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We examine the economic consequences of a bid-based security-constrained centralized unit commit-
ment paradigm based on three-part offers, which is the prevalent day-ahead market-clearing mechanism
in restructured electricity markets in the United States. We then compare this approach with an energy-
only auction with self-commitment (such as in Australia) addressing efficiency and pricing as well as the
tradeoff between coordination losses and incentives to bid truthfully.
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1. Introduction

The introduction of competition in the electricity supply
industry has led to a number of important questions regarding the
need for organized markets to efficiently and reliably coordinate
the power system, and the desirable features and scope of those
markets. Complicating electricity market design, power systems
are subject to a number of ‘network’ constraints, in that these
constraints depend on the actions of every market participant and
each participant can impose an externality on others using the
power system. Furthermore, generators’ cost structures are non-
convex due to startup and no-load cost components and generating
units are constrained in the time it takes them to startup or shut-
down, and the rate at which they can adjust their output. Thermal
units typically have non-zero minimum generating constraints and
‘forbidden zones,’ in which they cannot operate stably, when they
are online. Other types of generating units, such as combined-cycle
gas turbines (CCGT) and cascaded watershed hydroelectric systems
tend to have complex constraints restricting their operation. Due to
the stochastic nature of demand fluctuations, generators must be
able to adjust their real and reactive power outputs in real-time to
ensure constant load balance. Other random contingencies such as
transmission equipment failures or forced generator outages may
i), oren@ieor.berkeley.edu (S.
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also require generators to adjust their outputs within a short period
of time to maintain system reliability. Thus, efficient and reliable
operation of the system requires having a sufficient number of
generators online and available to react to variations in load and
other contingencies at least cost.

These complexities call into question the ability of decentralized
markets, where suppliers respond autonomously to market signals,
to efficiently and feasibly commit and dispatch units while
respecting power system constraints. On the other hand, while
a centralized market can, in theory, find the most efficient dispatch
of the generators, the market designs suffer equity and incentive
problems. Decentralized designs can overcome some of these
issues but will suffer efficiency losses due to the loss of spatial and
temporal coordination among resources. These design issues arise
particularly in the context of determining the proper role for the
system operator (SO) in making day-ahead unit commitment
decisions.

As electricity markets in various countries have been restruc-
tured and have evolved, different approaches have been used with
varying degrees of success. In the US, for example, the move
towards standard market design has led to heavy reliance on open
and transparent centralized markets where an SO operates central
energy markets and has the authority to commit and schedule
generators based on load forecasts and a multipart auction with
offers specifying nonconvex cost components and unit-operating
constraints (including startup and no-load costs, minimum load,
energy offer curve, ramp rates, and generator-specific operating
limits) [see Bowring (2006) for one example of such a market in
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the US]. The unit commitment in these systems is based on
a centralized market-clearing mechanism using a security-con-
strained bid-based economic dispatch optimizer. Output levels of
generators can then be adjusted at a second set of settlement prices
in a real-time market. The British market, by contrast, started with
a centralized market in the original Electricity Pool and moved to
a more decentralized design under the New Electricity Trading
Arrangements (NETA) and subsequent reforms under the British
Electricity Trading and Transmission Agreements (BETTA), which
were meant to overcome some of the problems experienced under
the original centralized pool design [see Newbery (2006)]. The
Australian National Electricity Market relies on self-commitment
by generators who then submit energy-only offers into a single-
settlement market [see Moran and Skinner (2008)]. Although these
design differences are driven to a large extent by realities of the
market such as asset ownership, generation mix, and system
infrastructure, different ‘philosophies’ regarding the proper role of
centralized markets have also played a role in determining the
scope of any centralized markets.

This paper revisits the issue of dispatch efficiency raised by the
design of markets based on centralized versus decentralized day-
ahead dispatch and examines other economic implications of the
two approaches attributable to the problem structure of unit
commitment optimization and to the ‘cost of anarchy’ in self-
commitment. Unfortunately, in addressing these issues one must
recognize that ‘the devil is in the details’ and much of the discus-
sion hinges on the computational complexity of the unit commit-
ment problem. Until recently, the Lagrangian relaxation (LR)
algorithm was the only practical means of solving a commercial-
scale unit commitment. However, advances in optimization tech-
nology over the last decade have enabled the formulation and
solution of such problems as mixed-integer programs (MIPs) using
branch and bound (B&B) algorithms [see Streiffert et al. (2005),
which discusses the use of MIP in PJM, the largest SO market in the
United States]. One of the issues that has traditionally plagued the
use of MIP in solving unit commitment problems has been the
inability to provide a solution within a reasonable amount of time.
However, anMIP-based formulation has significant advantages as it
can represent complex units, such as CCGTs, pumped hydroelectric
storage, and cascaded watershed hydrosystems, better than LR can.
Furthermore, an MIP-based solution algorithm allows SOs to easily
introduce new types of unit-operating and system constraints to
the formulation of the problem and is less dependent on heuristics
that must be tailored to specific resource characteristics. In contrast
to LR methods, even if the B&B algorithm times-out before finding
an optimum, one is still left with a primal-feasible solution and
a bound on the optimality gap.1 These intermediate solutions are
often found within the same amount of time that an LR-based
algorithm takes, and typically have optimality gaps of the same size
or smaller than LR solutions. These overwhelming advantages and
the tractability of MIP algorithms have led SOs, such as PJM, and the
California ISO’s Market Redesign and Technology Update, that
started on April 1, 2009, to implement MIP-based solution methods
as opposed to LR. Furthermore, the forthcoming Texas nodal
market redesign features centralized commitment solved using
MIP, and ISO New England (ISONE) is similarly exploring a switch
from LR to MIP.
1 In theory, the B&B algorithm may time out before finding an integer-feasible
solution, in which case heuristics or an alternative solution method would have to
be employed. Indeed, Streiffert et al. (2005) mention the concern when introducing
MIP to the PJM market that the B&B algorithm could time out without finding
a feasible solution. They overcame this issue by running the old LR-based algorithm
in parallel as a backup. This was eventually phased-out due to the excellent
performance of the MIP.
Due to the computational complexity of unit commitment
problems and limited solution times, SOs that implement B&B-
based algorithms do not solve their unit commitment problems to
complete optimality or prove that the best solution found is
optimal.2 PJM, for instance, allows its MIP optimizer to run within
a certain period of time or until the optimality gap is below some
maximal threshold, and uses whatever intermediate integer-
feasible solution the solver has found. An obvious issue raised in
using MIP to solve the commitment is, therefore, how robust the
solution is in terms of economic efficiency and fairness to market
participants. Such issues have been studied in the context of an LR-
based unit commitment by Johnson et al. (1997). Sioshansi et al.
(2008a) reexamined the issue under an MIP formulation for
a commercial-scale unit commitment problem based on an ISONE
dataset and solved to optimality with a B&B algorithm.

