (8) with p; = 1.
Though the restriction on ps; 1is not essential tec
Adachi's development, it was introduced by the
author to ensure D, = H. Adachi has shown that
all of the known updating formulae (not including
the ones with variable px) may be derived as
special cases of his families. In a later paper,
Adachi [15] also extended Dixon's [10] result and
derived conditions under which algorithms using
different members of his three general classes of
formulae generate the same sequence of points in
a nonquadratic case.

Though the approaches discussed above are
very elegant and unify much of the theoretical
work done in this area, they have limited value in
terms of explaining observed behavior of the vari-
ous updating formulae and suggesting ways to im-
prove them. Theories that view variable metric
algorithms as special kinds of conjugate direction
methods will never be able to explain the observed
fact that variable metric methods are superior to
regular conjugate direction algorithms such as
Fletcher and Reeves [16]. Such observations sug-
gest that perhaps the conjugacy property and the
n-step convergence are not the most important
properties of variable metric methods. This view
is concurred by Fletcher's [17] and Oren's [7]
results which indicate that using predetermined
step sizes o (rather than perfect ones) does
not radically increase the number of iterations to
convergence and actually reduce the total number
of gradient and function evaluations. Such modi-
fications destroy the conjugacy of the search di-
rections even in a quadratic case and with onlyone
exception (the "rank one update") relinquish the
n-step convergence feature. It is clear, there-
fore, that theories hinging on such properties are
useless in analyzing the effect of these modifica-
tions.

3. GREENSTADT'S VARTATTIONAL APPROACH

In contrast with the previous approach which
is based on properties of the search directions,
Greenstadt's [6] approach is based on properties
of the updating formulae. The objective here is
to find a symmetric correction E to the inverse

Hessian approximation Dig such that
ond Disr = D * By (1)
a1 % = Py (12)



(q and p defined as before). Greenstadt felt
that in order to avoid instability one should try
to restrict the correction by minimizing some norm
of Eg. For convenience reasons he chose the nomm
N(E) = Tp(WEWE'), where W is an arbitrary posi-
tive definite matrix. By minimizing N(Ey) sub-
ject to (12) and the requirement that E, be sym-
metric, Greenstadt arrived at the general updating
formula

Dyyy

=D, + 1

et g, Pl Mk T D MM P

- [(py 99D, 9, )/ M, 3, 1M, g, aiMe, (13)
where Mk = Wk-l.

Special cases of this formula may be obtained
by particular choices of My. It has been shown,
for instance, by Goldfarb [18] that if we denote
by El the correction term in (13) corresponding
to My = Dy and by E% the correction correspond-
ing to My = Dy4y, then the class_ of updating
formulae Dyy; = Dy + 8EM+ (1-8)Ex (where © 1is
an arbitrary scalar) is equivalent to Broyden's
femily. One should note, however, that Goldfarb's
choice of M, may violate the assumption that wk
is positive definite.

Except for special cases, (13) will not gen-
erate conjugate search direction even with perfect
step size. On the other hand, this theory does not
depend on whether the step size is perfect or not,
which justifies using members of (13) without line
search.

4. A GEOMETRIC APPROACH

The approach presented in this section adopts
the view that the most important feature in quasi-
Newton algorithms is the approximation of the in-
verse Hessian. One should realize that the fact
that an algorithm converges in n steps for a quad-
ratic case and produces the exact inverse Hessian
at the n-th step,does not imply that it produces
good approximations to the inverse Hessian at each
iteration. On the contrary, it has been shown by
Luenberger [19] and by Oren and Luenberger [12]
that even in a quadratic problem the DFP algorithm
may produce bad approximations to the inverse Hes-
sian before n steps are completed. In such cases
small perturbations in the objective function or
the step size which destroy the conjugacy property
cause the DFP method to perform worse than steep-
est descent.

