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Chapter 5 

Hybrid Bertrand-Cournot Models of 
Electricity Markets with Multiple 

Strategic Subnetworks and Common 
Knowledge Constraints  

 

Jian Yao, Shmuel S. Oren, and Benjamin F. Hobbs 

Abstract 
Most existing Nash-Cournot models of competition among electricity generators assume 
that firms behave purely Cournot or Bertrand with respect to transmission decisions by 
the independent system operator. Such models are unrealistic for markets in which 
interfaces connecting subnetworks are frequently saturated but the congestion pattern 
within individual subnetworks is less predictable. We propose two approaches for dealing 
with such situation. The first is a hybrid Bertrand-Cournot model of these markets in 
which firms are assumed to behave a la Cournot regarding inter-subnetwork transmission 
quantities, but a la Bertrand regarding intra-subnetwork transmission prices. A second 
approach is a Bertrand type model where transmission lines that are congested most of 
the time are designated as “common knowledge constraint” and treated as equality 
constraints by all market participants including the ISO and all generation firms. Under 
affine demand functions and quadratic costs, the market equilibrium of these models 
becomes mixed linear complementarity problems with bisymmetric positive semi-definite 
matrices.  Numerical examples demonstrate that dividing the network into strategic 
subnetwork leads to prices higher than those predicted by the pure Bertrand model, but 
lower than those from the pure Cournot model. When public knowledge constraints are 
recognized in a Bertrand type model the resulting equilibrium does not show a uniform 
change in prices relative to the pure Bertrand model but we observe a shift in output from 
lower cost to higher cost generators, lower prices at the high cost nodes and higher prices 
at the low cost nodes. 
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5.1 Introduction 
Electricity market models are employed by market participants, policy markers, and 
stakeholders to characterize market agents’ decisions and to predict market outcomes 
[21]. Many existing models follow game-theoretical approaches, but are distinguished by 
the formulation of the interaction between generators and the independent system 
operator (ISO). Such distinctions are referred to as sequential vs. simultaneous clearing of 
energy and transmission markets [1], or as integrated vs. separated market designs [16].  
From a perspective of generator-ISO interaction, these models can be grouped into four 
approaches: Stackelberg, Stackelberg approximations, pure Cournot, and pure Bertrand. 

The Stackelberg approach assumes that the energy and transmission markets are 
sequentially cleared, with generators acting first and the ISO acting second.  Thus, 
generators anticipate the impact of their strategies on transmission prices (equivalent to 
locational price differences when the ISO computes nodal prices). The resulting model is 
a multi-leader one-follower Stackelberg game [2], [3], [9], [16]. Mathematically, a 
producer’s decision problem is a mathematical program with equilibrium constraints 
(MPECs [14]), and the market equilibrium is an equilibrium problem with equilibrium 
constraints (EPEC [6]). However, this model introduces two difficulties arising from the 
embedded optimality conditions for the ISO's problem in all the generation firms’ 
problems. First, the game among generators is a generalized Nash equilibrium problem [6] 
because each firm’s decision variables appear in the constraint sets of the other firms’ 
problems.  Second, the firms’ sets of feasible decisions are non-convex. As a result, this 
model may lead to either zero or multiple pure-strategy equilibria (see, for example, [2]). 
Moreover, even if a solution is found, it may be degenerate; that is, firms will find it 
optimal to barely congest some transmission lines so as to avoid congestion rents (see 
[17]; counter examples are given in [19]).  Finally, finding equilibria of this model, even 
if one exists, for a realistic size network is computationally challenging. 

Some approximations of the Stackelberg game have also been proposed that are 
computationally more tractable. One proposal assumes that generators hold fixed a priori 
conjectures concerning the sensitivity of transmission costs with respect to changes in 
amounts of transmission services requested [11] 1

[1]

. This model is formulated as a 
complementarity problem rather than a more difficult EPEC. However, exogenous 
response coefficients are unsatisfactory theoretically in that such responses should be the 
result of a game not an input, and problematic from an empirical viewpoint. Another 
approach  iterates between an ISO model and a generator model. The ISO model 
calculates sensitivities of transmission prices with respect to injections, and the generator 
models then calculate a Cournot equilibrium among generators, assuming that those 
sensitivities are constant. Given that equilibrium, the ISO model then checks if the same 
sensitivities indeed still hold; if not (which can happen if the set of binding transmission 
limits changes), new sensitivities are obtained, and passed back to the generators’ models.  
However, this approach often fails to converge [1] [16].   

                                                 
1 The hybrid model of this paper can be viewed as an extreme case of the conjectured price model in [10] in 
which the slope of the transmission price with respect to changes in flows is either zero (Bertrand) or 
infinite (Cournot). 
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The Nash approaches assume that the energy and transmission markets are cleared 
simultaneously [8], [9], [15], [18], [21], [23] [24], [25]. In these approaches, generation 
firms do not explicitly model transmission limits in their constraint sets, and the ISO 
becomes a Nash player acting simultaneously with the firms. The market equilibrium is 
determined by aggregating the optimality conditions for the firms’ and the ISO's 
problems, which become a mixed complementarity problem or (quasi-)variational 
inequalities. This approach avoids the computational intractability of the Stackelberg 
approaches and, under a non-degeneracy assumption, can lead to a unique equilibrium.   

