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In competitive wholesale electricity markets, regulated load-serving entities (LSEs) and marketers with default
service contracts have obligations to serve fluctuating load at predetermined fixed prices while meeting their

obligation through combinations of long-term contracts, wholesale purchases, and self-generation that are sub-
ject to volatile prices or opportunity cost. Hence, their net profits are exposed to joint price and quantity risk,
both of which are correlated with weather variations. In this paper, we develop a static hedging strategy for
the LSE (or marketer) whose objective is to minimize a mean-variance utility function over net profit, subject to
a self-financing constraint. Because quantity risk is nontraded, the hedge consists of a portfolio of price-based
financial energy instruments, including a bond, forward contract, and a spectrum of European call and put
options with various strike prices. The optimal hedging strategy is jointly optimized with respect to contracting
time and the portfolio mix, which varies with contract timing, under specific price and quantity dynamics and
the assumption that the hedging portfolio, which matures at the time of physical energy delivery, is purchased
at a single point in time. Explicit analytical results are derived for the special case where price and quantity
follow correlated Ito processes.
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1. Introduction
Electricity is one of the most (if not the most) volatile
traded commodities.1 Numerous instances have been
cited in the literature (see, e.g., Oum and Oren
2009) when electricity prices in the United States
and abroad that normally range between $30 to $60
per megawatt hour rose for short durations to $7,000
and $10,000 per megawatt hour, and in some cases
persisted for several days at $1,000 per megawatt
hour.2 In most systems in the United States, prices are
now capped at $1,000 per megawatt hour, but per-
sistent wholesale prices at that level can still have

1 Typical volatilities include dollar/yen exchange rates (10%–20%),
LIBOR rates (10%–20%), the S&P 500 index (20%–30%), the
NASDAQ (30%–50%), natural gas prices (50%–100%), and spot elec-
tricity (100%–500% and higher) (see Eydeland and Wolyniec 2003).
2 That happened in Texas during an ice storm that lasted three days
in February 2004.

severe economic consequences. In California dur-
ing the 2000/2001 energy crisis, persistent electricity
prices around $500 per megawatt hour had devastat-
ing effects on the economy. These dire consequences
were largely attributed to the fact that the major utili-
ties, who were forced to sell power to their customers
at low fixed prices set by the regulator, were not prop-
erly hedged through long-term supply contracts. Such
bad experiences led regulators and market partici-
pants to recognize the importance and necessity of
risk management in competitive electricity markets.
Load-serving entities (LSEs) providing regulated

electricity service to a majority of retail customers in
the United States and abroad are typically obligated
to guarantee fixed electricity prices over extended
time periods (subject to periodic regulatory review),
although their customers are free to control their
consumption with a flip of a switch. Furthermore,
LSEs are uncertain about how much electricity their
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customers will use at a certain hour until the cus-
tomers actually turn switches on and draw elec-
tricity. Hence, in addition to the wholesale price
volatility faced by LSEs, they are also exposed to
quantity uncertainty, often referred to as volumet-
ric risk. Uncertainty or unpredictability of demand is
a traditional concern for any commodity, but hold-
ing inventory is a good solution to mitigate quantity
risk for those commodities that can be economically
stored. Unfortunately, electricity once produced can-
not be practically stored in large quantities. This is
the most important characteristic that differentiates
the electricity market from the money market or other
commodities markets. Because electricity needs to be
generated at the same time it is consumed, the tradi-
tional method of purchasing an excess quantity of a
product when prices are low and holding inventories
cannot be used by firms retailing electricity. Moreover,
unlike other commodities, LSEs, which are typically
regulated, operate under an obligation to serve and
cannot curtail service to their customers (except under
special service agreements) nor pass high wholesale
prices on to their customers by charging more when
they cannot procure electricity at favorable prices.3

Unlike telecom or Internet services, for instance, a
busy signal or dropping of packets is intolerable. The
common reliability standard for electricity service is
no more than one day of involuntary curtailment in
10 years.
The exposure of the LSE to price and volumet-

ric risk is amplified by the fact that both quanti-
ties and wholesale spot prices are largely driven by
weather conditions, and hence they are strongly cor-
related. Typically, LSEs attempt to cover their service
obligation and hedge their exposure to price risk by
purchasing fixed-price forward contracts for the load
level they expect to serve. Regardless of how they
determine their forward cover, it is inevitable that
the LSE is sometimes short and has to procure the
balance on the wholesale spot market while at other
times they have excess that they dispose of in the spot
market. Because of the correlation between price and
load level, the LSE is likely to be short and needs

3 In fact, most of the U.S. states that opened their retail markets to
competition have frozen their retail electricity prices.

to procure the balance on the wholesale spot mar-
ket just when spot prices are high (and most likely
above the regulated fixed retail price). Likewise, when
the LSE needs to dispose of overcontracted amounts
of electricity, spot prices are likely to be lower than
its forward contract price. As a result of the adverse
movement of prices and quantities, the LSE’s profit is
effectively doubly exposed to the price risk, and such
exposure cannot be fully addressed with simple linear
hedging strategies.
A similar problem is faced by marketers or gener-

ating companies that sold load-following fixed-price
contracts in the default service auction in New Jersey.
LSEs in New Jersey were ordered by the local pub-
lic utility commissions to procure default service con-
tracts from generators via auction (see Loxley and
Salant 2004). The sellers of such contracts assume an
obligation to provide a proportional slice of the fluctu-
ating load at a fixed energy price set through the auc-
tion. Generators or marketers selling such contracts
have their profit (if they procure in the wholesale mar-
ket) or their opportunity cost (if they self-generate)
exposed to price and volumetric risk.
In this paper, we develop a static hedging strat-