We will review these results and discuss their policy implica-
tions with regards to the implementation of a centralized day-
ahead market based on a security-constrained bid-based economic
dispatch. We then compare these results to an alternative design
based on self-commitment and an energy-only single-settlement
auctionwherein generators offer energy supply curves and are paid
only for the energy they sell. We review simulation studies of such
a decentralized approach conducted by Sioshansi et al. (2008b)
using the same ISONE data employed for the centralized MIP-
based approach. The decentralized market is modeled as a simul-
taneous Walrasian-type day-ahead auction for 24 h in which
generators decide whether to commit their units (i.e., turn them
on) and how much energy to offer in order to maximize their
profits at the posted energy prices. The auctioneer will iteratively
adjust the vector of hourly energy prices until the demand is served
by the generators. We model our decentralized self-committed
market after the multiround auction design proposed by Wilson
(1997), although our specific market design differs slightly. The
Wilson’s (1997) proposal called for generators and loads to itera-
tively submit one-part offers, subject to some proposed activity
rules,3 specifying prices at which they would be willing to supply
and consume energy until converging to an equilibrium set of
prices, commitments, and dispatches. Our simulated market,
instead, assumes that the auctioneer iteratively adjusts prices and
the generators declare how much energy they are willing to
provide at those set of prices. This market could also allow for loads
to participate by declaring how much energy they would consume
at the price vector given by the auctioneer, but because we assume
loads to be fixed, the demand side does not participate in our
market. It is worth noting that the Wilson’s (1997) proposal was
geared towards the original California market design, and while
some of the elements were used, the design eventually settled on
a simpler single-round auction. We do not advocate or refute this
iterative auction design but rather employ it as an algorithm that
will converge to a set of hourly energy prices that are consistent
with individual rationality of the generators regarding their
commitment and output decisions over a 24-h period. Our analysis
focuses on the resulting energy prices, which should be indepen-
dent of the process by which they are arrived at.

The comparison between the central unit commitment and
decentralized market paradigms is based on competitive bench-
marks assuming that generators do not behave strategically in
2 Since LR-based algorithms almost invariably have a duality gap, they are not
solved to optimality either.

3 The purpose of the activity rules is to ensure early price discovery, fast
convergence, and to prevent large generators and consumers from manipulating
the auction by withholding themselves from the market until the final round of
bidding.
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manipulating their offers in the two markets and instead submit
truthful offers. This comparison shows the extent of productive
efficiency losses from a decentralized market and the distributional
consequences of the two designs but does not capture incentive
effects that will be discussed qualitatively. Sioshansi and Nicholson
(2007) consider the incentive properties of the two market designs
using a simplified symmetric duopoly model. They show that
although generators generally have incentives to overstate their
costs, offer caps can be designed to make the two markets cost
equivalent. Sioshansi and Nicholson (2007) assume, however, that
the SO is able to solve the commitment problem to optimality in the
centralized market, and do not account for the incentive effects of
suboptimal unit commitments.

The simulation results discussed in this paper are not new. They
are pulled from the two previous papers by the authors. The main
contribution here is a comparative examination of these results
that highlights the tradeoffs between the centralized and decen-
tralized approaches to day-ahead unit commitment and policy
implication of such tradeoffs. We also examine the market design
implications of nonconvexities and computational complexity of
the auction clearing engine. To clarify some of these issues we
produce a simple example that illustrates the causes for coordi-
nation losses in decentralized markets with nonconvex cost func-
tions and the potential impact of such decentralization on energy
prices faced by consumers.

2. The unit commitment problem, energy pricing, and
properties of LR and B&B solutions

The unit commitment problem finds the least-cost commitment
and dispatch of a set of generating units to meet expected load over
a time horizon consisting of a fixed number of periods, typically,
twenty-four single-hour periods. The problem can be formulated as
an MIP in which the operating status of each unit (online or offline)
in each planning period is characterized by a set of binary variables,
and a set of continuous variables indicate the generating output of
each unit in each planning period. In addition to a load-balance
constraint, which ensures that expected demand is met in each
period, unit commitment formulations will typically also have
ancillary service requirements, upper- and lower-generating
capacities for each unit, ramping constraints, minimum up and
down times when units are started and stopped, startup costs
(which can depend on the length of time that a unit has been off-
line), and transmission network constraints. The objective function
to be minimized includes energy, no-load, and startup costs for
each generating unit. Bidders in a centralized day-ahead market
specify these costs as part of their offers in a multipart auction
along with operating constraints that are included in the
constraints.