One variant of the Nash approach is the pure Cournot representation of generator 
expectations of ISO actions.  The Cambridge-I model in [16] and the spot market model 
in [23] and [24] fall in the above category. In these models, firms are assumed to behave 
a la Cournot with respect to the ISO’s, or arbitrageurs’, that is, they treat as given the 
ISO’s imports/experts into a bus or region, and act monopolistically with respect to the 
residual demand they face which are the horizontally shifted local demand curves. Such a 
pure Cournot model may be suitable for networks with relatively small interfaces 
between large markets that are frequently congested, especially for radial links such as 
the UK-France line. However, it is less realistic for general networks where generators 
may anticipate the impact of their outputs on interregional flows. Moreover, this model 
has the undesirable property that generators owned by one firm but located in different 
markets cannot coordinate decisions to their benefit; as a result, a company with plants in 
n different markets behaves the same as n separate firms (see Subsection 5.3.1.1 for more 
analysis).   

Another variant of the Nash approach is the pure Bertrand model, in which generators 
take as given the nodal price markups due to congestion, or the locational price 
differences set by the ISO as congestion charges.  In bilateral markets, this amounts to 
price taking behavior by generation firms with the respect to transmission services. In a 
POOLCO-like market, this model assumes that  the residual demand function considered 
by generation firms take locational price differences as given by account for the fact that 
they can move all the prices up and down through their output decisions.  As examples, 
Wei and Smeers [21] consider a Cournot game among generators with regulated 
transmission prices and  solve a variational inequality problem to determine unique long-
run equilibria.  Smeers and Wei [18] consider a separated energy and transmission market, 
and show that such a market converges to the optimal dispatch with many marketers. 
Hobbs et al. [8] [15] present Cournot equilibria in both bilateral and POOLCO markets 
with affine demand and cost functions, with the models formulated as mixed linear 
complementarity problems.  Hobbs and Pang [9] formulate a bilateral market with piece-
wise linear demand as a linear complementarity problem with a co-positive matrix. The 
model of spot wholesale markets developed in [23] and [24] takes into consideration the 
financial settlements of forward contracts. 

Price taking in transmission is a defensible assumption for highly meshed networks 
that have several players and variable patterns of congestion. However, it is also naive as 
swing generators would probably try to influence locational price differences in their 
favor. Although, unlike the Cournot model, the Bertrand model allows a firm with plants 
in several locations to profitably coordinate decisions, it too has an undesirable property 
often referred to as the “thin line phenomenon”.  Under the Bertrand approach, to 
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transmission, establishment of a thin line (say 1 MW) between two previously 
unconnected markets causes the model to treat the two markets as strategically linked 
which resulting in a much more competitive outcomes in both markets.  For instance, two 
symmetric monopoly markets connected by such a thin line will result in a duopoly 
solution while the line carries zero flow.  

 Real power markets often consist of multiple subnetworks. In these markets, 
subnetworks are connected with frequently saturated interfaces, and hence they are 
decoupled in terms of strategic interaction since the residual demand functions in each 
subnet is shifted horizontally but their slopes (and hence elasticity) stays the same.  On 
the other hand, congestion pattern within individual subnetworks is less predictable and 
hence generators within the subnetwork interact strategically. For instance, in Northwest 
Europe, the France-UK, France-Belgium, and Netherlands-Germany interconnections are 
usually congested, effectively decoupling the markets. A Cournot conjecture assuming 
that generators take interregional imports/exports as given regarding is reasonable in 
those cases. However, within the UK, German, and Benelux submarkets, congestion 
occurs but is less easily predicted, and in that case the Bertrand conjecture were 
generation firms behave as price takers with regard to transmission prices is more 
defensible. Therefore, neither the pure Cournot nor Bertrand models would be 
appropriate for markets multiple subnetworks.  Even when the network cannot be divided 
into distict subnetworks, some transmission lines are systematically congested and such 
congestion is anticipated by all market participants who can predict how much power will 
flow across such interfaces and account for that in their strategic interaction. We refer to 
such transmission lines “common knowledge constraints” which can be accounted for 
within the Bertrand framework. 

In this paper, we first consider exogenous subnetwork structures and propose a hybrid 
Bertrand-Cournot model that represents generators’ decision making in the presence of 
multiple subnetworks. This model assumes that firms behave a la Cournot with respect to 
the ISO’s inter-subnetwork transmission quantities, but a la Bertrand with respect to 
intra-subnetwork transmission prices. We then formulate a Bertrand type equilibrium 
model with certain links designated exogenously as common knowledge constraints. 

The remainder of this paper is organized as follows. In the next section, we introduce 
the ISO's problem. Section 5.3 analyzes the shortcomings of the pure Cournot and pure 
models of generator-ISO interactions, and proposes a new hybrid model with multiple 
subnetworks; this section concludes with some results concerning solution uniqueness 
and computability. Section 5.4. reports numerical results and economic insights for the 
hybrid Bertrand-Cournot model applied to a stylized six node network. In Section 5.5 we 
introduce the formulation of the Bertrand model with public knowledge constraints and in 
Section 5.6 we apply this approach to a variant of the six node example introduced earlier. 
Concluding remarks are provided in Section 5.7.  

5.2 The Role of the ISO 
Electricity restructuring in different markets has followed several different blueprints 

[19].  In the US, one prevailing design is for the ISO to maintain a pool as a broker or 
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auctioneer for wholesale spot transactions. In addition, the ISO controls the grid and 
transmits power from generators to consumers while meeting network and security 
constraints. The ISO also sets locational energy prices and transmission charges for 
bilateral energy transactions. 