egy that deals with price and volumetric risk. Specif-
ically, we develop a hedging portfolio of standard
financial instruments for electric power, such as for-
wards and European calls and puts, and co-optimize
the portfolio mix and procurement time of the con-
tracts. Although weather derivatives, whose under-
lying indices are strongly correlated with electric-
ity demand, can also be an effective alternative in
hedging volumetric risks, we do not include such
instruments in our hedging portfolio. The speculative
image of the weather derivatives makes them unde-
sirable for a regulated utility having to justify to a
regulator its risk management practices and the cost
associated with such practices (which are passed on
to customers). Moreover, weather derivatives cannot
ensure supply adequacy, which is a major concern in
the electricity industry. In some jurisdictions, the reg-
ulators (e.g., the California Public Utility Commission
(CPUC)), who are motivated by concerns for gener-
ation adequacy, require that LSEs hedge their load-
serving obligations and appropriate reserves with
physically covered electricity forward contracts and
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options; that is, the hedges cannot be settled finan-
cially or subject to liquidation damages, but must
be covered by specific installed or planned genera-
tion capacity capable of physical delivery. In Califor-
nia, the CPUC has explicitly ordered the phasing out
of financial contracts with liquidation damages as a
means of meeting generation adequacy requirements
(see California Public Utility Commission 2004a, b).
On the other hand, private marketers with load-
following obligations may find weather derivatives
attractive.
This paper extends work reported in two previous

papers by the authors (Oum et al. 2006, Oum and
Oren 2009) that address the joint price and quantity
hedging problem faced by the holder of a fixed-price
load-following obligation. In the first paper, Oum
et al. (2006) developed a fixed single-period static
hedging strategy where the hedging portfolio is con-
tracted at the beginning of the period and exercised at
the delivery time taking place at the end of the period.
Specifically, Oum et al. (2006) obtained the optimal
hedging strategy that uses electricity derivatives to
hedge price and volumetric risks by maximizing the
expected utility of the hedged profit. When such a
portfolio is held by an LSE, the call options with
strikes being below the spot price will be exercised so
that the amount of the options being exercised is pro-
cured at the strike prices. Using this strategy, the LSE
can set an increasing price limit on incremental load
by paying the premiums for the options. This strat-
egy is not only effective in managing quantity risk,
but was also suggested in the market design litera-
ture such as Chao and Wilson (2004), Oren (2005), and
Willems (2006) as a means to achieve resource ade-
quacy, mitigate market power, and reduce spot price
volatility. In Oum and Oren (2009), we solved the
same problem as in Oum et al. (2006) but optimized
the hedging portfolio so as to maximize expected
profit subject to a value-at-risk (VaR) constraint. This
paper extends the work reported by Oum et al. (2006)
by relaxing the assumption that contracting is done at
the onset of the period and by exploring optimal tim-
ing for procuring the hedging contracts. We will still
assume, however, that the entire hedging portfolio is
procured at a single point in time and co-optimize the
mix and procurement time of the hedging portfolio
using an expected utility criterion. Although we will

try to avoid duplication of previous work, some rep-
etition may be unavoidable for the sake of coherence
and for making this paper self-contained.
This paper is organized as follows: After a brief

literature review in §2, we present in §3 the for-
mulation and solution for the optimal payoff func-
tion of a static hedge given the procurement time, as
well as the replicating portfolio that consists of for-
ward, European call and put options, which yields
the optimal payoff. This section reproduces the results
of Oum et al. (2006), and hence many of the details
will be omitted. Forwards and options prices that
are included in our hedging portfolio change as the
time approaches delivery time, reflecting the chang-
ing expectations in the market. Thus, the mix of the
optimal hedging portfolio also changes with the hedg-
ing time. Our result shows that hedging too late can
increase risk sharply. Optimizing such timing deci-
sions, therefore, requires co-optimization of the hedg-
ing portfolio and contracting time. This problem is
considered in §4, and the results are illustrated by
means of a detailed example. Section 5 contains a
summary and general conclusions.

2. Literature Review
In this section, we first review the literature address-
ing the problem of hedging nontraded risk in an
incomplete market. Then we will discuss the lim-
ited literature that deals directly with the problem of
hedging price and quantity risk in the context of elec-
tric power markets.

2.1. Hedging Nontraded Quantity Risk
Conventional hedging strategies typically deal with
a single source of uncertainty, which is traded in
the market through a variety of financial instruments
whose payoffs are directly linked to the uncertain
underlying quantity (e.g., commodity price). In many
cases, however, more than one source of uncertainty
interacts with each other. One example is risk in the
domestic currency value of a foreign stock, where both
the foreign exchange rate and the foreign stock price
interact with each other. Another example is the hedg-
ing problem of a farmer who is uncertain about the
output quantity and the selling price at harvest. Such
problems can be classified as hedging problems with
quantity uncertainty, which can be either traded (e.g.,
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exchange rate) or nontraded (e.g., farmer’s output or
LSE’s demand).4 This work focuses on the latter case,
i.e, the hedging problems with nontraded quantity
risk.
The hedging problem with nontraded quantity risk

was first dealt with theoretically by McKinnon (1967).
He recognized that risk aversion for a farmer con-
sists of protecting himself from the output uncer-
tainty as well as the market price uncertainty, and
obtained the optimal position of short futures that
minimizes the variance of profit. Assuming profit is
given by QS + H�F − S�, where S is a spot price,
Q is an uncertain output, H is the futures posi-
tion, and F is a futures price (F = E�S	�, the optimal
minimum-variance hedge position is given by H∗ =
cov�SQ
S�/var�S�. Under the assumption of bivari-
ate normality on spot price and quantity, McKinnon
(1967) developed an explicit formula for H* in terms
of correlation coefficients and variances of price and
quantity. The formula for the optimal hedging quan-
tity showed that the correlation between (production)
quantity uncertainty and price uncertainty is a fun-
damental feature of the problem. Other studies by
Danthine (1978), Holthausen (1979), and Feder et al.
(1980) extended the McKinnon’s (1967) work to show
that the nontraded quantity risk in the farmer’s prob-
lem can be partially managed through the optimal
choice of the input amount (e.g., the amount of input
affects the output quantity) and futures position in a
single optimization problem.
The limitation of the models based on McKinnon