Poor inverse Hessian approximations are usu-
ally caused by a poor initial approximation or a
fast changing Hessian (in a nonquadratic case).
Since the corrections in most variable metric meth-
ods are restricted to the direction of the updating
vector py, it may teke, even in a quadratic case, n
iterations to compensate for a poor initial esti-~
mate. Furthermore, if the Hessian is changing, the
quality of the approximation might deteriorate fast-
er than it is improved so that even a good initial
estimate may deteriorate and never recover. Foor
inverse Hessian approximations Dy arisingin this
manner will usually generate poor search directions
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(;gkgk), since the gradient g, is almost orthog-
o} to the latest updating vectors.

The Self-Scaling Variable Metric Algorithms
described in [12] and [13] may be interpreted in
this context as methods for correcting Dy through
scaling with respect to an n-1 dimensional sub-
space not including py, in addition to the regu-
lar update in the direction Py

The following approach, which was motivated
by the above considerations, is based on an algo-
rithm proposed by Luenberger [19] that uses par-
tial information about the Hessian by taking New-
ton steps restricted to the subspace over which the
Hessian is known followed by steepest descent steps
which are orthogonal to that subspace.

Let M be an m-dimensional subspace spanned
by the column vectors of the n Xm matrix B.
Then minimizing the quadratic approximation of a
function f(x) over the linear variety M+xy
yields a point 2y such that
. = xk-B(B'vef(xk)B) lB'vf(xk) .
Equation (14) defines a Newton iteration restricted
to the subspace M, and by analogy with the form-
ula for Newton's method, B(B'vf(xx)B)"1B' can
be interpreted as the inverse of  2f(xy) re-
stricted to M.

4

(14)

Luenberger [19] also pointed out that in a
quadratic case, the difference in gradients along
the steepest descent step in his combined algo-
rithm may be used to infer the inverse Hessian
over a larger subspace, Implementing this idea in
a recursive way yields a quasi-Newton algorithm.
This can be done by updating the restricted in-
verse Hessian such as to expand the subspace M by
one dimensioh at every iteration; then the (n+l)}th
iteration will be a full Newton step that yields
the minimum. The partial Newton steps in such a
procedure will always yield the minimum over mani-
folds that contain the preceding updating vectors.
Hence, finding the minimum along these vectors,
i.e., the steepest directions, is no longer neces-
sary. In fact, the difference of gradients gq
along any vector p f M will provide enough in-
formation for updating the inverse Hessian re-
stricted to M, and obtain the inverse Hessian
restricted to M+p. Such an updating formula is
provided in the next theorem.

Theorem 1. Let f(x) be a positive definite
quadratic function with Hessian H and
Bk(BkHBk)'lBk be the inverse of H restricted to
the subspace My, where the columns of By form a

basis for M. Let Dy = Xpy3 -x; and qy =
vf(xk+l)'-vf?§k) where Xy, is such that
Pk¢Mk+xk° Then
- - ]
o o (P, = D9y ) (By = Dy ) )
- t -
ktl © Tk 4 (P = Dy )

where Dy,j = Byyp(Bie1'HByi1 ) TBry)' and Biyp
is obtained by augmenting pyx to By such that

By = [BoPyl



Proof: For simplicity we omit the subscripts and
denote the entities corresponding to k+1 by (7).
Define A = (B'HB)™L and b = B'Hp. Then D =
BAB', and since q = Hp, we have b = B'q. Using
these definitions, one can express A~l in the form

B'HB B'Hp AL b
—[BJP] H[B:P] [ 'HE p'Hp = b' p'q (16)
Applying the standard formulae for inverting apar-
titioned matrix to (16) results in

b- [B;P]-K[B:P]' = B(A-:L -;_t')a)-l(B' _EiL)
+ P(P'Q'b’Ab)_l(p'-blA_Br) (17)

Equation (15) can be obtained directly fram (17)by
using the Householder rank one modification formu-
la and few manipulations.

The updating formula (15) is the well known
rank-one formula first proposed by Broyden [3].
However, the above derivation and the way it is
used here were originally proposed by Oren and
Luenberger and first presented in [19].

The ideas described so far are integrated in
the following crude algorithm.