We consider an electricity network that is composed of nodes 1..N and transmission 
lines 1..L.  This market consists of G competing firms, each firm g=1..G operating the 
units at }..1{ NN g ⊆ . We assume, without loss of generality, that there is one generation 
unit at each node: a demand-only node is denoted by a node with a zero-capacity 
generation unit, and a node with multiple units is split into multiple nodes. 

Following the firms’ decisions N
iiq 1}{ = , the ISO decides on nodal imports/exports 

N
iir 1}{ =  that must obey the following constraints. Firstly, power flows should not exceed 

thermal or other limits L
lik 1

_
}{ =  of transmission lines in both directions. We use a lossless 

DC approximation of Kirchhoff's laws (see [4]) and define power flows in terms of the 
so-called power transfer distribution factors (PTDFs). Each PTDF liD  represents a 
proportion of the flow occurring on the line l=1..L resulting from an one-unit injection of 
electricity at the node i=1…N and a corresponding one-unit withdrawal at the reference 
bus.  These network feasibility constraints are  

 LlkrDk li

N

i
lil .. 1     , 

_

1

_
=≤≤− ∑

=

 

Secondly, because electricity is not economically storable, load and generation must be 
balanced at all times. This establishes an energy balancing constraint, which sets the total 
import/export in a lossless grid to zero: 

 0
1

=∑
=

N

i
ir  

The non-storability of electricity also implies that the load at all nodes must be non-
negative. Hence, the following constraints should also be considered in the ISO’s 
decisions:  

 Niqr ii ..1     , 0 =+≤  (5.1) 
The objective of the ISO’s transmission has been phrased as profit maximization in [8] 

and [10], cost minimization in [9] and social surplus maximization in [23], [24] and [25]. 
In this paper, we assume that the ISO aims to maximize social welfare, which denotes the 
total consumer willingness-to-pay, i.e., the area under the nodal inverse demand functions, 
less the total generation cost. The ISO is assumed to act a la Cournot with respect to 
generation injections, so the generation quantities are treated as given in its objective.  
Mathematically, the ISO’s decision problem is 
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Let p , −
lλ , +

lλ  and iη  be the Lagrange multipliers corresponding to the constraints, then 
the first order necessary optimality conditions (the Karush-Kuhn-Tucker, KKT conditions) 
for the ISO’s problem are 

• with respect to ir  
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lλ  
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• with respect to +
lλ  

LlrDk i

N
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1

_
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• with respect to iη  
Niqr iii ..1     , 0         0 =≥+⊥≤η  

Here, the first KKT condition identifies two parts of nodal prices: 
NipqrP iiii ..1    ,)( =+=+ ϕ                                       (5.2) 

where i

L

l
lilli D ηλλϕ −−−= ∑

=

+−

1
)( .  

We can interpret p  as the reference energy price (when the nonnegative load 
constraint is not violated at the reference bus, this is just the price at the reference bus) 
and { }N

ii 1=ϕ  as node specific premiums. Consequently, the congestion charge for the 
bilateral transmission from node i to node j is ij ϕϕ − , and the total congestion charge in 

the system is∑=

N

i iir1
ϕ . 

The ISO’s transmission flows may lead to total payment from load differing from the 
total payment to generation. Hogan showed in [12] that the difference is non-negative. In 
the following, we quantify this difference. 

 
Proposition 1: The difference between the total payment from load and the total 

charge from generation is equal to the total congestion charge in the network. 
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Proof: The total payment from load is the consumptions charged at nodal prices: 

∑
=

+⋅+
N

i
iiiii qrqrP

1
)()( , 

and the total charge from generation is the production compensated at nodal prices: 

 ∑
=

⋅+
N

i
iiii qqrP

1
)( . 

Their difference, denoted by ∆, is  

∑
=

⋅+=∆
N

i
iiii rqrP
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By condition (5.2), we have 

∑
=

⋅=∆
N

i
ii r
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and this difference is equivalent to the total congestion charge. Furthermore, ∆ can be 
written as 

0)(
11

_
=++=∆ ∑∑
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N

i
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L
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Because { }L
ll 1=

−λ , { }L
ll 1=

+λ , { }N
iiq 1= and { }N

ii 1=η  are nonnegative, this difference is also 
nonnegative.   

5.3 The Hybrid Subnetwork Model 

5.3.1 Two Existing Models 
Before introducing our model of multiple subnetworks, we review two existing Nash 

models and analyze their limitations. Both models assume the ISO to be Nash player, and 
present market equilibrium conditions by aggregating the KKT conditions for the firms’ 
and the ISO’s problems. 

5.3.1.1 The Pure Cournot Model 

The first model assumes that the firms behave purely Cournot with respect to the ISO's 
transmitted quantities (see, for example, [14], [23], [24), that is, they take as given the 
ISO’s import/exports at each node. Hence, a firm g=1..G solves the following profit-
maximization problem which is parameterized by { }N

iir 1= : 
 

  

 
Ngiiq ∈}{

max ∑∑
∈∈

−⋅+
Ngi

ii
Ngi

iiii qCqqrP )()(  

subject to: 
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gi Niq ∈≥      , 0  

gii Niqq ∈≤      ,   

gii Niqr =≥+      , 0  

Here, iq
_

 and )( ii qC  are the capacity and cost function of the unit at node i , respectively. 
Notice that firm g’s problem can be decomposed into gN subproblems, each 

corresponding to the firm’s production decision at one node with a nodal demand 
function that has been shifted by the import by the ISO. As we noted earlier, this model 
will predict a market equilibrium that is not affected by whether or not generators in 
different locations are owned by the same firm. Moreover, under this formulation, the 
equilibrium solution for a network in which no transmission constraints are binding 
predicts average nodal prices that are higher than the Cournot equilibrium price 
corresponding to a single market with the aggregated system demand function. For 
example, in a two-node system with unlimited transmission capacity and with symmetric 
supply and demand (so that each node is self sufficient) , this model yields the monopoly 
price at each node since it does not account for the reduced demand elasticity resulting 
from the merging of the two local monopoly markets into a duopoly.  For the special case 
of zero generation cost, the monopoly price resulting from the model is twice the duopoly 
price corresponding to the merged markets. 