(1967) is that they only consider futures contracts as
their hedging instruments. When a firm faces a mul-
tiplicative risk of price and quantity, its profit is non-
linear in price. In other words, the risk cannot be fully
hedged by a forward or futures contract, which has
a linear payoff structure. Moreover, as pointed out
by Wong (2003), even without quantity risks, forward
or futures contracts may not be enough because the
nonlinearity may stem from using nonlinear marginal
utility functions. Specifically, if the firm’s preference

4 There is another stream of research on the optimal portfolio choice
considering additive, but correlated, nontraded risk (Duffie and
Zariphopoulou 1993, He and Pages 1993). Instead, the risk we
consider in this work is a multiplicative function of traded and
nontraded risks.

satisfies the reasonable behavioral assumption of pru-
dence (Kimball 1990, 1993), the prudent firm will have
a convex marginal utility function. Such a firm is
more sensitive to low realizations of profit than high
ones. To avoid the low realizations, the firm finds
the asymmetric payoff profiles of options particularly
useful. This is the case even with two independent
sources of risk.
This idea was employed by Moschini and Lapan

(1995), who included options in the optimal decisions
for firms facing price, quantity, and basis risks under
the constant absolute risk aversion utility. They solved
for the optimal amount of straddle5 as well as futures
in their hedging portfolio. They demonstrated that the
nontraded quantity uncertainty can provide a ratio-
nale for the use of options.
Brown and Toft (2002) also considered a model

accounting for multiplicative interaction of traded
price risk and nontraded quantity risk, and explored
the best exotic option for the customized hedging
needs. Brown and Toft (2002) derived the optimal
payoff function for the firm’s value based on the pay-
off (as a function of price) from an exotic derivative.
They demonstrated that this optimal exotic derivative
better hedges the firm’s price and quantity risks than
the simple hedge, which uses a single “plain vanilla”
option.

2.2. Hedging for Load-Serving Entities
Restructuring of electricity markets in recent years
introduced inherent high volatility in electricity spot
prices and resulted in the need for efficient hedging
strategies for both generators and LSEs. However, the
literature on this subject is scarce.
Vehviläinen and Keppo (2003) developed an inte-

grated framework for the optimal management of
price risk using a portfolio of electricity derivatives.
Specifically, they provided a framework for the Monte
Carlo simulation procedure for the optimal portfo-
lio that maximizes the expected utility of terminal
wealth. The accuracy of their model relied on the
models for the price processes of derivative contracts.
The LSE’s hedging problem of price and quantity

risk under an expected utility maximization criterion

5 A straddle is a combination of a call and put at the same strike
price. A straddle is used as a hedging instrument especially for
protection against high volatility.
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was addressed in the paper by Oum et al. (2006)
mentioned above. Variants of this hedging problem
using a VaR criterion have been addressed by Woo
et al. (2004), Wagner et al. (2003), Kleindorfer and Li
(2005), and Oum and Oren (2009). The VaR, which is
defined as a maximum possible loss at a given confi-
dence level, is a widely used risk measure in practice
and has become a standard tool in risk management.
However, the optimization problems with the VaR
risk measure are hard to solve analytically without
very restrictive assumptions, especially when price
and quantity risks are considered. A more detailed
discussion of VaR-based hedging for joint price and
quantity exposure is given in Oum and Oren (2009).
The effect of introducing weather derivatives into the
volumetric hedging portfolio was recently explored
by Lee and Oren (2009), but the main focus of that
work is on the pricing of weather derivatives in a
multisector economy where different sectors that are
exposed to weather risk use a mix of weather deriva-
tives and commodity-based instruments for hedging
and risk sharing.
Näsäkkälä and Keppo (2005) also studied hedg-

ing of electricity cash flows with forward contracting
strategies. Their formulation is basically a multiperiod
extension of the McKinnon (1967) problem that deter-
mines the optimal hedge ratio in the presence of price
and quantity risks. The quantity risk was modeled as
a load estimate process, which represented the pro-
cess of the estimates of load quantity at maturity.
Static hedging strategies were considered because of
concerns about transaction costs and illiquidity. When
static hedging strategies are used, the agent faces at
any point in time the decision of whether to hedge
based on the current load estimate or wait for new
information. They found the optimal hedging ratio
and timing that minimizes the variance of the portfo-
lio’s cash flow.
It is also worth mentioning a few papers on port-

folio optimization for the supply side in the elec-
tricity market. Producers, especially ones who own
hydroelectric plants or those that sell load-following
fixed-price contracts, also face severe volumetric risk
because their production capacities or supply obli-
gation highly depends on weather condition such
as precipitation and temperature. Their operational
decision regarding when and how much to produce

should be combined with a hedging strategy in the
spot, forward, and options market, but the difficul-
ties arise because an operational decision for one
period affects decisions for the later periods. Fleten
et al. (1999), Gussow (2001), Herzog (2002), and Unger
(2002) deal with such problems and solve them using
multiperiod stochastic dynamic programming.
In positioning this paper it is worth noting two

major dimensions that differentiate much of the work
on hedging in the context of electricity market. One
dimension concerns the optimization criteria used,
that is, expected utility versus VaR. The second
dimension concerns the way of constructing an imple-
mentable hedging portfolio. One approach employed,
for instance, by Kleindorfer and Li (2005) is to start
with a basket of instruments that are offered in the
market and derive the optimal mix given the spe-
cific optimization criteria and budget constraints. This
approach lends itself to direct practical implementa-
tion. The alternative approach employed in this paper
and its predecessors (Oum et al. 2006, Oum and
Oren 2009) starts with an arbitrary continuous pay-
off fuction that is optimized under proper criteria and
self-financing constraints. The solution of such prob-
lems provides valuable insight regarding the struc-
ture of an ideal hedging portfolio. An implementable
approximation of the optimal portfolio can then be
derived using approximate replication schemes. Such
replication, however, may yield a portfolio that is
suboptimal given the discrete choices of available
instruments.