Historically, solving a commercial-scale problemwith hundreds
of generating units was impractical using a B&B algorithm. As such,
LR techniques were employed in which a Lagrangian dual is
obtained by relaxing the load-balance, reserve, and any other
‘coupling’ constraints and penalizing violations in the objective
function. When these constraints are relaxed, the problem can be
decomposed into a set of problems for each generating unit,
making the dual problem relatively simple to solve. The LR algo-
rithm then works iteratively to try and find a set of energy and
reserve capacity ‘prices’ (the objective function penalty coeffi-
cients), which incent an optimal commitment and dispatch of the
units while satisfying the relaxed constraints. However, the solu-
tion resulting from solving the decomposed dual problem is typi-
cally not primal-feasible, due to nonconvexities, and additional
processing of the LR solution and heuristics are needed to restore
primal-feasibility. Hence the LR solution to the unit commitment
problem is inherently approximate and, as demonstrated by
Johnson et al. (1997), the objective function near the optimum is
relatively ‘flat’ so that there are multiple feasible solutions that
differ only slightly in terms of the respective values of the objective
function. This observation has been confirmed by Sioshansi et al.
(2008a) using a dataset from ISONE with 276 dispatchable gener-
ation units. Once a commitment and dispatch is obtained from the
centralized unit commitment, generators are typically given linear
energy payments based on the dual variables associated with the
hourly load-balance constraints, which give the marginal cost of
energy in each hour.

Regardless of whether the unit commitment is solved using LR,
B&B, or another technique, these prices are often found either from
the unit commitment problem itself or from an optimal power flow
(OPF) problem. If they are based on the unit commitment solution,
this is typically done by fixing the integer variables in the problem
at their final value and resolving the resulting dispatch problem,
which is continuous and will yield dual variables. If the unit
commitment problem includes a load-flow model, then the
resulting load-balance constraints at each network bus will yield a
set of locational marginal prices (LMPs) at each bus in the network.
Otherwise, the single system wide load-balance constraint will
yield a single market-clearing marginal cost price (MCP). If the OPF
problem is used for pricing, this will generally take the unit
commitments as fixed and solve for the optimal power flow
(oftentimes using a more complex ac load-flow model, as opposed
to a dc approximation) for each planning period, ignoring inter-
temporal constraints. Again, the dual variables associated with the
load-balance constraints at each bus are used to determine the
LMPs.

Thus, the LMPs found by the unit commitment and OPF model
will generally differ due to their different treatments of inter-
temporal and load-flow constraints. When there are no binding
load-flow constraints, the OPF LMPs will simply be set by the
highest marginal cost unit, which is not running at minimum load.
The unit commitment prices, on the other hand, will reflect inter-
temporal cost shifting when price-setting units have binding
intertemporal ramping constraints. To see this, consider the
simplified dispatch problem in time period t:

Min
qg;t

P
g
Cg

�
qg;t

�

s:t Dt ¼ P
g
qg;t

Q�
g � qg;t � Qþ

g ;

where Cg is generator g’s cost function, Dt is the demand in hour t,
qg,t is the amount of power provided by generator g, and Q�

g and Qþ
g

are lower- and upper-bounds on generator g’s output. If we let lt
denote the Lagrange multiplier associated with the load-balance
constraint and m�g;t and mþg;t themultipliers for the lower- and upper-
bound constraints, then the first-order necessary condition (FONC)
for an optimum implies:

lt ¼ C ’
g

�
qg;t

�
þ mþg;t � m�g;t with mþg;t ; m

�
g;t � 0:

Under this formulation the cost of serving an incremental
demand unit, which defines the MCP, is lt, whereas m�g;t and mþg;t are
zerowhen the lower- and upper-bound constraints on generator g’s
output are not active. It follows that the MCP is set by the marginal
cost of whichever generator is not operating at its lower- or upper-
bound constraint, i.e, lt ¼ C’

gðqg;tÞ. If ramping constraints are
binding in the unit commitment, expensive peaking units may have
to be started or dispatched at increased output levels during
shoulder periods in order to meet demand at the peak period. Thus



Table I
Comparison of LR solutions and MIP optimum, with linear energy payments only.

Solution Total cost ($) Optimality gap (%) Units affected

MIP 8074022.55
1 8181665.93 1.33 125
2 8212269.01 1.71 128
3 8202929.15 1.6 132
4 8171416.63 1.21 141
5 8125904.86 0.64 109
6 8220547.52 1.82 128
7 8211208.66 1.7 132
8 8124845.51 0.63 112
9 8180528.2 1.32 129
10 8189867.05 1.44 125
11 8116566.01 0.53 112
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setting the price at the marginal cost of the most expensive oper-
ating unit unfairly penalizes consumption during shoulder periods
and produces perverse incentives for load shifting that could alle-
viate ramp constraints. Such distortions could be corrected by
setting energy prices based on the unit commitment solution,
which explicitly accounts for the intertemporal ramp constraints.
To illustrate this point we introduce intertemporal ramping
constraints in the above simplified dispatch problem which
becomes:

Min
qg;t

P
g;t

Cg
�
qg;t

�

s:t Dt ¼ P
g
qg;t ct

Q�
g � qg;t � Qþ

g ct
�Rg � qg;t � qg;t�1 � Rg ct;

where Rg is generator g’s ramping limit. If we let h�g;t and hþg;t
denote the Lagrange multipliers associated with ramp-down and
ramp-up constraints respectively, the FONC becomes:

lt ¼ C ’
g

�
qg;t

�
þ mþg;t � m�g;t þ hþg;t � hþg;tþ1 � h�g;t þ h�g;tþ1;

with m�g;t ;m
þ
g;t ; h

þ
g;t ;h

þ
g;tþ1; h

�
g;t ; h

�
g;tþ1 � 0

The Lagrange multipliers are zero if the corresponding
constraint is non-binding, hence if the only binding constraint on
the price-setting generator, g, is its ramp-up constraint in hour t,
then the FONC in hours t � 1 and t become:

lt�1 ¼ C ’
g

�
qg;t�1

�
� hþg;t and lt ¼ C’

g

�
qg;t

�
þ hþg;t :

