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Abstract— We consider a novel paradigm for demand side
management that is based on the so called fuse control concept.
We assume that an aggregator communicates with a household
only at the meter, imposing a fuse limit, i.e. a restriction
in the total consumption level within a given time frame.
Consumers are then responsible to adjust the set-points of the
individual household devices accordingly to meet the imposed
fuse limit. We formulate the problem as a stochastic household
management program, with stochasticity arising due to local
photovoltaic generation. We show how a demand bidding curve
for fuse increments can be constructed as a by-product of the
developed problem and provide a rigorous pricing analysis that
results in a probabilistic envelope around the “shadow” prices
of the deterministic variant of the considered problem, inside
which the “shadow” prices of the stochastic one are confined
to lie. To evaluate the efficacy of the proposed approach we
compare it with an idealized set-up that involves tracking of
real-time market price signals.

I. INTRODUCTION

Power systems are one of the most critical infrastructures
in the modern society. To ensure reliable system operation,
control services of different nature need to be provided. This
task has become more challenging due to the increased level
of uncertainty as a result of the increasing penetration of
renewable energy sources. To account for this uncertainty not
only conventional scheduling and regulation problems need
to be revisited, but also conceptually different modeling and
control schemes have to be designed.

The conventional approaches involve mainly generation
side control. This control method requires adjusting the
output of the generators and includes various operational
challenges which span different time scales [1]. To account
for the intermittent nature of the renewable generation, as
well as for other uncertainty sources in the system, research
has focused on formulating the stochastic counterparts of
the aforementioned problems. Representative work in this
context, including stochastic reserve scheduling and unit-
commitment can be found in [2–7].

An alternative approach is the so called load side control
or demand side management. While controlled loads offer
an additional degree of freedom when solving regulation
or planning problems in the presence of uncertainty, they
should provide a reliable resource to the power network
without any disruption of service to the consumers [8], [9].
Toward this direction different approaches for demand side
management have been proposed in the literature. Following
[9], we can distinguish between price and direct load control.
The first approach is based on providing real-time price
signals to consumers [10], which will then respond to those
signals by appropriately adjusting their consumption level.
Due to spikes and volatility in real-time prices, such an
approach may expose consumers to price uncertainty and
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cause discomfort. Direct load control, on the other hand,
involves regulating devices and appliances in the household
such as thermostatically controlled loads, electric vehicles,
water heaters, etc, at an individual or population basis, has
attracted significant attention in the literature [11–16].

Another paradigm, that falls between price and direct load
control, is referred to as fuse control concept and is discussed
in [17]. In this framework an aggregator communicates with
a household or a residential area only at the meter, by
imposing a restriction on the aggregated consumption level
within a specific time frame. Consumers are then responsible
to satisfy this limit by appropriately adjusting the set-points
of the individual household devices. This approach is less
intrusive than direct load control since it enables consumers
to meet their contract obligation in many ways that reflect
changes in valuation, and does not raise stability issues as
in price based control. A conceptually similar work, but
following a completely different formulation, is presented
in [18], where the authors provide necessary and sufficient
conditions for a supply profile to be adequate for meeting an
energy requirement (parallel to the fuse constraint considered
here) for an aggregation of consumers.

In this paper we focus on the fuse control paradigm as
a less intrusive way for direct load control. We formulate
the household management problem as a disutility mini-
mization stochastic optimization program subject to a fuse
constraint, with stochasticity arising due to local photovoltaic
(PV) power generation (load uncertainty can be included
similarly). However, we do not consider in this paper storage
or load deferral possibilities which is an important aspect of
demand response; such extensions are taken into account in
[19]. We show that a demand curve for fuse increments,
which consumers can disclose to the aggregator, can be
constructed as a by-product of the developed problem. This
demand curve can then be used by the aggragator to create
demand side offers that are bid into the day ahead wholesale
market. We provide a rigorous pricing analysis and construct
an envelope around the “shadow” prices of the deterministic
variant of the proposed problem that bounds the “shadow”
prices corresponding to the stochastic problem. To quantify
the disutility due to load curtailment when using the con-
structed curve for bidding in the market, we compare our
fuse control approach with a real-time market price set-up.

Section II formulates the household stochastic optimiza-
tion program arising under the fuse control paradigm. In
Section III we show how a demand curve for fuse incre-
ments can be constructed and provide a pricing analysis
in a stochastic set-up. Section IV includes a simulation
based analysis, whereas Section V concludes the paper and
provides directions for future work. All proofs have been
omitted in the interest of space, but can be found in [19].