3. Optimal Static Hedging in
a Single-Period Setting

In this section, we reproduce, for completeness,
results from Oum et al. (2006) upon which we build
the optimal timing extension described in the subse-
quent section. The problem is solved in two steps.
First we solve for the payoff of the optimal hedging
portfolio, and then we replicate that payoff function
with a portfolio of standard instruments.

3.1. Finding the Optimal Hedge Payoff Function
Consider a cost-free hedging portfolio consisting of
electricity derivatives, constructed at time 0, whose
payoff at time 1, x�p�, is a function of the spot
price p at time 1. The hedging portfolio may also
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include money market accounts, allowing the LSE to
finance hedging instruments through loans payable
at time 1. Let y�p
 q) be the LSE’s profit from serv-
ing the customers’ demand q at the fixed retail rate
r at time 1. Then, the hedged profit Y �p
 q
x�p��—
total profit including the net payoffs of the hedging
portfolio—is given by

Y �p
 q
x�p��= y�p
 q�+ x�p�= �r − p�q+ x�p�� (1)

The LSE’s risk preference is characterized by a con-
cave utility function U�·� defined over the total profit
Y �·� at time 1. The LSE’s beliefs on the realization of
spot price p and load q are characterized by a joint
probability function f �p
 q� for positive p and q, which
is defined on the probability measure P . On the other
hand, let Q be a risk-neutral probability measure
based on which the hedging instruments are priced,
and let g�p� be the probability density function of p
under Q. Because the electricity market is incomplete,
there may exist infinitely many risk-neutral probabil-
ity measures. In this paper, it is assumed that a spe-
cific measure, Q, was picked according to some suit-
able criteria.6

Then, the formulation of the optimal static hedging
problem is as follows:

max
x�p�

E�U �Y �p
 q
x�p��		

s.t. EQ�x�p�	= 0

(2)

where E�·	 and EQ�·	 denote expectations under the
probability measures P and Q, respectively. The con-
straint requires the “manufacturing” cost of the port-
folio (ignoring transaction costs) to be zero under
a constant risk-free interest rate. This zero-cost con-
straint implies that purchasing derivative contracts,
which are priced at their expected payoff with
respect to the risk-neutral probability measure, may
be financed from selling other derivative contracts
or through money market accounts. In other words,

6 In a complete market, there is a unique risk-neutral probability
measure such that the no-arbitrage prices of hedging instruments
equals the expected value of their payoff with respect to that prob-
ability measure. When the market is incomplete, as in our case, the
risk-neutral probability measure is not unique, and there are many
proposed criteria for choosing a suitable risk-neutral measure. See
Xu (2006) for this subject.

under the assumption that there is no limit on the
possible amount of instruments to be purchased and
money to be borrowed, the model finds a portfolio
from which the LSE obtains the maximum expected
utility over total profit.
The Lagrangian function for the above constrained

optimization problem is given by

L�x�p�� = E�U�Y �p
 q
x�p���	−�EQ�x�p�	
=

∫ �

−�
E�U�Y � � p	 fp�p�dp−�

∫ �

−�
x�p�g�p�dp


with a Lagrange multiplier � and the marginal den-
sity function fp�p� of p under P .
Differentiating L�x�p�� with respect to x�·� results in

�L

�x�p�
= E

[
�Y

�x
U ′�Y �

∣∣∣p
]
fp�p�−�g�p� (3)

by the Euler equation. Setting (3) to zero and substi-
tuting �Y /�x= 1 from (1) yields the first-order condi-
tion for the optimal solution x∗�p� as follows:

E�U ′�Y �p
 q
x∗�p��� � p	= �∗ g�p�
fp�p�

� (4)

Here, the value of �∗ should be the one that satisfies
the zero-cost constraint (2).
In the remainder of this paper we will restrict our-

selves to a mean-variance utility function that is a
commonly used approximation to more general ex-
pected utility functions. For a discussion regarding
when the use of a mean-variance expected utility func-
tion is justified, see the recent paper by Morone (2008).

Proposition 1. For an agent who maximizes mean-
variance expected utility of profit,

E�U�Y �	= E�Y 	− 1
2 aVar�Y �


the optimal solution x∗�p� to problem (2) is given as

x∗�p� = 1
a

(
1− g�p�/fp�p�

EQ�g�p�/fp�p�	

)
−E�y�p
 q� � p	

+EQ�E�y�p
 q� � p		 g�p�/fp�p�

EQ�g�p�/fp�p�	
� (5)

Moreover, suppose the joint distributions of p and q are
bivariate lognormal distributions as follows:

Under P
 log p∼N�m1
 s
2�
 log q ∼N�mq
u

2
q�


Corr�log p
 log q�= !
Under Q
 log p∼N�m2
 s

2��
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Then,

x∗�p�= 1
a
�1−B1�p��−B′

2�p�+B′
3B1�p�
 (6)

where

B1�p�=p��m2−m1�/s
2� ·exp

(
− �m1−m2��m1−3m2�

2s2

)



B′
2�p�= �r−p�·exp

(
mq+ 

uq

s
�logp−m1�+

1
2
u2q�1− 2�

)



B′
3�p�=r ·exp

(
mq+ 

uq

s
�m2−m1�

+ 1
2
u2q�1− 2�+ 1

2
 2u2q

)

−exp
(
m2+mq+ 

uq

s
�m2−m1�

+1
2
u2q�1− 2�+ 1

2

(
 
uq

s
+1

)2

s2
)
�

The proof is contained in Oum et al. (2006).