Because the multiplier, hþg;t, is non-negative these conditions
imply that theMCP in hours t� 1will be subsidized by an increased
MCP in hour t. Such an intertemporal subsidy would mitigate the
higher prices imposed on period t � 1 due to the ramp constraint
activated by the demand in period t. It assigns the increased cost to
those who cause it and it creates the correct incentives for load
shifting from period t to period t� 1. From generator g’s perspective
the above price adjustment is beneficial since it increases its
revenue by hþg;t$Rg, which is the shifted price increment from period
t � 1 to period t times the increase in generator g’s output level. For
inframarginal generators operating at their upper-bound or
generators operating at minimum load the adjustment is revenue
neutral. A binding ramp-down constraint would have a similar but
opposite effect on the MCPs.

In spite of the compelling argument in favor of accounting for
ramp constraints in setting marginal cost prices, this is not done in
practice and LMPs are set for each time interval with no consider-
ation of ramp constraints (evenwhen such constraints are enforced
in determining the generators’ output level). The primary reason
for this approximation is the computational burden of accounting
for intetemporal constraints in conjunction with a full network
representation OPF. In our simulation, however, the two sets of
prices are nearly identical so our analysis uses the unit commit-
ment prices, which are produced as a byproduct of the unit
commitment optimization.

Table I shows the value of the objective function and corre-
sponding duality gaps for 11 near-optimal solutions produced by
LR for the above dataset in comparison to the true MIP-optimal
solution produced by B&B. These results are based on a simplified
model of the ISONE commitment problem, which includes
minimum up and down times, ramping constraints, hourly load-
balance constraints, and a single type of load-based ancillary
service requirement. To simplify the model, marginal generating
costs are assumed to be constant, startup costs are not time-
dependent, and transmission constraints are ignored. The different
LR solutions are generated by adjusting the rate of convergence of
the step-size sequence used in the subgradient algorithm under-
lying the LR. The troubling issue highlighted by Johnson et al.
(1997) and reconfirmed by Sioshansi et al. (2008a) is the fact that
near-optimal solutions may result in large deviations in surplus
accrued by individual generators and in energy prices. The last
column in Table I shows the number of units that have a different
dispatch in each near-optimal solution compared to the MIP-
optimal solution. While such deviations were inconsequential in
a regulated monopoly setting they have significant economic
implications in a deregulated market with dispersed ownership of
generation units. Furthermore, the near-optimal solutions can
result in negative surplus for some generators, which is confisca-
tory and not sustainable. This creates incentive problems since
generators may attempt to manipulate their offers to shift the
solution in their favor, which may result in a suboptimal commit-
ment and dispatch. One could argue that an MIP B&B solver that
determines the true optimal solution would resolve the ambiguity
resulting from the approximate nature of the LR approach.
However, the MIP-optimal solution could be confiscatory as well,
since the presence of alternate near-optimal solutions and the
consequential incentives to misrepresent offers are inherent in
the problem structure and do not depend on the solution
technique.

The confiscatory issue is resolved by all SOs employing day-
ahead centralized unit commitment by means of ‘make whole’
payments, which ensure that a centrally dispatched unit will cover
its cost in any 24-h period. These payments are computed as the
difference between the cost incurred by each generator (which are
calculated on the basis of the cost components in the generator’s
multipart bids in the auction) and the energy payments received
from the marketdif this difference is positive. If so, then the sum of
energy and make-whole payments ensure that the generator
recovers all of its costs. If not, then this implies that the generator
has earned inframarginal rents from energy payments, which it
keeps as surplus. These make-whole payments do not, however,
make the hourly dispatch ex-post incentive-compatible in every
hour. The make-whole payments will, however, smooth out the
payoff differences to individual generators between alternative
near-optimal solutions and the MIP optimum by truncating the
payoff distribution at zero. Table II shows the effect of make-whole
payments on the distribution of surplus deviations (normalized on
a per MWh basis) between the near-optimal LR solutions and the
MIP optimum. Because the surplus calculations are based on costs
specified in generator offers, as opposed to actual costs, the surplus
calculations are offer-based (i.e. generators’ actual surplus may
differ from our calculations, since generators may have mis-
represented their costs).



Table III
Progression of integer-feasible solutions found by B&B.

Solution Total cost ($) Optimality gap (%)

1 8074400.39 0.0049275
2 8074045.7 0.0005345
3 8074020.25 0.0002192
4 8074014.91 0.0001531
5 8074003.06 0.0000063

Table II
Comparison of unit offer-based surplus deviations between LR near-optimal solu-
tions and MIP optimum.

Solution As-bid surplus ($/MWh)

Without make-whole
payments

With make-whole
payments

Mean Max cv Mean Max cv

1 61.19 942.24 3.66 0.33 4.68 1.76
2 71.92 945.92 3.38 0.33 4.8 1.79
3 73.66 939.3 3.31 0.33 4.8 1.79
4 57.46 943.55 3.33 0.39 4.8 1.61
5 7.28 952.56 8.2 0.33 4.8 1.79
6 71.9 945.92 3.38 0.29 4.54 1.8
7 73.64 939.3 3.31 0.29 4.54 1.8
8 5.57 353.56 5 0.29 4.54 1.8
9 62.95 931.94 3.56 0.29 4.54 1.8
10 61.22 942.24 3.66 0.29 4.54 1.8
11 5.6 353.56 4.97 0.33 4.8 1.79

Table IV
Energy prices corresponding to Intermediate B&B solutions.