5.3.1.2 The Pure Bertrand Model 

The second model assumes that the firms behave purely Bertrand with regard to the 
ISO’s transmission prices [25]. This is achieved by rewriting (5.2) as 

NipPqr iiii ..1    ),(1 =+=+ − ϕ  
and summing it up for all nodes: 

∑∑
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Due to the energy balance constraint on the ISO redispatch we get:  

 ∑∑
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1
)( ϕ          (5.3) 

which, implicitly, characterizes the residual demand function faced by each generation 
firm given the locational markups set by the ISO. 

Now, the firms’ competition can be modeled as a Nash-Cournot game among 
generators where each firm takes as given its competitors’ production as well the nodal 
price premiums { }N

ii 1=ϕ , and acts as a monopolist with respect to the residual demand 
implied by (3).  Mathematically, a firm g solves the following problem: 

pqi },{
max ∑∑

∈∈

−+
Ngi

ii
Ngi

ii qCqp )()( ϕ  

subject to: 
gi Niq ∈≥      , 0  
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gii Niqq ∈≤      ,   
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Niqr ii ..1     , 0 =≥+  
Because the firms observe the system-wide demand, their decision problems are not 

geographically separable and this model’s solution is sensitive to whether or not a firm 
owns plants at different locations.  Moreover, when the network constraints are not 
violated, the locational price premiums go to zero, and this model produces the same 
solution as a Cournot equilibrium calculated for a single node with the aggregated system 
demand. Unfortunately, this model has a shortcoming when applied to systems with 
multiple subnetworks. For instance, in the case of a two-node one-line network, reducing 
the line capacity to zero creates two local monopolies. However, this model will still 
yield a duopoly equilibrium with prices lower than the monopoly prices. 

5.3.2 The Hybrid-Bertrand-Cournot Model 
In the following, we introduce a model of Cournot competition among generators that 

is capable of separating the firms’ decision making into strategic subnetworks.  In doing 
so, we study the preceding two models, and observe that whether or not the firms’ 
decision problems are separable depends on the slopes of the residual demand functions 
they face. In this new model, we assume firms behave a la Cournot with respect to inter-
subnetwork imports/exports, but a la Bertrand to intra-subnetwork transmission costs. As 
a result, the firms’ decisions in different subnetworks are essentially independent, but the 
generator ownership structures within individual subnetworks affect the solution. 

5.3.2.1 The Firms' Problems 

The first step to characterize the firms’ problems is to quantify the aggregated 
demand function in each subnetwork. This is obtained by summing the inverse function 
of (5.2) for the node set sN~  of each subnetwork s (replacing p with sp ): 

SspPrq
sss Ni

isi
Ni

i
Ni

i ..1             ,)(
~

1

~~
=+=+ ∑∑∑

∈

−
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ϕ  

This equation allows the firms to compete for sales in each subnetwork. In 
mathematical terms, the decision problem for a firm g is 

 

{ }S
ssgNii pq 1,}{

max
=∈

∑∑ ∑
∈= ∩∈

−+
Ngi

ii

S

s NNgi
iis qCqp

s

)()(
1 ~

ϕ  

subject to: 
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Because this problem is parameterized by the total import/export ∑∈ sNi ir~  in each 

subnetwork s and the locational price premiums { }N
ii 1=ϕ , it can only be decomposed 

according to the structure of the subnetworks. If we let −
iρ , +

iρ , gsβ , and iξ  be the 
Lagrange multipliers corresponding to the constraints, the KKT conditions for this 
problem are 

• with respect to iq :  

SsNNiqCp gsiiiiigsis ..1  ,~               ,0)( =∩∈=+−+′−−+ +− ηρρβϕ  

• with respect to sp : 
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• with respect to gsβ  
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• with respect to −
iρ  

gii Niq ∈≥⊥≤ −      ,0      0 ρ  

• with respect to +
iρ  

giii Niqq ∈≥−⊥≤ +      ,0         0 ρ  
• with respect to iξ  

giii Niqr ∈≥+⊥≤      ,0        0 ξ  

5.3.2.2 The Market Equilibrium Conditions  

The market equilibrium conditions of the model are obtained by combining the KKT 
conditions for the ISO’s and the firms' programs.  In general, these conditions form a 
mixed nonlinear complementarity problem. When the nodal demand functions are linear 
and the cost functions are convex quadratic, i.e., 

 
NiqbaqP iii ..1             ,)( =−=  

NiqdqcqC iii ..1            ,)( 2
2
1 =+=  

the market equilibrium conditions become the following mixed linear complementarity 
problem (mixed LCP, see [5]): 

GgSsNNiqdcp gsiiiiiigsis 1..   ,..1  ,~        ,0 ==∩∈=+−+−−−+ +− ηρρβϕ   
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Niqii ∈≥⊥≤ −      ,0      0 ρ  