Corollary 1. Under the assumption of P ≡ Q, the
optimal payoff function under the mean-variance expected
utility becomes

x∗�p�= E�y�p
 q�	−E�y�p
 q� � p	� (7)

Proof. If P ≡ Q, then g�p�/fp�p� = 1. Then, Equa-
tion (5) reduces to Equation (7). �

The assumption that P ≡ Q was empirically jus-
tified by Audet et al. (2004) and Koekebakker and
Ollmar (2005) for the Nordic electricity forward mar-
ket.7 The first term, E�y�p
 q�	, in Equation (7) is a
constant, and the second term, E�y�p
 q� � p	, is the
expected profit given the value of the spot price. The
formula implies that the optimal payoff is one that

7 Although we adopt the assumption that P =Q, for analytical con-
venience, we note that the existence of a risk premium in electricity
is a debatable topic, and a recent paper by Lucia and Torró (2008)
based on a decade of data on short-term future prices in Nordpool
reaches the conclusion that there exists a positive risk premium in
that market that varies seasonally. According to these findings, the
risk premium is zero during the summer, but it is significant in the
winter, and particularly high when reservoir revels are unexpect-
edly low. Sensitivity analysis of the optimal hedging strategy with
regard to the risk premium, under the assumption that P and Q

only differ in the mean but have the same variance, is provided in
Oum et al. (2006) and will be omitted in this paper.

levelizes the conditional expectation of hedged profit
across spot prices p. This is because maximizing the
mean-variance objective function given the zero-cost
constraint and P ≡Q is the same as just minimizing
a variance of hedged profits.8 In fact, (7) means that
the optimal portfolio removes all the uncertainty in
the profit that is correlated with price.

3.2. Replication of Exotic Payoffs
As noted by Oum et al. (2006, 2009), the continu-
ous optimal payoff function x�p� can be replicated by
a portfolio consisting of a spectrum of put and call
options with continuous strike prices, forwards, and
bonds. Such replication is based on the work of Carr
and Madan (2001), who showed that any twice con-
tinuously differentiable function x�p� can be written
in the following form:

x�p� = �x�s�− x′�s�s	+ x′�s�p+
∫ s

0
x′′�K��K− p�+ dK

+
∫ �

s
x′′�K��p−K�+ dK


for an arbitrary positive s. The replication is obtained
by setting s to the forward price F at time 0, result-
ing in

x�p� = x�F � · 1+ x′�F ��p− F �+
∫ F

0
x′′�K��K− p�+ dK

+
∫ �

F
x′′�K��p−K�+ dk� (8)

The terms 1
 �p−F �, �K−p�+, and �p−K�+ on the right-
hand side of Equation (8) can be interpreted as the
unit payoffs of a bond, forward, European put option
with strike price K, and a European call option with
strike price K, respectively. The corresponding multi-
pliers x�F �, x′�F �, x′′�K�dK, and x′′�K�dK are the respec-
tive quantities of these instruments in a portfolio that
achieves exact replication of x�p�. In other words, exact
replication can be obtained from a long cash position
of size x�F �, a long forward position of size x′�F �, long
positions of size x′ ′�K�dK in puts struck at K, for a con-
tinuum of K < F , and a long position of size x′′�K�dK
in calls struck at K, for a continuum of K > F . Note
that unless the optimal payoff function is linear, the

8 This kind of hedging is also considered in Näsäkkälä and Keppo
(2005): mean-variance hedging reduces to variance minimization
when the pricing measure equals to the physical measure because
they consider only forward contracts, which have zero expected
value before delivery.
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optimal strategy involves purchasing (or selling short)
a spectrum of both call and put options with a contin-
uum of strike prices. This result proves that to hedge
price and quantity risks together, LSEs should pur-
chase a portfolio of options. The strike prices of call
options effectively work as “buying” price caps on
each increment of load.
In practice, electricity derivatives markets, as any

derivatives markets, are incomplete because the mar-
ket does not offer options for the full continuum of
strike prices, but typically only a limited number of
discrete strike prices are traded. Thus, practically we
can only approximate the payoff function x�p� using
available discrete strike prices. A discussion of such
approximation methods and the error they induce is
contained in Oum et al. (2006, 2009) and will not be
repeated here. However, in presenting the results for
our numerical examples of this paper, wewill illustrate
the replicating portfolio under discrete strike prices.

3.3. Example I
As a reference case for the subsequent analysis and
numerical result, we first present an illustrative exam-
ple of the static single-period hedging strategy dis-
cussed above.
Consider a hypothetical LSE that is characterized

by the following assumptions:
• Price is distributed lognormally with parameters

m1 = 4 and s = 0�7 in both the real-world and risk-
neutral world: log p ∼ N�4
0�72� in P and Q. The
expected value and the standard deviation of price p
under this distribution is $70 per megawatt hour and
$56 per megawatt hour, respectively.
• The LSE charges a flat retail rate r = $120 per

megawatt hour to its customers.
• Load is lognormally distributed with parameter

m= 7�99 and u= 0�2.
Figure 1(a) illustrates the optimal payoff functions

obtained under the mean-variance expected utility by
varying correlations. When correlation is zero, the
payoff function becomes linear, meaning that a sin-
gle forward contract with a linear payoff is sufficient.
However, when there is positive correlation, the opti-
mal payoff demonstrates nonlinearity, telling us that
there is a need for derivatives other than forward
contracts.

Figure 1(b) shows the distributions of profits with
price hedging9 and with price and quantity hedg-
ing.10 First, observe that both hedges reduce the vari-
ance of profit relative to the unhedged profit. Second,
observe that price and quantity hedge chops off the
left tail of the profit distribution after price hedging.
This implies that the LSE can protect itself against
rare but detrimental events by hedging quantity risk.
Moreover, the LSE can benefit from the longer right
tail of the profit distribution after quantity hedging.
The replication strategy of the optimal payoff func-

tion in Figure 1(a) is shown in Figure 1(c). Assuming
that options are available for strike prices of F (the for-
ward price) and each increment and decrement of $10
starting from F , Figure 1(c) shows the number of each
of the contracts that should be purchased. The figure
also shows that the forward contract covers slightly
less than the expected demand (3
000 MWh), whereas
call options are used to cover the incremental demand
corresponding to high spot prices. Figure 1(d) con-
firms that the total payoff from our replication is very
close to the optimal payoff function x�p� that we want
to replicate.