Algorithm 1. Start with D = o], M, =6 and
X, € ER,
Step 1: Choose P £ Mk
Step 2: Obtain 2y = X t Dy
ék = Vf(zk)
A = - g
Step 3: Set
- v
- t -
k+1 k qk(pk Dqu)
Moy = Mg Py
Step 4: Set dy = - Dy,18, and obtain
X = X;, + Byidyr and
k+1 k k%k
B+l = VE(xy)
B, will nomally be 1).
Step 5: Add one to k and go to Step 1.

In the above algorithm px 1s an exploratory
step that is taken at each iteration so that the
updated D will predict the best next move in the
enlarged subspace. The figure below illustrates

one iteration of Algorithm 1.
My + X1

Xpe4q (min £(x), X €My + Xy)
For the quadratic case and for k <n, x,;
is the minimum over the linear variety My ; + Xy.
This follows from the fact that xy,; 1s deter-
mined by a Newton step restricted to Myp,;. Thus
the gradient at xy,; 1is orthogonal to My..
This provides us a natural way of choosing
Such a choice will be py € M + gk, Pk £
particular, one can simply take py = gk.

e
Mk' In
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It can be proved that if py €My +gy, Py £ M
for all k, then Algorithm 1 is a conjugate gradi-
ent algorithm. This proof which is omited here due
to space limitation is based on the assumption
thet x, is the minimum over My + xy for each k.
One should note, however, that even if this is not
true but the function is quadratic the updeting
formula will still yield the best possible approxi-
mation to the inverse Hessian at every step and
D, = H-l. This implies that the (n+1)=th iteration
consists of & full Newton step and xn.; 1is the
minimum.

I found out recently that an algorithm based
on most of the ideas presented above has been inde-
pendently developed by Meman and Mayne [20]. This
algorithm, which is referred to as "Pseudo Newton-
Raphson Method," is in principle similar to Algo-
rithm 1, except for the way D is updated. In-
stead of updating D directly as done in Step 3
of Algorithm 1, Maman and Mayne update the matrix
P = B'vef(x)B and then calculate the new matrix
§ = BP-1B. The inversion of P is simplified by
choosing the column vectors of B such as to make
P diagonal. This is accomplished by storing the
matrices B and R = v~f(x)B. These matricesare
updated at each step according to: B=[B, v] and
R=[R,w], where v = p-B(B'R)"1B'q and w =
g-R(B'R)"1B'q. Then, in a quadratic case with
Hessian H, B'Hv= B'q-B'HB(B'R)"1B'q = 0 and
Bv = w, so P O 1
o v'w

One of the difficulties that would arise if
we applied Algorithm 1 to a nonquadratic function
follows from the fact that M becomes the entire
space after n steps while the minimum is not
necessarily reached. Since it is not possible to
select a vector p f the algorithm cannot be
continued. One way to proceed in such a case is
to restart the algorithm. However, this is an un~
desirable approach, since it discards valuable in-
formation. An elternative approach described be-
low is to discard only information for which re-
placement is available. To be more specific, let
us consider a quadratic function with Hessian H
and let D be a full rank approximstion to H.

If D was the correct inverse Hessian we
would have had Dq = p for any p. We assume,
however, that this is not the case and we choose an
updating vector for which the above equality is not
satisfied. Clearly, if such & p exists then at
least in the direction p, D is the wrong approx-
imation for the inverse Hessian. We wish to cor-
rect that discrepancy by replacing the information
contained in D with respect to direction pwhile
retaining the rest of the information correspond-
ing to an (n-1)-dimensional subspace not contain-

ing p. We assume that over that subspace, D ap-
proximates the inverse Hessian correctly.
The replacement is done in two steps. First

we obtain & restriction of D to the n-1 dimen-
sional subspace M which does not contain p.
This restriction will be denoted by D which is
assumed to be the inverse Hessian restricted to M
Second we update 3 by using Eq. (15) with p and
q. Since D 1is assumed to be the inyerse Hessian
restricted to M, we have D = B(B'HB)-1B' where



is & matrix consisting of n-1 columns that span
The only condition on M is that it does not
contain p; therefore M can be chosen in an infin-
ite number of ways. A comvenient characterization
of M in terms of p 1is obtained by using a pos-
itive definite symmetric matrix G such that