Hour Energy price of solution ($/MWh)
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3. MIP implementation

Although recent computational and algorithmic advances make
direct solution of the unit commitment by B&B tractable, SOs
cannot currently solve their commitment problems to complete
optimality within the allotted timeframe. Most SOs, upon receiving
generation offers and other market data day-ahead, must return
commitments and a schedule to market participants within a few
hours. The formation of these schedules oftentimes requires
solving multiple unit commitment, optimal power flow, and other
optimization problems. As such, SOs that have implemented or are
proposing to use MIP in their unit commitment set limits on the
solution time and rely on the best integer-feasible solution found at
the end of that time. Although SOs boast their ability to find feasible
solutions with minuscule optimality gaps, if an SO is left to rely on
an intermediate integer-feasible but suboptimal solution, the same
issues of generator payoffs, energy pricing, and inequity of the
resulting dispatch arise as with suboptimal LR commitments.

To illustrate the consequences of truncating the B&B process
before completion, Table III summarizes the progression of the MIP
optimizer in CPLEX 9.120 solving the simplified ISONE unit
commitment problemmentioned abovewith the default settings. It
should be noted that unlike commercial MIP-based unit commit-
ment software packages, the formulation of the problem or the
settings in CPLEX were not fine-tuned, nor were problem-specific
cutting planes introduced to improve the solutions or solution
times of the problem.4 CPLEX finds 5 intermediate suboptimal
integer-feasible solutions, all of which have smaller optimality gaps
than the near-optimal LR solutions shown in Table I. Moreover,
should the SO use one of the intermediate solutions but include
a make-whole provision, the net offer-based surplus to each unit is
identical to that under the MIP optimum in all but the first solution,
with the largest deviation being $0.02/MWh. As in the case of the
near-optimal LR solutions, energy prices corresponding to inter-
mediate solutions can deviate substantially in some hours from
those corresponding to the MIP optimum, as shown in Table IV. In
the absence of make-whole payments, the profitability of some
units can vary erratically among near-optimal intermediate solu-
tions. For instance two identical units (in terms of stated costs and
operating constraint parameters) receive identical commitments
and dispatches in the MIP optimum (with negative surplus to each)
but are given different commitments and dispatches in every
intermediate MIP solution.
4 The integrality and optimality gap tolerances were set to zero in order to ensure
that the final solution given by CPLEX is indeed the MIP optimum.
Although the above results suggest that make-whole payments
resolve the payoff instability issues when using near-optimal LR
solutions or intermediate B&B solutions, the formulation upon
which these observations are drawn is a simplification of any actual
unit commitment solved by SOs and excludes many important
details. Sioshansi et al. (2008a) present a summary of the progres-
sion of integer-feasible solutions found by CPLEX in solving ISONE’s
complete unit commitment problem, which includes virtual trans-
actions, demand bids, time-dependent startup costs, stepped
generation costs, multiple types of ancillary services, and a dc load-
flow model. Due to inclusion of demand side bids the problem is
formulated so as to maximize total surplus of energy traded. In the
course of optimizing themodel, 38 intermediate integer-feasible but
suboptimal solutions were found, which are quite revealing. Solu-
tions that are very close to the optimum in terms of the MIP duality
gap result in different payoffs to individual generators.Moreover, no
monotonicity is evident in the pattern of surplus deviations or
energy prices. Intermediate solutions, regardless of how close to
optimal, can result in significant differences in energy prices with
some extreme cases showing 10% deviations from theMIP optimum
when the objective function value is a millionth of a percent away
fromtheoptimum.Theseobservations arebasedonsimulations that
assume truthful revelation of costs and constraint parameters.
However, the above observations are likely to lead to misrepresen-
tation and manipulation attempts by market participants that
engage in this process on a daily basis. Such distortions call into
question the efficiency justification for the security-constrainedbid-
based economic dispatch which underlines the day-ahead market
design. To address this question one must consider the alternative
approach based on self-commitment and a single-part energy-only
auction-based dispatch.

4. One-part energy auctions with self-commitment

The decentralized market model we analyze assumes that
energy is traded through an energy-only market. As suggested in
the discussion above, due to nonconvexities, network externalities,
and other complexities of power systems, a decentralized market
can suffer from both efficiency losses and higher settlement costs,
even under a competitive assumption. To see this, consider a very
simple example in which a baseload coal generator and a combus-
tion turbine (CT) must be committed and dispatched to serve
a 1000 MW load in a single hour. Table V summarizes the charac-
teristics of the two generators in the example. Assuming that the
two generators behave competitively and truthfully reveal their
generation costs and operating constraints, then the least-cost
solution to the centralized market would be to commit the coal
generator and have it generate 1000 MW. The energy price would
1 2 3 4 5 Optimum

2 45.84 44.3 44.3 44.3 44.3 44.3
11 114.95 64.49 59.72 59.72 59.72 59.72
23 48.96 50.24 48.96 50.24 50.24 50.24



Table V
Generator characteristics in example.

Generator Capacity (MW) Startup cost ($) Variable cost ($/MWh)