Niqq iii ∈≥−⊥≤ +     ,0         0 ρ  
Niqr iii ..1     ,0         0 =≥+⊥≤ ξ  
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This problem is not a square LCP because different Lagrange multipliers ( iη  and iξ ) 

are assigned to the common constraints (5.1) shared by the ISO’s and the firms’ problems. 
However, from an economic point of view, it is reasonable to assume that in equilibrium 
these common constraints should have the same shadow values for each entity, that is,  

Niii ..1    , == ξη  
The practical importance of this, arguably strong assumption, is negligible, since the 

shadow prices are positive only if nodal prices are above the choke price on the demand 
curves, and the load is zero. This is a very unlikely occurrence in practice. Making this 
assumption is mathematically convenient, turning the market equilibrium conditions into 
the following square mixed LCP problem:  

GgSsNNiqdcp gsiiiiiigsis 1..  ,..1  ,~       ,0 ==∩∈=+−+−−−+ +− ηρρβϕ   (5.4) 
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Niqii ..1         ,0      0 =≥⊥≤ −ρ               (5.7) 

Niqq iii ..1           ,0        0 =≥−⊥≤ +ρ              (5.8) 
Niprqba iiiii ..1              ,0)( ==−−+− ϕ              (5.9) 
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=
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i
ir                                                  (5.10) 
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+λ     (5.12) 

Niqr iii ..1     , 0         0 =≥+⊥≤η      (5.13) 

NiD i

L

l
lilli ..1    ,0)(

1
==−−−= ∑

=

+− ηλλϕ                                (5.14) 

In Subsection 5.3.1.1, we introduced the reference prices { }S
ssp 1=  of the subnetworks to 

construct the aggregated subnetwork demand functions in the firms’ problems. Because 
the firms have the full ability to influence these reference prices, our model will be 
incorrect if these prices aren’t equal at the equilibrium.  

 
Proposition 2: In the market equilibrium, all reference prices are equal, that is  