4. Timing of a Static Hedge in
a Continuous-Time Setting

Let T be the delivery period and maturing date of
the hedging instruments. We will assume that all
the hedging instruments for the delivery period T
are contracted at the same time ( . Contracting ear-
lier reduces the risk by locking in the price of the
contracts, whereas delaying the contracting enables
more profitable hedging by exploiting more informa-
tion that becomes available as we approach matu-
rity. We will assume that the optimal hedging time is
determined at time t0 based on the information avail-
able at that time, but the composition of the hedging
portfolio is determined at the hedging time ( based
on the forward price and the information about spot
price and load at the time. It should be noted that
this is not a dynamically consistent strategy because

9 “Price hedge” here means that we add the optimal payoff func-
tion obtained under the assumption of no quantity risk. This is in
fact equivalent to buying forward contracts for the average load
quantity.
10 “Price and quantity hedge” refers to the optimal payoff function
that we obtained in this paper.
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Figure 1 Hedging with Mean-Variance Utility (Minimizing Variance) Under Bivariate Lognormal Distribution for Price and Load
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the optimal hedging time determined at t0 might no
longer be optimal at time t1 > t0 because more infor-
mation becomes available at time t1. Nevertheless, we
will assume that the contracting time is chosen irre-
versibly at time t0. Such open-loop optimization is a
quite common second-best approach due to the dif-
ficulty of developing a closed-loop feedback strategy,
and it can be viewed as a first step in exploring the
sensitivity of optimal static hedging outcomes with
respect to contract timing.

4.1. Mathematical Formulation
Let *pt+t∈�0
T 	 be a process of forward price for deliv-
ery at time T and *qt+t∈�0
T 	 be a process for load esti-

mate for period T calculated at time t. Assume that
the forward price and load estimate processes evolve
according to the following Ito processes:

dpt = pt�,p�t�dt+-p�t�dB1
t �
 (9)

dqt = qt�,q�t�dt+-p�t�dB1
qt +-q�t�dB2

t �
 (10)

where B1
t and B2

t are independent Wiener processes.
Then, pT and qT denote the spot price and demand
at time T . Although the time-dependent volatilities
in the above processes provide wide latitude for
capturing behavior of real market data, it is out of
the scope of this paper to verify that this model fits the
real price and quantity movements or to estimate the
model parameters from such data. On the other hand,
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we note that this model generalizes the specification
estimated by Audet et al. (2004) based on NordPool
market data and used in the paper by Näsäkkälä and
Keppo (2005) in calculating the optimal timing of a
simple forward contract.
The optimal hedging timing determined at time t0

for a optimal hedge is characterized by the following
maximization problem:

max
(≥t0

Et0
[
U��r − pT �qT + x(�pT ��

]

 (11)

where x(�pT �= argmax
x�pT �

E(
[
U��r − pT �qT + x�pT ��

]

s.t. EQ(
[
x�pT �

]= 0� (12)

In this formulation, x(�pT � denotes the payoff from
the optimal portfolio to be constructed at time ( .
Thus, the formulation finds a time (∗; hedging at that
time maximizes the expected utility of the optimally
hedged profit.
Throughout this section, it is assumed that the phys-

ical probability measure and risk-neutral probability
measure are the same, and we restrict ourselves to
the mean-variance utility function as mentioned ear-
lier. Consequently, because of the zero-cost constraint,
maximizing a mean-variance objective function is
reduced to minimizing the variance of the hedged
profit. The formula for x(�pT � can be obtained from the
results of the §3 (see Equation (7)). Thus, the problem
becomes a single-variable unconstrained optimization
problem that can be easily solved numerically.

4.2. Finding the Optimal Payoff Function at
Contracting Time

Proposition 2. Suppose *pt+t∈�0
T 	 and *pt+t∈�0
T 	 fol-
low Ito processes given (9) and (10). Assuming P = Q,
then x(�pT � that solves (12) for a mean-variance utility
function is obtained as follows:

x∗( �pT �= B(�pT − r�pA(T p−A(( q( + rC(q( −D(p(q(
 (13)

where

A( =
∫ T

(
btdt dt

/∫ T

(
b2t dt


B( = exp
(∫ T

(
ct dt−A(

∫ T

(
at dt+ 1

2

∫ T

(
�d2t + e2t � dt

− 1
2

(∫ T

(
btdt dt

)2/∫ T

(
b2t dt

)

 (14)

C( = exp
(∫ T

(
�ct + 1

2d
2
t + 1

2e
2
t � dt

)



D( = exp
(∫ T

(
�at + ct + 1

2b
2
t + 1

2d
2
t + 1

2e
2
t + btdt� dt

)
�

Proof. The proof is given in the appendix.
Equation (13) is the payoff of the optimal portfolio

to be constructed when hedging at time ( . The opti-
mal portfolio incorporates the information of the for-
ward price and load estimate available at the hedging
time ( .