II. THE FUSE CONTROL PARADIGM

A. Problem statement
Consider a household or a small residential area compris-

ing NL uncontrollable loads, Nc controllable loads that will
be used to provide demand response services and NPV pho-
tovoltaic (PV) generators. Following [20] it is straightforward
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to extend our framework to include storage devices and/or
electric vehicles; however, we do not include them here in
order to simplify the analysis of Section III, but we show
how they can be incorporated in our framework in [19].

We consider a set-up where an aggregator interacts with
the household only at the household meter. The household
is subscribed to a given fuse limit, that is imposed by the
aggregator and is activated remotely in case the total net
load in the household should be limited to that level to
ensure the well functioning of the entire network. Once this
limit is imposed, the household is responsible to optimize the
schedule of the individual devices in the most cost efficient
way by adjusting their set-points, while the aggregator is not
involved in this process. The fuse limit may be contingent
on some exogenous variables defined in the service contract.

Let N denote an optimization horizon with unitary steps.
Every T steps a fuse limit is imposed, representing a budget
constraint that requires the total net load in the household
not to exceed this limit. Assume that N, T are such that
N/T is an integer, and let {Pf (i)}N/Ti=1 ∈ RN/T denote the
fuse profile for the optimization horizon. Moreover, for each
k = 1, . . . , N , j = 1, . . . , Nc, P

j
L(k) ∈ R denotes the power

of the uncontrollable load j in time-step k, which is treated
as a constant in our analysis but can be easily modelled as an
uncertain variable. Similarly, P jc (k) ∈ R denotes the power
of the controllable load j in time-step k.

For k = 1, . . . , N , j = 1, . . . , NPV , let P jPV (k) repre-
sent the PV power forecast of generator j in time-step k.
Since forecasts are in general inaccurate, we will perform a
stochastic analysis, taking forecast errors into account. For
each j = 1, . . . , NPV , let δj = (δj(1), . . . , δj(N)) be a
vector including the forecast error of each PV unit. Moreover,
let δ = (δ1, . . . , δNPV ) ∈ ∆ be distributed according to an
absolutely continuous distribution P, where ∆ is a compact,
possibly infinite, set. This distribution may be unknown, but
we assume that we are able to extract, or we are provided
with, samples from this distribution (e.g. historical data). The
continuity assumption is only needed in the proof of Theorem
1. Since all forecast errors for the individual units and the
different time-steps, are collectively included in δ, spatial and
temporal correlation is respected once a sample is extracted
from ∆ according to P.

We treat the fuse control paradigm as a disutility min-
imization problem, where the objective is to find the op-
timal dispatch for the household loads that minimizes the
deviation from a baseline load profile, which is assumed
to be fixed (e.g. it may correspond to the solution of
the deterministic variant of the problem). Specifically, we
seek to determine a load dispatch policy that minimizes∑N
k=1

∑Nc

j=1Rδ∈∆[U j(k, δ)], where Rδ∈∆[·] is any given
risk metric. For example, it can represent the expected value
of its argument or its worst case value (take Rδ∈∆[·] =
supδ∈∆ || · ||, where || · || is the first or the Euclidean norm).
For k = 1, . . . , N , U j(k, δ) ∈ R denotes the disutility of load
j = 1, . . . , Nc. We consider U j(k, δ) = ρj(k)

(
P jc,base(k) −

P j(k, δ)
)
, to penalize the deviation of the load dispatch

policy P j(k, δ), whose structure will be defined next, from a
baseline load level P jc,base(k) ∈ R, i.e. we assign a penalty to
load curtailment. Coefficient ρj(k) ∈ R+ is a penalty factor,
possibly different for each j = 1, . . . , Nc, k = 1, . . . , N .
Notice that, even not shown explicitly, U j(k, δ) depends on
the decision variables P jc (k), dj+(k), dj−(k) that constitute
the dispatch policy P j(k, δ) and will be defined in the sequel.