Coal 2000 75,000 10
CT 200 0 75
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be set at $10/MWh, but this generator would have to be given
a $75,000 make-whole payment so that it could recover its fixed
startup cost. In a decentralized energy-only market (which we still
assume to be perfectly competitive), by contrast, the energy price
would have to be raised to $85/MWh or higher in order for it to be
individually rational for the coal generator to startup and provide
energy. At this price, however, the CT, which is assumed to behave
competitively and offer its energy at the marginal cost of $75/MWh,
would want to be fully dispatched at prices between $75/MWh and
$85/MWh, however the offer quantity below $85/MWh is not
sufficient to meet demand. At $85/MWh the aggregate competitive
supply function has a discontinuity and the offer quantity jumps
from 200 MW to 1200 MW, which will require the SO to use some
rationing rule in its energy procurement. Efficiency losses will
occur if the CT is dispatched in this energy-only market, which is
a likely outcome given that it submits the lowest offer. Moreover, if
the CT is dispatched at any level then the coal generator will
produce less than 1000 MW and the energy price will have to be
raised above $85/MWh, in order to ensure that the coal generator
recovers it startup costs (otherwise it will withdraw from the
market). It should be noted that if the energy price is $85/MWh,
then the twomarket designs would yield the same total settlement
costs (when make-whole payments are taken into account), but if
the CT is dispatched and the energy price in the decentralized
market is raised above $85/MWh to assure sufficient supply.
However, thismarket outcomewill be inefficient andmore costly to
consumers than a coordinated centralized market. In an extreme
case inwhich the CT is dispatched to its capacity of 200MWand the
coal generator to 800 MW, the energy price would have to rise to at
least $103.75 in order to ensure the coal generator recovers its
costs, which would yield a 22% increase in settlement costs to
consumers, and a 15% increase in commitment and dispatch costs,
which would be the allocative efficiency losses.

Although this example is a gross oversimplification of any actual
electricity market, it highlights the fact that due to nonconvexities,
energy-only markets will be prone to efficiency losses and higher
settlement costs than a centralized market, even under a price-
taking assumption, which is consistent with our findings based on
the ISONE dataset.

To compute a competitive benchmark using the ISONE dataset,
the market is modeled as a competitive auction in which the
auctioneer5 announces a set of hourly energy prices and price-
taking generators individually determine their hourly commit-
ments and output levels to maximize profits and submit offers to
the auctioneer indicating how many MWh they are willing to
supply in each hour. The auctioneer then iteratively adjusts the
hourly energy prices until it finds a set of prices that incent suffi-
cient generation to serve the load. This iterative price-updating
process is meant to mimic the Wilson’s (1997) proposal for a self-
committed market with two important differences. One is that
loads are fixed in each hour as opposed to being price-elastic.6 Thus
the market is assumed not to accept demand bids but rather solicit
5 The auction can be thought of as being operated by the SO, or it can be
a separate outside market.

6 In order for our simulations of the two market designs to be comparable, we
use the same underlying cost, load, and generator constraint data in the two sets of
market simulations.
sufficient generation at any price to serve a fixed hourly load. The
other is that under Wilson’s proposal, generators are assumed to
submit offers consisting of quantity/price pairs. Because the model
analyzed in this section assumes generators to behave competi-
tively, generators are modeled as price-takers, that take the auction
prices as fixed and decide their commitments and generation offers
to maximize profits individually, as opposed to strategically
adjusting their energy offers to raise energy prices. It should also be
noted that a generator’s decision to produce energy is independent
of whether it is contracted, sincewe assume that it can always fulfill
any contractual obligation through purchases from the market. If
a generator is not contracted, then the production decision is based
on sales revenue versus the cost of production. On the other hand, if
a generator is contracted then market prices represent the oppor-
tunity cost of not producing and the generator’s decision is driven
by minimizing the cost of fulfilling its contractual obligation.

Although the model assumes that energy is traded through
a centralized energy market, it can be thought of as solving for
a competitive equilibrium of direct bilateral trade between gener-
ators and consumers a la a Walrasian auction model. The model
further assumes that the auctioneer starts with a set of prices that
incent sufficient generation to serve the load, and iteratively adjusts
prices until finding a set of supporting minimal pricesdwhich is
a setofprices such that generatorsoffer sufficientenergy to serve the
load, but would no longer do so if any of the energy prices were
reduced. As the energy prices are dropped, higher-cost units will no
longerfind it profitable to commit themselves and the total quantity
offered for generation will be driven towards the system load.

One difficulty with finding a set of supporting minimal prices is
that the binary nature of the generators’ commitment decisions
means that a set of supporting minimal prices will generally not be
market-clearing, meaning generators will offer more total genera-
tion than there is load to serve, yet reducing any of the energy
prices will cause a unit to decommit itself, leaving insufficient
energy to serve the load.7 One solution is to assume that the auction
uses some type of rationing rule to determine how the load is
divided amongst generators willing to commit themselves. Our
model assumes, instead, that because higher-cost generators drop
out of the commitment as prices are iteratively reduced, then if
there is excess generation offered andmultiple units are competing
for the same load, the one with the lowest average cost over the
course of the day will prevail.

In modeling generators’ profit-maximizing behavior, they are
assumed to perfectly rationally expect the behavior of other gener-
ators and take into account the ‘winner determination assumption’
in making their own commitment decisions. This is to preclude the
possibility that a unit may commit itself in expectation of being
dispatched but finds that it doesn’t, resulting in a net profit loss. This
assumption is enforced algorithmically in the model formulation
and simulation. Finally, the model assumes that each generator acts
independently in making its commitment decisions, as opposed to
making commitment decisions for portfolios of generators being
owned by generating firms. This assumption is made because the
dataset used does not have unit ownership information, although
the technique and results would translate to a setting with genera-
tion asset portfolios. As indicated earlier, the above assumptions are
not intended to represent an accurate behavioral model but rather
specify an algorithm that will lead to a set of prices that will support
individually rational decisions of generators regarding daily self-
commitment and output while meeting the load in each hour.
7 This inability to find market-clearing prices is a direct consequence of the non-
zero duality gap that remains if the SO unit commitment problem is solved using an
LR algorithm.



Table VI
Cost and profit comparison of centrally- and self-committed market designs.