Sspps ..1   , ==  
Proof:  Condition (6) implies 

Ss

b

rq
b

a

p

s

sss

Ni i

Ni
i

Ni
i

Ni i

ii

s ..1                 ,1
~

~~~
=

−−
−

=
∑

∑∑∑
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Solving for { }N
iir 1=  from (9) and substituting the values into the above expression gives 
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ii

s ..1                 ,1
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~~~
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
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∑

∑∑∑

∈

∈∈∈

ϕϕ

 

5.3.2.3 Computational Properties 

The preceding market equilibrium conditions represent a quasi-variational inequality 
problem due to the common constraints in the firms’ and the ISO’s programs. Next, we 
study its solution existence and the solution approach. 

 
Lemma 1: Conditions (5.4)-(5.14) can be represented as a linear complementarity 

problem with a bisymmetric positive semi-definite matrix. 
 
Proof: We group the parameters and variables as follows: 

♦ NNRB ×∈ : A diagonal matrix where the ),( ii th is ib , 
♦ NLRD ×∈ : The PTDF matrix where the ),( il th element is liD , 
♦ [ ]Niaa i ..1   == , 
♦ [ ]Niqq i ..1   == , 
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♦ [ ]Nicc i ..1   == , 
♦ [ ]Llkk l ..1   == , 
♦ [ ]Nirr i ..1   == , 
♦ [ ]Niqq i ..1   == , 
♦ [ ]Nii ..1   == −

− ρρ , 
♦ [ ]Nii ..1   == +

+ ρρ , 
♦ [ ]Lll ..1   == −

− λλ , 
♦ [ ]Lll ..1   == +

+ λλ , 
♦ [ ]Nii ..1   == ηη . 

Further let NRe∈  be a vector of all 1’s, and NNRH ×∈  and NNRQ ×∈  be two matrices 
such that 





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

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





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
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∑∑

∑∑
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∈=

∈=

Otherwise
1

1

firm same  theand
subnetwork same  the tobelong  and  nodes and  ,  if1

1
1

1

  if1
1

1
1

1

~
1

~
1

N

i i

Ni i

N

i i

i

Ni i

N

i i

ij

b

jiji

bb

jid

bb

h
S

S

 

 
and 

eBe
BeeBBQ T

T

1

11
1

−

−−
− −= . 

Eliminating variables with free signs, we represent (5.4) – (5.14) as an LCP problem: 
 

Mytw +=                                                         (5.15a) 
0       0 ≥⊥≤ yw                                         (5.15b) 

where w  and y  are variable vectors, t and M  are constants, such that 
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Note H and Q are both symmetric positive semi-definite and 
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we conclude that M is bisymmetric positive semi-definite. � 
 
Lemma 2: there exists at least one market equilibrium. 
 
Proof: We observe that  




















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=

Qa
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w  and 
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


















=

a

y
0
0
0
0

 

satisfy the linear conditions in (5.15). By Theorem 3.1.2 in [5], we conclude that 
conditions (5.4) – (5.14) have solutions.  � 
 
Theorem 1: Assuming non-degeneracy, a solution to (5.4) – (5.14) is guaranteed by 
Lemke’s algorithm [11]. 
 
Proof: This follows Theorem 4.4.1 in [5] and lemmas 1 and 2. � 

 
It is worth noting that the models introduced in Section 5.3.1 are two special cases of 

(5.4) – (5.14) with N and 1 subnetworks, respectively. Their equilibrium conditions can 
also be presented as (5.15) where H is given by 
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
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for the extreme case where all N nodes are strategically decoupled and represent N 
subnetwork, and by  


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1
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1

1

1

N

i i

N

i i

iN

i i

ij

b

jiji
b

jid

b

h  

for the case where all generators are strategically coupled in a single subnetwork. 

5.4 Numerical Example for the Subnetworks Model 
We use the network in Fig. 5.1 to illustrate the application and economics insights of the 
hybrid Bertrand-Cournot model. In this example, all eight lines are identical in terms of 
their electrical characteristics except that the two interfaces, lines 2-4 and 3-5, that have 
very low thermal limits of 2 MW. As a result, this network is separated into two strategic 
subnetworks where nodes 1 through 3 form one subnetwork and nodes 4 through 6 form 
the other. In addition, this system has six generators, each at one node (see Table 5.1). 
We assume four different hypothetical generator ownership structures (See Table 5.2) by 
assigning the generators to 2, 3, 4 and 6 firms, respectively; such structures enable us to 
observe the sensitivity of the market equilibrium to market concentration. 
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Fig. 5.1 A 6-Bus Network 

Table 5.1 Generator information 

Node Capacity 

(MW) 

Marginal cost 

($/MWh) 

1 120 15 

2 80 20 

3 25 30 

4 80 20 

5 25 30 

6 120 15 

 
We consider affine demand functions (see Table 5.3) which, together with the 

generator characteristics and the resource ownership patterns, lead to symmetric 
subnetworks. Therefore, as would be expected, the resulting nodal prices are uniform 
across all the nodes, and the flows on the interfaces are zero (see Table 5.4). In addition, 
our model predicts prices that are lower than the prices from the pure Cournot model 
(that treats each node as a subnetwork, so that generators believe that they face only the 
local price elasticity) and greater than those from the pure Bertrand model (that treats the 
entire network as a single subnetwork, resulting in generators believing that they can 
compete in all markets). It should also be pointed out that the hybrid Bertrand-Cournot 
model produces the same market outcomes for the three- and four-firm structures; this is 
because, in these structures, both subnetworks consist of duopoly firms. 

1 

4 

6 

5 

3 2 
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Table 5.2 Generator ownership structures 

Node 2 firms 3 firms 4 firms 6 firms 

1 Firm #1 Firm #1 Firm #1 Firm #1 

2 Firm #1 Firm #3 Firm #3 Firm #2 

3 Firm #1 Firm #1 Firm #1 Firm #3 

4 Firm #2 Firm #3 Firm #4 Firm #4 

5 Firm #2 Firm #2 Firm #2 Firm #5 

6 Firm #2 Firm #2 Firm #2 Firm #6 

 

Table 5.3 Affine demand functions 

Node Price intercept 
($/MWh) 

Slope 

1 100 1.0 

2 100 0.8 

3 100 1.2 

4 100 0.8 

5 100 1.2 

6 100 1.0 

 

Table 5.4: Nodal prices under symmetric subnetworks 

Model Node 2 firms 3 firms 4 firms 6 firms 

Hybrid  1-6 60.00 45.00 45.00 42.30 

Pure Cournot 1-6 60.63 60.63 60.63 60.63 