We thus have the following family of problems, parame-
terized by the uncertainty set and the fuse profile, and we

will refer to each of them as P[∆, {Pf (i)}N/Ti=1 ].

min{{
P j

c (k), dj+(k), dj−(k)
}Nc

j=1

}N

k=1

N∑
k=1

Nc∑
j=1

Rδ∈∆[U j(k, δ)] (1)

subject to:
1) Fuse limit: For each i = 1, . . . , N/T the total net load
in the household should be restricted to the corresponding
element of the fuse profile, for all δ ∈ ∆, i.e.

iT∑
k=iT−T+1

[ NL∑
j=1

P jL(k)−
NPV∑
j=1

(
P jPV (k) + δj(k)

)
+

Nc∑
j=1

P j(k, δ)
]
≤ Pf (i), ∀δ ∈ ∆, (2)

where P j(k, δ) ∈ R is the sum of a deterministic component
which is the dispatch P jc (k) of the controllable loads, and
two terms that depend on the uncertainty error and are
mutually exclusive. This is encoded by

P j(k, δ) = P jc (k) + dj+(k) max
(
0,

NPV∑
`=1

δ`(k)
)

− dj−(k) max
(
0,−

NPV∑
`=1

δ`(k)
)
. (3)

Note that P jc (k) can be thought of as a first stage decision,
whereas dj+(k), dj−(k) ∈ R can be thought of as the
coefficients of an affine recourse action. In particular, the
stochastic terms imply that if an uncertain error is realized,
it should be allocated to the controllable loads according
to the coefficients dj+(k), dj−(k), adjusting their set-point
P jc (k). If the total forecast error is positive, the loads should
increase their power consumption, while if it is negative
they should decrease it. To encode this error allocation
protocol we impose the following set of constraints on the
coefficients dj+(k), dj−(k).

2) Allocation constraints: For each k = 1, . . . , N , the
allocation coefficients should satisfy

Nc∑
j=1

dj+(k) = 1,

Nc∑
j=1

dj−(k) = 1, dj+(k), dj−(k) ≥ 0, (4)

which imply that they should be positive and sum up to one.
The positivity of the allocation coefficients is required only
in the proof of Proposition 2. If constructing a “shadow”
price envelope is not desirable we could allow the allocation
coefficients to be also negative, since this may lead to
more profitable solutions for some choices of the objective
function.

3) Controllable load limits: For each k = 1, . . . , N ,
j = 1, . . . , Nc, the set-point of each load together with its
adjustment in case of a forecast error should satisfy

αj(k)P jc,base(k) ≤ P j(k, δ) ≤ P jc,base(k), ∀δ ∈ ∆, (5)

where P j(k, δ) is given by (3), P jc,base(k) ∈ R is a given
baseline load level and αj(k) ∈ [0, 1] characterizes the
flexibility margins of each load. We only curtail loads from
the baseline profile; flexibility in exceeding the baseline load
consumption can be modeled analogously.
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Problem P[∆, {Pf (i)}N/Ti=1 ], given by (1)-(5), is a con-
strained minimization problem. Since we do not have cou-
pling constraints between consecutive T time-steps, we could
consider N = T and solve the optimization problem for
every T steps in parallel. This can also simplify the averaging
procedure of Section III-A; this is not the case, however, if
storage dynamics are included in the formulation.

B. Problem reformulation
By inspection of (2), (4), it can be shown that

P[∆, {Pf (i)}N/Ti=1 ] is equivalent to a problem that involves
minimizing the same objective function (1) subject to (4),
(5), but with the uncertain fuse constraint being replaced by
a deterministic constraint.

Proposition 1: P[∆, {Pf (i)}N/Ti=1 ] is equivalent to a prob-
lem that involves minimizing (1) subject to (4), (5) and

iT∑
k=iT−T+1

[ NL∑
j=1

P jL(k)−
NPV∑
j=1

P jPV (k)

+

Nc∑
j=1

P jc (k)
]
≤ Pf (i). (6)

To prove Proposition (1), it suffices to show that (6)
emanates from (2), (4). Substituting (3) in (2), and after some
algebraic manipulations the result follows. The introduction
of the allocation coefficients is inspired by the analysis
of [6], where such coefficients were introduced to allocate
the generation-load mismatch among the various generating
units. Proposition 1 parallels the fact that in [6] only a
deterministic power balance constraint has to be imposed.
P[∆, {Pf (i)}N/Ti=1 ] is then given by (1)-(5), with (2) re-

placed by (6). However, (5) should be satisfied for all δ ∈ ∆.
∆ may be an infinite set, rendering P[∆, {Pf (i)}N/Ti=1 ] a
semi-infinite optimization program, which is not easy to
solve in general. Therefore, we relax (5) and impose the
load limit constraints not for every δ ∈ ∆, but for any δ ∈
Sm = {δi}mi=1, where Sm ⊂ ∆ is a discrete set containing m
identically and independently distributed realizations of the
uncertainty error. This gives rise to a finite dimensional linear
program. Due to the decoupled structure of the problem, for
any k = 1, . . . , N , it suffices to enforce (5) only for the
extreme values of