Market design Energy payments Make-whole payments Total settlements Commitment costs Total unit profits

Central $16,075,121 $0.00 $16,075,121 $5,758,201 $10,316,920
Self $25,060,666 $25,060,666 $6,003,274 $19,057,392
%-Difference 55.90% 4.16% 84.72%
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5. Comparative analysis based on market simulation

To examine the pros and cons of centrally- and self-committed
markets we conduct simulations of the two approaches based on
actual market data from an ISONE unit commitment problem in
February of 2005, consisting of 276 dispatchable units. This dataset
is used because of availability of the data, and is meant to be an
illustrative example of the relative efficiency losses and settlement
costs between the two market designs. The ISONE system covers
approximately 6.5 million retail customers, includes more than 350
generators with 31,000 MW of installed capacity, an all-time peak
load of 28,127 MWh, and $11 billion of annual energy trade.

For ease of analysis and discussion the unit commitment
formulation used in the simulations is a simplification of
a commercial model. It includes stepped marginal costs and fixed
(not time-dependent) startup and no-load costs for each unit.
Demand is price-inelastic, there are no network flow constraints,
virtual bids, self-schedules, or ancillary service requirements. The
computations assume that the centrally-committed market settles
with a uniform hourly energy pricedspecifically the dual variable
associated with the hourly load-balance constraints in the unit
commitment problem. As noted before, because linear energy-only
payments can be confiscatory, the analysis further assumes that the
SO includes a make-whole provision, which pays each unit the
difference between its total costs incurred in the commitment and
dispatch (calculated on the basis of costs stated in its offer) and the
total energy payments received over the course of the 24 h, if that
difference is positive. These payments ensure that total net profits
(on the basis of stated costs) are always non-negative.

The operating costs and constraint parameters used in the
market simulations are those which were submitted by generators
to ISONE. The competitive benchmark assumption takes these
Fig. I. Energy prices under central unit c
generator-offered parameters as reflecting actual costs and unit-
operating constraintsdthereby assuming away any incentive
compatibility issues. The computation of the central commitment
assumes generators will offer these actual cost and constraint
parameters to the SO for use in its commitment problem, as opposed
to strategicallymisstating them to increase profits. The computation
of the self-commitment assumes that generators behave as price-
takers and maximize profits with the same cost and constraint
parameters.

Table VI compares the total settlements paid to generators,
commitment costs, and profits of the generators in the simulations
of the two market designs. Although the centrally-committed
market is assumed to include a make-whole provision, the dataset
and optimal central commitment is such that each generator
receives sufficient inframarginal rents to recover all of its costs and
no supplemental make-whole payments are required. Nonetheless,
Fig. I shows that the set of supporting minimal prices found in the
self-committed market far exceed the energy prices paid in the
central unit commitment.

Indeed, a critical assumption underlying a centrally-committed
market is that the SO can force cross subsidies of ‘losing’ hours by
profits from other hours and has a means of preventing generators
frommakingadjustments to theirassignedschedules. Fig. II showsthe
resulting load imbalances whichwould occur in a centralizedmarket
if generators could individually adjust their outputs to maximize
profits against the hourly energy pricesdknown as uninstructed
deviations. While the scale of these deviations may seem small, it is
important to note that they would have disastrous consequences in
a power system, since any difference between power demand and
supply will threaten system stability andmay cause brown- or black-
out conditions. Due to the potential for such deviations, SOs penalize
such deviations in generation by requiring generators to buy or sell
ommitment and self-commitment.



Fig. II. Load imbalance from profit-maximizing uninstructed deviations in centrally-
committed market.
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back their insufficient or excess generation at the locational marginal
price (LMP)doftentimes with an added deviation penaltydthereby
removing any incentive for such deviations.

This enforcement mechanism can be problematic, however, in
multiple-settlement systems in which the SO computes different
sets of LMPs at different time intervals in real-time. Since there can
be differences between the prices at which an uninstructed devi-
ation is paid and penalized, a generator may be inclined to change
its output if these price differences are predictable.

More importantly, the simulation demonstrates that a self-
committed market requires higher energy prices than a centrally-
committed one. Because the model assumes that demand is fixed
and inelastic, these higher prices are simply a wealth transfer from
consumers to generators, without any efficiency losses. In a market
with demand response, the higher prices will generally result in
allocative distortions. Indeed, if we return to the example described
in Table V and suppose that demand is given by the price-elastic
inverse demand function, p(D) ¼ 1010 � D, we can show how the
higher energy prices from centralized commitment will result in
social and consumer welfare losses. With this inverse demand
function, the welfare-maximizing solution of the centrally-
committed market would be to still commit the coal generator and
have it produce 1000 MW. This will yield a social surplus of
$425,000, a consumer surplus of $500,000, and an energy price of
$10/MWh. Again, because the coal generator will not recover its
startup costs a make-whole payment of $75,000 will be required.
Because consumer surplus is $500,000, the cost of this make-whole
payment could be imposed on consumers (which ensures that the
market is revenue-adequate) in the form of a two-part tariff, that
would not have any allocative efficiency losses.

In a self-committed market, by contrast, the energy price would
have to rise to at least $85/MWh in order for the coal generator to
be willing to startup and provide energy, which would reduce
demand. Moreover, because this $85/MWh is greater than the
marginal cost of the CT, it would want to startup and generate
energy as well. The SO’s rationing rule between the coal and CT
generators in the self-committed market will determine the extent
of productive and allocative efficiency losses, but as an upper-
bound, we will consider a case in which the SO would favor the CT
over the coal generator in its dispatch decision.8 In such a case,
because the CT would always offer itself at a lower price, it would
be dispatched to produce 200 MW, and the coal generator would
produce (1010 � 200 � p) ¼ (810 � p) MW, where p is the
8 As we noted before, because the CT would offer its generation at $75/MWh,
whereas the coal generator would bid a higher price, it is not unreasonable to
assume that the SO would favor the CT in its dispatch.
equilibrium energy price. The equilibrium energy price would then
be a solution to the equation:

p ¼ 10þ 75000
810� p

;

which ensures that the price is sufficiently high to recover all of the
coal generator’s costs. The solution to this equilibrium condition
yields an energy price of about $118.45, and a total demand of
891.55 MW.9 Because of the higher price and lower demand,
however, consumer surplus is reduced to $397,431 (a 22% loss
compared to centralized commitment), social surplus is $406,120 (a
4% loss compared to centralized commitment), and generation
costs rise by about 14%.