4.3. Determining the Optimal Hedging Time
With the assumption P = Q and the zero-cost
constraint E(�x(	 = 0, maximizing (11) reduces to
minimizing

4�(�≡Var��r − pT �qT + x∗( �pT ���

Given x∗( obtained in §4.2, the problem (11) is in fact
an unconstrained optimization problem with a sin-
gle decision variable in the interval �0
T 	. Once 4 is
obtained as a function of ( , the problem is solvable
numerically even though 4�(� is neither convex or
concave. This section is concluded with the calcula-
tion of 4�(�:

4�(� = Var�x∗( �pT ��+ 2cov��r − pT �qT 
 x∗( �pT ��
+Var��r − pT �qT �


where

x∗( �pT �=B(pA(+1T p−A(( q(−rB(pA(T p−A(( q(+rC(q(−D(p(q( �

Each term of 4�(� is calculated as a function of ( as
follows (for notational convenience, the subscript (
for A(
B(
C( , and D( is omitted):

Var�kx∗( �pT �� = E�x∗( �pT �
2	

= B2E�p2A+2T p−2A( q2( 	+r2B2E�p2AT p
−2A
( q2( 	

+r2C2E�q2( 	+D2E�p2(q
2
( 	

−2rB2E�p2A+1T p−2A( q2( 	+2rBCE

·�pA+1T p−A( q2( 	−2BDE�pA+1T p−A+1( q2( 	

−2r2BCE�pAT p
−A
( q2( 	+2rBDE�pAT p−A+1( q2( 	

−2rCDE�p(q2( 	
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cov��r−pT �qT 
x∗( �pT ��
=E��r−pT �qT x∗( �pT �	
=rBE�pA+1T qT p

−A
( q( 	−r2BE�pAT qT p−A( q( 	

+r2CE�qT q( 	−rDE�qT p(q( 	−BE�pA+2T qT p
−A
( q( 	

+rBE�pA+1T qT p
−A
( q( 	−rCE�pT qT q( 	+DE�pT qT p(q( 	


Var��r − pT �qT �
= E��rqT − pT qT �2	−E�rqT − pT qT 	2
= r2E�q2T 	− 2rE�pT q

2
T 	+E�p2T q2T 	

− �rE�qT 	−E�pT qT 	�2�
The expectation terms were calculated using

E�p5T q
6
T p

7
( q

8
( 	

= p5+70 · q6+80 · exp
(∫ T

0
�5at +6ct� dt

)

· exp
(∫ T

(
� 12 �5bt +6dt�2 + 1

26
2e2t � dt

)

· exp
(∫ (

0

(
7at + 8ct
+ 1

2 ��5+7�bt + �6+ 8�dt�2

+ 1
2 �6+ 8�2e2t

)
dt

)

from

p5T = p50 exp
(∫ T

0
5at dt+

∫ T

0
5bt dB

1
t

)



qq6T = p60 exp
(∫ T

0
6ct dt+

∫ T

0
6dt dB

1
t +

∫ T

0
6et dB

2
t

)



p7( = p70 exp
(∫ (

0
7at dt+

∫ (

0
7bt dB

1
t

)



q8( = p80 exp
(∫ (

0
8ct dt+

∫ (

0
8dt dB

1
t +

∫ (

0
8et dB

2
t

)
�

4.4. Example II
We now illustrate the optimal hedging timing prob-
lem with a concrete example. The example assumes
that the maturity of the portfolio is one year from
now. Base values of the parameters are set according
to the empirical estimates of Audet et al. (2004), which
were also used by Näsäkkälä and Keppo (2005).
Specifically, we set ,p�t� = 0
 and -p�t� = e9�T−t�- ,
where - is the spot volatility and 9 is a mean-
reversion rate of the spot price process, i.e., a rate at

which forward volatility is discounted from the spot
volatility. We also set ,q�t�= 0. In addition, -pq�t� and
-q�t� are assumed to be constant, so as to have con-
stant load volatility and correlation:

-L =
√
-2
pq +-2

q 
  = -pq-L�
The resulting process is then

dpt
pt

= e−9�T−t�-dB1
t 


dqt
qt

= -LdB1
t +

√
1− 2-LdB

2
t �

(15)

The forward price and load estimate for a month
one year later are assumed to be 20 euro/MWh and
1
000 MWh, respectively. The following table summa-
rizes the base values of the parameters.

Parameter T r p0 q0 9 - -L  

Value 1 40 20 1,000 4.02 0.7 0.1 0.7

To study how the optimal hedging time is affected
by various parameters, a sensitivity analysis of opti-
mal hedging time with respect to parameter values is
illustrated in Figure 2.
Figure 2(a) plots the optimal hedging time against

the spot price volatility - , and it shows that a higher
spot volatility favors earlier hedging. Intuitively, a
higher spot volatility increases uncertainties in the
future price information, which justifies locking in the
price of hedging contracts earlier.
Figure 2(b) plots the optimal hedging time against

the load volatility -L. It shows that a higher volatility
in the load estimate postpones the optimal hedging
time, confirming the intuition that the inaccuracy in
the load estimate favors delaying the hedging time so
as to obtain more information.
Figure 2(c) plots the optimal hedging time against

the correlation between forward price and load esti-
mate. It shows that a lower correlation makes earlier
hedging more favorable. To explain this phenomenon,
we first note from the above that price and quantity
volatility push the optimal contract time in opposite
directions. We also note that as correlation decreases,
our ability to hedge quantity risk with price-based
instruments diminishes while the adverse effect of
quantity volatility on profit uncertainty decreases. In
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Figure 2 Optimal Hedging Time vs. Other Parameter Values
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the extreme case where price and quantities are inde-
pendent, the curve x∗�p� becomes linear, indicating
that the optimal portfolio consists of a fixed num-
ber of at-the-money forward contracts. Consequently,
lower correlation between price and quantity (with
the same individual volatilities) makes the hedging
portfolio look more like a pure price hedge, which
favors an earlier contracting time.
Figure 2(d) plots the optimal hedging time against

the mean-reversion rate of the spot price. The figure
shows that an increase in the mean-reversion rate of
the spot price postpones the hedging time, because a
higher mean-reversion rate of the spot price decreases
the volatility of forward prices, so it will not be as
risky to postpone the hedging time.
Figure 3 illustrates the variance of the optimally

hedged profit as a function of the hedging time. We

note that hedging at time 0 versus the optimal time (∗

makes little difference in the variance of hedged
profit in most cases. However, the variance of profit
increases rapidly if hedging is delayed beyond the
optimal time.
Figure 3 also shows how the level of uncertainties