∑NPV

`=1 δ`(k), among the samples in Sm.
Moreover, the risk metric is substituted by Rδ∈Sm

[·].
The resulting family of optimization programs can be

denoted as P[Sm, {Pf (i)}N/Ti=1 ]. We assume throughout the
paper that P[Sm, {Pf (i)}N/Ti=1 ] is feasible, its feasibility
region has a non-empty interior and it admits a unique
optimal solution. Fix ε, β ∈ (0, 1) and extract m ≥
e
e−1

1
ε

(
NPVN−1+ln 1

β

)
samples to construct Sm. Following

[21], [22], with confidence at least 1 − β, the minimizer of
P[Sm, {Pf (i)}N/Ti=1 ] satisfies (3)-(6) with probability at least
1− ε. This implies that we can accompany our solution with
an a-priori (probabilistic) certificate regarding the satisfaction
of the system constraints.

III. PRICING ANALYSIS

A. Demand curve for fuse increments
In Section II-B we formulated a family of problems

P[Sm, {Pf (i)}N/Ti=1 ] parameterized by Sm and {Pf (i)}N/Ti=1 .
For any given fuse profile, P[Sm, {Pf (i)}N/Ti=1 ] provides the
load dispatch that minimizes the total load disutility. For
each i = 1, . . . , N/T , the dual variable associated with
each constraint in (2) shows the effect in the disutility of
an incremental change in Pf (i). Let λ[Sm, Pf (i)] ∈ R+

denote this dual variable. Variable λ[Sm, Pf (i)] should be
interpreted as a “shadow” price.

This intuitive interpretation is due to the fact that we have
uncertainty independent fuse limit constraints, as an effect of
the use of the allocation vectors. This is in contrast to other
stochastic scheduling approaches that introduce a different
set of decision variables (increasing also the computational
burden) and enforce different constraints in the form of
(6) per uncertainty sample. This results in a different dual
variable per sample and it is then unclear which of them (or
their expected value) should be selected as “shadow” price.

We aim at constructing a demand curve that the household
will reveal to the aggregator, who will use it to bid in the
day-ahead market. Consider the vector P̄f ∈ RNf containing
a finite number of values that Pf (i) may take as an effect
of some discretization process, and construct the N

N/T
f

different fuse profiles that may occur. For each of them we
solve P[Sm, {Pf (i)}N/Ti=1 ] and record {λ[Sm, Pf (i)]}N/Ti=1 .
For each distinct value of P̄f (i), average among the recorded
dual variables that correspond to this fuse value and denote
by λ̄[Sm, P̄f (i)] the resulting averaged dual variable. Since
every T steps are decoupled, it suffices to consider here only
the Nf profiles for which the fuse limit is constant across
the optimization horizon to P̄f (i), i = 1, . . . , Nf .

The quantity λ̄[Sm, P̄f (i)] is based on the forecast and PV
power error values for a given optimization horizon. We can
repeat the entire process for different PV power forecasts
and error realizations, and then compute the average among
all λ̄[Sm, P̄f (i)]. With a slight abuse of notation, in the
sequel we use the same symbol λ̄[Sm, P̄f (i)] to represent the
resulting average quantity. Note that there are two different
averaging procedures involved: the first is when constructing
{λ̄[Sm, P̄f (i)]}Nf

i=1 from {λ[Sm, Pf (i)]}N/Ti=1 , and the second
is when averaging among the “shadow” prices of problems
that correspond to different PV power forecasts (e.g. different
representative days).

Therefore, λ̄[Sm, P̄f (i)], corresponds to an average
“shadow” price according to which the aggregator will bid
for supplying load reduction in the wholesale day ahead
market. Having λ̄[Sm, P̄f (i)] as a function of P̄f (i), i =
1, . . . , Nf , and for the numerical values of Section IV, we
can compute the demand bidding curve as shown in Fig. 1
in “red”, which as expected is non-increasing. Notice that,
due to the complementarity slackness optimality condition
for P[Sm, {Pf (i)}N/Ti=1 ], having non-zero “shadow” prices
implies that the corresponding fuse limit constraints are
binding. This is due to the structure of P[Sm, {Pf (i)}N/Ti=1 ].