Table VI also shows that a self-committed market will generally
suffer productive efficiency losses, as demonstrated by the more
than 4% increase in total commitment and dispatch costs. These
efficiency losses are not the result of units committing themselves
under a self-committed market when they would not be
committed under the central commitment. Rather these losses
stem from the fact that a central commitment gives the most effi-
cient coordination of generator dispatches, which are lost when
generators dispatch themselves independently. Of the 276 units,
108 are committed in at least 1 h under the central unit commit-
ment solution. Of these 108, 73 follow the same commitment and
dispatch schedule under the self-committed market as under the
central unit commitment, with some shuffling of generation
amongst the remaining 35.
6. Conclusions

Clearly centrally- and self-committed markets present tradeoffs,
which must be evaluated in addressing market design issues.
Centrally-committed markets strive for the least-cost commitment
and dispatch of generators by solving for a commitment that
minimizes the SO’s cost objective. However, as shown above and by
Sioshansi et al. (2008a), this approach presents equity and incen-
tive issues that also call into question the efficiency of the
centralized solution. Although make-whole payments, which are
made by most SOs that operate centrally-committed markets,
reduce these equity and incentive issue, they do not completely
eliminate them. As shown in Table II, generators can in some cases
earn up to $5/MWh of excess surplus from a suboptimal unit
commitment solution. Given the fact that generators participate in
these markets repeatedly, it is not inconceivable that they may
learn to manipulate their bids in order to influence the resulting
commitment and dispatch. Indeed, Newbery (2006) notes that
because the original Electricity Pool market in Britain was operated
using the same commitment and dispatch model that generators
used under the monopoly regime, they were able to do this type of
market manipulation.

Self-commitment, on the other hand, has been offered as a viable
alternative, which addresses and reduces some of the issues with
centrally-committed markets but suffers from loss of coordination
amongst generators. This loss of coordination will result in some
efficiency losses, mainly due to the nonconvexities in generator cost
andoperating constraints.Moreover, because generators’nonconvex
cost componentsmustbecoveredbyenergypayments, energyprices
and total settlement costswill generally behigher than in a centrally-
committed market. Thus, central- and self-commitment are two
imperfect market models with inherent shortcomings since
9 A simple calculation will confirm that this price recovers all of the coal
generator’s costs.
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centralized markets will be fraught with incentive problems and
decentralized markets with coordination losses.10

On one hand an SO with broad economic authority can, in
theory, determine the most efficient commitment to meet fore-
casted demand. However, centrally-committed markets, are not
strategy-proof and are prone to incentive compatibility issues,
meaning that generators can profitably manipulate their offers to
increase profits. This has both been shown through simple exam-
ples, for example by Sioshansi and Nicholson (2007), and was one
criticism of the original Electricity Pool in Britain. Proponents claim
that a decentralized energy-only market, in which generators
individually determine their commitments, can reduce the incen-
tive issues of a central unit commitment while minimizing effi-
ciency losses. The simulation of a competitive benchmark discussed
above and conducted by Sioshansi et al. (2008a,b) provides an
estimate of the productive efficiency losses from a self- as opposed
to centrally-committed market design, under a competitive
assumption. While these losses are relatively small, around 4% in
the case examined here, this would nonetheless represent
a significant welfare loss in absolute terms considering that SO
markets typically trade energy worth billions of dollars on an
annual basis. The efficiency loss in the market simulations would
amount to an annual loss of nearly $90 million for the ISONE
system, if the results are typical of most days.11 Moreover, a self-
committed market may also yield consumer surplus losses in the
presence of demand response due to the higher energy costs that
will generally be seen in self-committed markets. The potential for
allocative efficiency losses with demand response may be an
important consideration as these programs are slowly becoming
more prevalent.

Finally, it is interesting to note that many centrally-committed
markets also allow generators to self-schedule their generation, in
which case they individually make commitment decisions and
submit one-part energy-only bids. Thus, many markets operate as
a hybrid of centrally- and self-committed markets. Our findings
regarding energy prices in centrally- versus self-committed
markets may suggest that generators in such markets would prefer
self-committing, but in practice generators tend to favor using the
10 In theory, a Vickery-Clarke-Groves (VCG) mechanism (assuming the SO’s unit
commitment problem could be solved to complete optimality) would address both
the incentive and efficiency issue. This approach has serious practical limitations,
however, one of which being the inability to solve a unit commitment problem to
optimality in a timely fashion. In fact, the VCG mechanism requires solving the unit
commitment problem multiple timesdonce for each generation firm in the market.
Moreover, VCG payments are discriminatory, complicated, and not budget-
balanced, making the mechanism an unrealistic option. O’Neill et al. (2005) provide
a more complete discussion on the application of VCG in the context of unit
commitment and Mas-Colell et al. (1995) discuss mechanism design and the VCG
auction more generally.
11 This may likely be a lower-bound on the annual losses, since more energy
would presumably be traded during summer peak periods, and our market data is
taken from February.
centralized commitment. One possible reason for this behavior is
that a generator that self-commits must recover all of its nonconvex
costs through energy payments, and will have to roll these fixed
costs into its one-part energy bid. Units that are centrally
committed by the SO, on the other hand, are given make-whole
payments to recover their nonconvex costs. These payments are not
considered in the optimization underlying the centralized unit
commitment. This different treatment of nonconvex costs can serve
to make a self-committed generator less attractive in the SO’s
dispatch, since the cost of a self-committed unit will seem higher
than an identical generator that participates in the centralized unit
commitment.
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