Pure Bertrand 1-6 46.67 40.54 35.14 32.86 
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Table 5.5 Generator outputs under symmetric subnetworks 

 Node 2 firms 3 firms 4 firms 6 firms 

Hybrid Cournot-
Bertrand 

1 120.00 92.50 92.50 84.17  

6 120.00 92.50 92.50 84.17  

2 3.33 77.08 77.08 68.75 

4 3.33 77.08 77.08 68.75 

3 0 0 0 25.00 

5 0 0 0 25.00 

Pure Cournot  1 45.63  45.63  45.63  45.63  

6 45.63  45.63  45.63  45.63  

2 50.78 50.78 50.78 50.78 

4 50.78 50.78 50.78 50.78 

3 25.00 25.00 25.00 25.00 

5 25.00 25.00 25.00 25.00 

Pure Bertrand 1 120.00 120.00 120.00 110.12    

6 120.00 120.00 120.00 110.12    

2 44.44 63.33 80.00 79.29 

4 44.44 63.33 80.00 79.29 

3 0 0 0 17.62 

5 0 0 0 17.62 

 
 
 
Next, we create an asymmetric structure of the subnetworks by exchanging the cost 

functions at nodes 2 and 3. Such asymmetry is more likely to result in flow congestion on 
the interfaces and uneven nodal prices. Indeed, this is found true for most test scenarios 
except the duopoly structure (see Table 5.6). Again, the hybrid Bertrand-Cournot model 
leads to prices between those from the pure Cournot and Bertrand models. Similar to the 
symmetric case, our model produces identical market equilibria for the three- and four-
firm structures. 
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Table 5.6 Equilibria of asymmetric subnetworks 

Model Node Nodal Prices Generator outputs 

  2 firms 3 firms 4 firms 6 firms 2 firms 3 firms 4 firms 6 firms 

Hybrid 
Cournot-
Bertrand 

1 60.00 47.88 47.88 45.18 120.00 101.39 101.39 93.05  

2 60.00 49.07 49.07 46.37 0 58.81 58.81 50.48 

3 60.00 46.69 46.69 43.99 3.33     0 0 25.00 

4 60.00 44.26 44.26 41.56 3.33 74.80 74.80 66.46 

5 60.00 46.64 46.64 43.94     0 0     0 25.00 

6 60.00 45.45 45.45 42.75 120.00 93.89 93.89 85.56 

Pure 
Cournot  

1 62.73  62.73  62.73  62.73  47.73 47.73 47.73 47.73 

2 63.11 63.11 63.11 63.11 41.39 41.39 41.39 41.39 

3 62.36 62.36 62.36 62.36 25.00 25.00 25.00 25.00 

4 60.48 60.48 60.48 60.48 50.61 50.61 50.61 50.61 

5 61.23 61.23 61.23 61.23 25.00 25.00 25.00 25.00 

6 60.86 60.86 60.86 60.86 45.86 45.86 45.86 45.86 

Pure 
Bertrand 

1 49.78  44.02  39.71  36.32  120.00  120.00 120.00 120.00 

2 54.78 47.50 40.60 38.20 17.32 44.43 65.34 50.56 

3 44.78 40.55 38.83 34.44 15.46 6.72     0 25.00 

4 45.23 37.50 34.43 31.30 34.03 63.46 80.00 69.70 

5 55.23 44.44 36.19 35.06 1.52 0     0 25.00 

6 50.23 40.97 35.31 33.18 120.00 120.00 120.00 112.11 

5.5 Bertrand Model with Common Knowledge 
Constraints 

In the pure Bertrand model deascribed in Section 5.3.1.2, it was assumed that firms 
optimizing their profit are not aware of any transmission constraints and account for 
congestion only through the nodal price markups set by the ISO to which the respond as 
price takers. In this section we will allow firms to directly account to congestion on lines 
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that are systematically capacitated and hence are designated as common knowledge 
constraints, while they still act at price takers to the portion of the nodal price markups 
that reflect congestion on lines that have not been so designated. 

5.5.1 The Firm’s Problems 

When some line sets, LL ⊆1 and LL ⊆2 , are constantly congested in the negative and 
positive directions, respectively, the ISO’s KKT conditions take the form: 

 ∑∑∑
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+−

∈

+

∈

− ∈=−+−+−+
121 \

     ,0)()(
LLl

lill
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lli
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∑
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then condition (5.16) can be rewritten as 
NiDDpqrP i
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lli

Ll
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Thus, the nodal prices are composed of three parts: the price p  at the reference bus, 
the locational price premium ∑∑ ∈

+
∈

− +−
21 Ll lliLl lli DD λλ  due to the systematically 

congested constraints and the locational price markups iϕ
~  that account for all the other 

constraints and taken by firms as ISO set parameters when valuating their residual 
demand. Solving for  ir  in (5.22) and substituting into (5.17), (5.18), and (5.19) yields: 

 0~
21

1 =









−








++−∑ ∑∑

∈ ∈

+

∈

−−

Ni
ii

Ll
lli

Ll
llii qDDpP ϕλλ    (5.23) 

1
1        ,0~

21

LlqDDpPDk
Ni

ii
Lm

mmi
Lm

mmiilil ∈=









−








++−+∑ ∑∑

∈ ∈

+

∈

−− ϕλλ         (5.24) 

 2
1        ,0~

21

LlqDDpPDk
Ni

ii
Lm

mmi
Lm

mmiilil ∈=









−








++−−∑ ∑∑

∈ ∈

+

∈

−− ϕλλ  (5.25) 

When the systematically congested lines are common knowledge, firms will account for 
conditions (5.18) and (5.19) in their profit maximization and hence the residual demand 
against which they maximize their profits is implicitly specified by (5.23), (5.24) and 
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(5.25).  Thus, in determining their profit maximizing output levels the firms try to 
influence the price at the reference bus and the shadow prices on the common knowledge 
constraints in the set 21 LL ∪ , while behaving as price takers with respect to the ISO 
nodal price markup components reflecting congestion on all other transmission lines. 
Mathematically, each firm g  solves the following profit-maximization problem: 
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If we let −
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glβ  be the Lagrange multipliers corresponding to the 

constraints, the KKT conditions for this problem are 
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5.5.2 The Market Equilibrium Conditions  
An aggregation of the KKT conditions for the firms’ and the ISO’ problem leads to the 

market equilibrium conditions as a non-linear mixed complementarity problem. In the 
sequel, we assume linear demand and linear marginal cost functions, and present these 
market equilibrium conditions as a mixed linear complementarity problem (mixed LCP, 
see [5]): 
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For linear demand and linear marginal cost functions, the ISO’s and the firm’s 
problems are concave-maximizing problems, and the KKT conditions are necessary and 
sufficient for characterizing the global optimum of each agent. 

5.6 Numerical Example of Equilibrium with Common 
Knowledge Constraints 

This example employs the same six bus network structure as shown in Fig. 5.1 again 
assuming that all eight lines are identical in terms of their electrical characteristics but 
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line 3-5 has a very low thermal limit of 2MW. The supply and demand data is changed in 