B. Stochastic vs. deterministic “shadow” prices
The “shadow” price λ̄[Sm, P̄f (i)], i = 1, . . . , Nf , is re-

lated to the dual variables associated with the fuse constraints
(2). Even though these constraints are deterministic (Proposi-
tion 1), the dual variables depend on the uncertainty since (2),
(5) are coupled through the decision variables. Therefore, if
we consider the deterministic counterpart P[∅, {Pf (i)}N/Ti=1 ]

of P[Sm, {Pf (i)}N/Ti=1 ], we get different “shadow” prices
{λ̄[∅, P̄f (i)]}Nf

i=1, and hence a different demand curve. This
deterministic curve is shown with “blue” in Fig. 1.

Determining how different the stochastic and the deter-
ministic curves are is not straightforward. We construct
an envelope around the deterministic curve, inside which
the stochastic one is confined to lie. To this end, let
S+
m be constructed from Sm such that for any sample
δi ∈ Sm, i = 1, . . . ,m, any element δji (k) of δi is
replaced by max(0, δji (k)). Define S−m similarly, with δji (k)
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Fig. 1. Demand curve for the stochastic problem “red”; demand curve for
the deterministic problem “blue”; Demand curve envelope “gray”, inside
which the deterministic and stochastic curves are confined to lie.

replaced by min(0, δji (k)). That way, S+
m, S−m have only

non-negative and non-positive elements, respectively. Let
P[S+

m, {Pf (i)}N/Ti=1 ] and P[S−m, {Pf (i)}N/Ti=1 ] be the corre-
sponding dispatch problems and λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
the associated “shadow” prices computed according to the
averaging procedure of the previous subsection, when Sm is
substituted with S+

m and S−m, respectively.
Proposition 2: For any m ∈ N+ and i = 1, . . . , Nf ,

1) λ̄[∅, P̄f (i)] ∈
[
λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
]
, (7)

2) λ̄[Sm, P̄f (i)] ∈
[
λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
]
. (8)

This is a monotonicity statement, showing that if we expect
that the uncertainty error will only increase (δ ∈ S+

m)
or will only decrease (δ ∈ S−m), then the demand curve
should be shifted towards the left and right, respectively.
If S+

m or S−m is empty, then the corresponding “shadow”
price coincides with the one of the deterministic problem.
The price envelope is depicted in Fig. 1 and its boundaries
correspond to the cases where δ ∈ S+

m and δ ∈ S−m (if
the uncertainty error was bounded, these boundaries would
correspond to the error extrema). Since “shadow” prices
depend on the uncertainty, the computed envelope shows
how an uncertainty error is translated in the “shadow”
price domain. Whether λ̄[Sm, P̄f (i)] is lower or higher than
λ̄[∅, P̄f (i)] depends on the maximum value of ρj(k) among
the (j, k), k ∈ [iT − T + 1, iT ], indices that correspond to
inactive constraints.

A direct consequence of the proof of Proposition 2, is that
the “shadow” price in the stochastic set-up will be equal
to the “shadow” price of the deterministic one only if the
maximum value admitted by ρj(k) among the (j, k) indices
of the inactive constraints is the same in both problems. This
is due to the fact that the dual variable of each fuse constraint
is equal to the maximum value attained by the penalty
factor ρj(k) among all (j, k) indices that correspond to
inactive constraints (see proof of Proposition 2). Our analysis
depends on the structure of (5), where the uncertainty appears
multiplied by the allocation coefficients (see (3),(5)), which
all have the same sign due to (4); the validity of these results
for other problem structures needs further investigation.

The economic interpretation is that if the error is expected
to be non-negative (similarly for negative error), the total
power consumption level is expected to increase, and hence

the prices will be lower, as if we had a problem with a fuse
limit higher by the amount of the forecast error. Then the
expectation about the evolution of prices changes compared
to the deterministic case. Therefore, for a given “shadow”
price, the consumers are willing to purchase a lower quantity,
leading to a shift in the demand curve towards left.

To generalize this statement we quantify the probability
with which the computed envelope remains unchanged if a
new sample δ is realized. Consider P[Sm∪{δ}, {Pf (i)}N/Ti=1 ]
and let λ̄[Sm∪{δ}, P̄f (i)], be the associated “shadow” prices.
To simplify the statement of the following theorem, assume
that the aforementioned “shadow” prices correspond to the
exact dual variables and are not average quantities.