M= {yly'ep = 0}._ Clearly every p and G will
define & unique M since y'Gp = O defines a
unique hyperplane through the origin, which is
orthogonal to the vector Gp. Furthermore, assum-
ing p# 6, p will not be included in M since
p'Gp 7! 0. 1In view of the above, for any given p
we can choose implicitly M +that does not contain
P by selecting & positive definite symmetric ma-
trix G. As defined earlier E is a matrixwhose
columns span M, and since Gp € ML then Hop=6.
This implies DGp = 5. Another consideration in
deriving is the reversibility of the process.
We expect D to be such that updating it, using
(15) with p and q where § = D™lp, results in
D. The following theorem provides a formula for
deriving D given D, p, G, that satisfies the
conditions stated above.

5
i,

Theorem 2. Let the matrix D be defined by
5 - p - Dopp'GD 18
D=1D 'GDGp (18)

where p is a given vector and D and G are
symmetric n X n matrices. Then DGp = 8 and

~ . (p=D3)(p-Ba)’
D=D + B = (19)
q' (p-0q)
Proof: The condition IGp = 6§ follows directly
from (18). Equation (19) is proved by using (18)

and ¢ = D™lp to substitute D and § in its
right hand side,and simplifying it.

After D is obtained by Eq. (18), we can use
the new information encoded in p and q and up-
date D using (15) to obtain the next approxima-
tion
Dg) (p=Da)’
(p-Da)'q

Equations (18) and (20) form a twc stage fam -
ily of formulae for updating & full rank inverse
Hessian approximation using the difference of gra-
dients q &along any given vector p. Particular
selections of G will yield special cases of this

D=5+ (20)

family. Of special interest is to choose G such
that Gp = q. In that case, (18) reduces to
D =D - Dqa'D/q'Dq and consequently
§=-p-DadD, BB (21)
q'Dq p'q

Equation (21) is the familiar DFP formula mentioned
in the introduction to this paper. In the above
derivation, however, we did not impose any restric-
tion on the updating vector p, which suggests
that (21) will improve (in some sense) the approxi-
mation to the inverse Hessian with any updating
vector p. This conclusion is consistent with
Fletcher's [17] observation, which is based oneig-
envalue analysis, and justifies to some extent the
use of (21) in algorithms with predetermined step
size.

The above derivation of (21) also provides a
geometric interpretation to the terms in the DFP

formula. The first two terms represent the re-
tained information on H~ corresponding to a
(n-1)-dimensional subspace that is H orthogonal
to p, while the last term represents the updated
information in the direction of p. "Self-Scaling'
can thus be interpreted as proper weighting of the
retained information relative to the new.

The view that (21) is a recursive formula
which approximates the inverse Hessian indepen-
dently of the updating vectors selection, enables us
to obtain Broyden's [3] class of formulae by a
simple extension of (21). One can argue that if D
is an approximation to H"l, +then so is (HDH)-L.
Thus, pre- and post-multiplying (21) by H, sub-
stituting g = Hp and then inverting it (by two ap-
plications of Householder's rank one modification),
yields another updating formula (known as the com~
plementary DFP or the EFS formula). Broyden's
family is Jjust a weighted sum of the DFP and EBFS
formulae, where the weight is the free parameter.

5. CONCLUSION

In this paper we presented a critical survey
of unifying approaches to variable metric algo-
rithms and introduced a new approach based on geo-~
metric considerations. Each one of these approaches
leads to general classes of formulae for updating
the inverse Hessian approximation which contain as
special cases the commonly used formulae. Each of
these approaches differs in the assumption and cri-
terie used in the derivation and hence suggests
different interrelations to the resulting updates.
The insights obtained in deriving such updates from
different approaches may prove valuable in under-
standing the observed characteristics of various
updating formulae such as stability, sensitivity
to line-search accuracy, etc. Particularly promi-
sing in this respect are approaches that focus on
the generation of good inverse Hessian approxima-
tions rather than on the search directions. Ap-
proaches that focus on the conjugacy of the search
directions are based on too restrictive assump-
tions which are unrealistic and suppress the capa-
bility to differentiate between the various up-
dates.
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