order to highlight the features of this model. The demand functions are linear with 
parameter specified in Table 5.7. This system has four generators; the generators at nodes 
1 and 2 have a constant marginal cost of 30 $/MWh and the generators at nodes 4 and 6 
have a relatively lower constant marginal cost of 10 $/MWh (see Table 5.8). In addition, 
these four generators are divided into a duopoly structure with the units at nodes 1 and 4 
owned by firm #1 and the other two by firm #2. 

Table 5. 7: Demand functions 

Node Demand function 

Price intercept 
($/MWh) 

Slope 

1 50 1.00 

2 50 0.82 

3 50 1.13 

4 50 1.10 

5 50 0.93 

6 50 0.85 

 

 

 

Table 5.8: Generator information 

Node Capacity 
(MW) 

Owner Marginal cost 
($/MWh) 

1 100 Firm #1 30 

2 100 Firm #2 30 

4 100 Firm #1 10 

6 100 Firm #2 10 

 
We compute the market equilibrium of the model with a common knowledge 
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constraint (the congestion on line 3-5), and compare it to that from the pure Bertrand 
model ignoring this constraint. In this case, the capacities of the generators are not 
binding in the market equilibrium. We find that, with the common knowledge constraint, 
both firms increase the output of the generators at nodes 1 and 2 and reduce the 
production of the units at nodes 4 and 6 (see Table 5.9). As a result, the prices at nodes 1 
through 3 are reduced, but the prices at the other three nodes are raised (see Table 5.10). 
In addition,  

 
 
Table 5.11 illustrates greater profit for both firms. This suggests that, when 

recognizing common knowledge constraints, firms behave less competitively which can 
be explained by the fact that capacitated lines only shift local damand horizontally but do 
not increase the elasticity of the residual demand functions. 

Table 5.9: Generator Output (MW) 

Node 

Model 

Bertrand Common knowledge 
constraints 

1 0 8.4278 

2 0 9.4984 

3 0 0 

4 79.4605 70.9568 

5 0 0 

6 48.7073 38.5607 

 

 

Table 5.10: Prices ($/MWh) 

Node Model 

Bertrand Common knowledge 
constraints 

1 42.3174 37.9236 
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2 

3 

4 

5 

6 

37.4088 34.7477 

47.2261 41.0994 

22.6828 25.2201 

12.8655 18.8683 

17.7741 22.0442 

 

 

 

Table 5.11: Firm’s profit ($/h) 

 Model 

Bertrand Common knowledge 
constraints 

Firm #1 1007.7816 1146.7481 

Firm #2 378.6554 509.5283 

Total 1386.4371 1656.2764 

 
Next, we study how generators’ capacities affect the firms’ ability to restrict the output 

from the low cost generators. In doing so, we assume that all capacities are reduced by 
50% so that, in the Bertrand model, both low cost generators produce at the full capacity. 
Unlike in the previous case with nonbinding generation capacities, the equilibrium 
corresponding to the common knowledge constraint now shows that the units at nodes 1 
and 6 reduce their output. Thus, binding generation capacities lead to different behavior 
of the firms. Indeed, Table 5.14 reports that firm #1’s profit decreases. 

Table 5.12: Generation with constrained generation capacities (MW) 

Node Model 

Bertrand Common knowledge 
constraints 

1 13.5491 13.2613 

2 0 9.0971 
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4 50.0000 50.0000 

6 50.0000 47.0237 

 
Finally, we point out that, due to loop flows in electricity networks, recognizing one 

particular common knowledge constraint might suffice to relieve congestion on other 
lines. For example, if the capacity of line 1-2 is 5MW, the pure Bertrand model produces 
an equilibrium where both lines 1-2 and 3-5 are congested, whereas the equilibrium with 
the common knowledge constraint indicates that only line 3-5 is capacitated and while 
the flow on line 1-2 is 4.6MW.  

  

 

Table 5.13: Prices with constrained generation capacities ($/MWh) 

Node Model  

Bertrand Public knowledge 
constraints 

1  40.1432  37.9236 

2 36.9665 35.2421 

3 43.3199 40.6050 

4 27.4365 27.1978 

5 21.0832 21.8349 

6 24.2598 24.5163 

Table 5.14: Firm’s profit ($/h) 

 Model 

Bertrand Public knowledge 
constraints 

Firm #1 1009.2562 964.9672 

Firm #2 712.99 730.2980 
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Total 1722.2462 1695.2653 

 

5.7 Concluding Remarks 
This paper examines two approaches for dealing with a limitation of existing nash 

equilibrium models of congestion prone electricity systems. These models either ignore 
the effects of joint ownership of generators and the effect of competitive interaction on 
the elasticity of the residual demand functions faced by the generators, or overestimate 
the effect of competitive interaction even when transmission capacity is limited or 
exausted. To address these shortcomings we first develop a hybrid Bertrand-Cournot 
model of electricity markets with multiple subnetworks. In this model, firms behave a la 
Cournot with respected to the ISO’s inter-subnetwork transmission quantities, but a la 
Bertrand with respect to the intra-subnetwork transmission prices.  This gives the 
modeler more flexibility as to how transmission price conjectures are represented in the 
model compared to pure Cournot or Bertrand models.  When affine demand functions 
and quadratic cost functions are assumed, the market equilibrium conditions of this 
model become a linear complementarity problem with a bisymmetric positive semi-
definite matrix. Numerical examples demonstrate that this model can lead to more 
realistic market equilibria.  

In cases where the network cannot be partitioned into subnetworks as assumed by the 
hybrid Bertrand-Cournot approach we propose a Bertrand type model where certain 
systematically congested lines are treated as common knowledge constraints and taken 
into consideration by the competing firms in assessing their residual demand and 
optimizing their output levels.   

An important limitation of these approaches is that the definition of subnetworks as 
well as the designation of common knowledge constraints are exogenous. It is possible, 
for instance, that a Cournot conjecture about flows into a subnetwork is appropriate at 
some times (when congestion is more likely), but the Bertrand conjecture is preferable at 
other, less congested periods. Likewise a transmission interface may be congested most 
of the time but cannot be assumed to be congested all the time. Further research is needed 
to determine whether it is possible to endogenously determine the appropriate conjecture 
(perhaps in some iterative fashion inspired by [1]).  Empirical research is also desirable to 
determine what conjectures are actually held by firms in real markets. 
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