Theorem 1: Assume that P is any absolutely continu-
ous probability measure. Fix ε, β ∈ [0, 1]. If m ≥
e
e−1

1
ε

(
NPVN − 1 + ln 1

β

)
, then for all i = 1, . . . , Nf ,

with confidence at least 1 − β, λ̄[Sm ∪ {δ}, P̄f (i)] ∈[
λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
]

with probability at least 1− ε,
i.e.

Pm
[
(δ1, . . . , δm) ∈ ∆m : P

[
δ ∈ ∆ :

λ̄[Sm ∪ {δ}, P̄f (i)] ∈
[
λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
]]

≥ 1− ε
]
≥ 1− β. (9)

Pm denotes the product probability measure. Note that the
number of samples that need to be extracted for (9) to
hold, depends linearly on the total number of uncertainty
variables NPVN due to [21]. Other sample size bounds can
be used as well [23], [22]. If λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
were average quantities, computed based on a finite number
of “shadow” prices, the result of Theorem 1 would hold
with the following modification: Since for every individual
“shadow” price that contributes in the average, (9) would be
satisfied with possibly different ε and β, (9) would also hold
for the average “shadow” prices with ε and β replaced by
the sum of the individual ε, β.

IV. SIMULATION STUDY

A. Simulation set-up
We consider the problem described in Section II with

NL = 3, Nc = 5 and NPV = 1. The planning horizon
was chosen to be N = 32 and we assumed that the fuse
limit is communicated every T = 4 steps. Every step of
the planning horizon corresponds to a 15 minute interval,
which implies that the fuse profile has granularity of one
hour. The risk metric in (1) was chosen to be the worst case
metric based on the first norm. For the sake of this study,
we selected ρj(k) from a uniform distribution in the interval
[0, 90]. To compute λ̄[Sm, P̄f (i)], i = 1, . . . , Nf , we selected
Nf = 48 values starting from 1250KW with granularity of
10KW, and averaged (see discussion in Section III-A) across
four representative days in the course of one summer month.
For each day the forecast (“red”) and the forecast plus errors
(“gray”) are shown in Fig. 2. The forecast values correspond
to normalized data taken from [10]. The PV power output is
zero during the hours of no irradiation.

Following [24], to generate forecast error time series for
the PV power output, we simulated the stochastic process

δj(k + 1) = max
(
δj(k) + uj(k),−P jPV (k + 1)

)
, (10)

with δj(1) = 0, until the time-step that corresponds to
the peak power production in Fig. 2. After that time, we
assumed that the error follows a mirrored pattern so that it
degrades until the time of zero production. Variable uj(k)
is extracted from a normal distribution with zero mean
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Fig. 2. PV power output for four representative days. For each day, the
“red” curve corresponds to the forecast, whereas the “gray” curves show
the forecast plus the forecast errors.
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Fig. 3. Average disutility due to load curtailment vs. “shadow” price.

and 0.1P jPV (k) standard deviation. In case of multiple PV
units, uj(k), j = 1, . . . , NPV , could be extracted from a
multivariate normal distribution to take into account spatial
correlation as well. The max(·, ·) operator ensures that the
forecast power plus the generated error does not take negative
values. A more involved time-series model is outside the
scope of this paper. The number of samples we generated
was according to Theorem 1, for ε = 0.03 and β = 10−11.

All simulations were carried out using the solver LIN-
PROG (all the resulting optimization problems are linear
programs) under the MATLAB interface YALMIP [25].

B. Comparison with a real-time market price set-up
The demand curve constructed in Section III-A can be

used by the aggregator to bid in the day-ahead market.
For a given day-ahead market price signal (with granularity
of one hour), the disutility due to load curtailment (i.e.∑N
k=1

∑Nc

j=1 ρ
j(k)

(
P jc,base(k) − P jc (k)

)
) for each hour is

related to the point on the vertical axis in Fig. 1 that corre-
sponds to this price value along the “red” curve. This point is
a specific value of the fuse limit. Since P[Sm, {Pf (i)}N/Ti=1 ]

was parametric with respect to the fuse profile, similarly
to the way we computed the average prices {λ̄[Sm ∪
{δ}, P̄f (i)]}Nf

i=1, we can compute the average disutility that
corresponds to each P̄f (i), i = 1, . . . , Nf , and then perform
linear interpolation to compute the disutility and any specific
fuse limit. Following this procedure we can construct the
curve shown in Fig. 3, which shows the average disutility
that corresponds to each of the “shadow” prices in Fig. 1.
As expected, the higher the “shadow” price, the higher is the
disutility due to load curtailment.

To compare the disutility due to load curtailment that
occurs when using the fuse control paradigm, we used as
a benchmark a set-up where the loads in the household
respond directly to real-time market prices. To formulate
this real-time price tracking problem, consider the following
deterministic optimization program:

PRT : min{{
P j

c (k)
}Nc

j=1

}N

k=1

N∑
k=1

Nc∑
j=1

(
µ(k)P jc (k) + U j(k, 0)

)
(11)

subject to

αj(k)P jc,base(k) ≤ P jc (k) ≤ P jc,base(k),

∀j = 1, . . . , Nc, ∀k = 1, . . . , N. (12)

Note that the second term in (11) corresponds to the load
disutility evaluated at δ = 0, unlike the objective function
of P[∆, {Pf (i)}N/Ti=1 ] where a risk metric was employed
due to the presence of uncertainty. Constraint (12) is the
deterministic variant of (5). Parameter µ(k) corresponds to
the value of the real-time market price signal at time-step k.
Once problem PRT is solved, we can compute the disutility∑Nc

j=1 U
j(k, 0), k = 1, . . . , N , evaluated at the resulting

optimal solution. By inspection of PRT , some fraction of
load j will be curtailed at time-step k only if µ(k) > ρj(k).

The real-time market price signal used corresponds to
normalized data, taken from [26] for the period 1-28 May
2014 with granularity of 15 minutes. The day-ahead market
price signal is constructed by averaging accross the real-time
one for the same period but for different years; since we
are interested in the disutility per hour we also averaged
among the intra-hour values to determine an hourly profile.
The market price signals are shown in Fig. 4; the “red” curve
indicates the day-ahead market price signal and the “gray”
curve the real-time one. Fig. 5 shows the resulting disutil-
ity due to load curtailment for the fuse control paradigm
(“red”) and the real-time price set-up (“gray”). The expected
disutility (averaged accross all hours of the price profiles)
is 1, 042.2$ for the fuse control paradigm and 912.8$ for
the case where real-time prices are employed, i.e. 14.2%
higher disutility. The difference in disutility between the two
approaches is a measure for the efficiency loss due to the
fuse control concept. A moderate difference implies that the
proposed approach offers an efficient alternative to real-time
price control, without raising stability issues as in real-time
pricing, and while offering the consumers the possibility to
select a demand response contract (see Section IV-B of [19]).
Notice that the disutility due to load curtailment follows
closely the market price patterns of Fig. 4.

For the rest of this subsection we validate, for a con-
fidence level β = 10−11, the statement in (9) empir-
ically (without averaging the “shadow” prices; see also
discussion below Theorem 1). To achieve this, for a given
Sm we performed 10,000 Monte Carlo simulations cor-
responding to different realizations δ ∈ ∆. For each
i = 1, . . . , Nf , the empirical probability that λ̄[Sm ∪
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Fig. 4. Day-ahead (“red”) and real-time (“gray”) market price signals for
the period 1-28 May 2014.
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Fig. 5. Average disutility due to load curtailment for the fuse control
(“red”) and real-time (“gray”) price set-up.

{δ}, P̄f (i)] ∈
[
λ̄[S+

m, P̄f (i)], λ̄[S−m, P̄f (i)]
]

can be then
computed as the number of simulations out of the 10,000
runs for which the inclusion constraint is satisfied. We found
out that this empirical estimate is 0.987 (it turned out that
for this set-up this is the same for all i = 1, . . . , Nf ), which
is higher compared to the theoretical value 1 − ε = 0.97,
implying that the bound in (9) is conservative.

V. CONCLUSION

In this paper we considered the fuse control paradigm
for demand side management. We formulated this prob-
lem as a stochastic optimization program, and conducted a
probabilistic pricing analysis. The pricing analysis presented
here was related to load side management, but it is also
applicable to generation dispatch problems without network
constraints. Current focus is to investigate the validity of
our pricing analysis in a stochastic, nodal pricing set-up,
providing confidence intervals for the locational marginal
prices.
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