changes with respect to the changes in - , -L,  , and
9. The data displayed in the figure indicate that the
profit uncertainty increases with the increases in spot
and load volatility, and it decreases with the mean-
reversion rate and correlation coefficient.
It is also noteworthy that hedging at the optimal

time may not make any difference in the variance of
hedged profit even for different parameters such as
volatility and mean-reversion rate of spot price. In
other words, the increased uncertainty from higher
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Figure 3 Standard Deviation of Hedged Profit vs. Hedging Times
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volatility in the forward price can be overcome by the
optimal choice of hedging time.
Figure 4 compares the distributions of profits at

delivery time when the hedging portfolio is pur-
chased at time 0, at the optimal hedging time (0.56),
and at time (0.9) close to delivery time. It also con-
firms that earlier hedging does not increase profit risk
very much as compared to the optimal hedging time,
but late hedging can have adverse consequences.
Finally, the optimal hedging strategy at time 0,

under the base values of the parameters, is illustrated
in Figure 5, which shows the optimal payoff func-
tion and its approximate replication when strike prices

change in $5 increments, if the hedging portfolio was
constructed at time 0 (in our analysis, we assume that
the hedging portfolio can be optimized at contract-
ing time).

5. Conclusion
This paper developed a method of mitigating vol-
umetric risk that LSEs and marketers of default
service contracts face in providing their customers’
load-following service at fixed or regulated prices
while purchasing electricity or facing an opportu-
nity cost at volatile wholesale prices. Exploiting the
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Figure 4 Distributions of Optimally Hedged Profits for Different
Hedging Times
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inherent positive correlation and multiplicative inter-
action between wholesale electricity spot price and
demand volume, we developed a hedging strategy for
the LSE’s retail positions (which is in fact a short posi-
tion on unknown volume of electricity) using electric-
ity standard derivatives such as forwards, calls, and
puts.
The optimal hedging strategy was determined

based on expected utility maximization, which has

Figure 5 The Optimal Payoff Function and Its Replication When the Hedging Portfolio Is Constructed at Time 0
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been used in the hedging literature to deal with non-
tradable risk. We derived an optimal payoff func-
tion that represents the payoff of the optimal costless
exotic option as a function of price. We then showed
how the optimal exotic option can be replicated
using a portfolio of forward contracts and European
options.
The examples demonstrated how call and put

options can improve the hedging performance when
quantity risk is present, compared to hedging with
forward contracts alone. Although at present the liq-
uidity of electricity options is limited, the use of call
options has been advocated in the electricity market
design literature as a tool for resource adequacy, mar-
ket power mitigation, and spot volatility reduction.
The result of this paper contributes to a better under-
standing of how options can be utilized in hedging
the LSEs’ market risk and hopefully will increase their
use and their liquidity in electricity markets.
This paper extended previous work by consider-

ing the optimal timing of a hedging portfolio as well
as the co-optimization of the portfolio mix taking
account of the timing. For mean-variance expected
utility, we solved for the optimal hedging time under
the classical assumption regarding the stochastic pro-
cesses governing forward price and load estimate.
Because the primary objective of this paper was to
investigate the sensitivity of the hedging strategy and
gains from hedging with respect to contract timing,
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we employed a simplistic assumption that facilitates
an analytic solution amenable to sensitivity analysis
and intuitive interpretation. Specifically, we focused
on a single-period setting and assumed an open-loop
static strategy where the hedging portfolio is selected
at a single specific time within the period, for exer-
cise at the end of the period when the commodity is
to be delivered. Furthermore, the optimal contracting
time is irreversibly determined at the beginning of the
period. Notably, such a strategy is not dynamically
consistent because new information obtained after
the contracting time that has been determined may
indicate a better choice of contracting time. A more
complete treatment of the problem would involve a
stochastic dynamic programming formulation where
the choice of optimal contracting can be formalized
as an optimal stopping time problem.
The illustrative example presented shows that gen-

erally there is a critical time beyond which the uncer-
tainty in profit increases sharply, whereas the uncer-
tainty remains relatively constant before this critical
time. Sensitivity analysis results indicate that the opti-
mal hedging time gets closer to the delivery period
if the positive correlation between the forward price
and load estimate is higher, and if the load-estimate
volatility is higher. It is also observed that delaying the
hedging time past the optimum time can be very risky,
whereas premature hedging makes little difference as
compared with hedging at the optimal time. This sug-
gests that in practice one should err by hedging early
rather than taking the chance of being too late.
The model presented in this paper determined the

best hedging portfolio assuming that the LSE has
unlimited borrowing capability. In practice, credit lim-
its can become an impeding factor in purchasing the
optimal hedging portfolio. An LSE may not be able to
borrow enough upfront money to finance the options
contracts. Therefore, a credit limit constraint, which
limits the amount of money that can be borrowed
to construct the portfolio, needs to be considered in
future extensions of our model. A dynamic hedging
strategy rather than the static approach adopted in
this paper is likely to improve the hedging perfor-
mance and should be considered in future extension
of this work as well.
Finally, we note that at this point in time the prac-

tical value of our results is limited because of the

unavailability of electricity derivatives with a full
spectrum of strike prices. As more andmore marketers
or traders are coming into the electricity market, mak-
ing electricity instruments more liquid, the hedging
strategies developed in this paper will become more
relevant in practice.
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Appendix
Proof of Proposition 2. Recall that, under P = Q, the

optimal payoff function for the mean-variance optimizer
was given by the following formula (see (7)):

x∗�p�= E�y�p
 q�	−E�y�p
 q� � p	

where y�p
 q� = �r − pT �qT . The payoff x(�pT � at (13) is
then obtained by taking conditional expectations at time ( ,
instead of at time 0:

x∗( �pT �= E(��r − pT �qT 	− �r − pT �E( �qT � pT 	� (16)

Given Equations (9) and (10), Ito’s formula obtains pT and
qT as follows:

pT = p( exp
{∫ T

(
at dt+
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(
bt dB

1
t
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qT = q( exp
{∫ T

(
ct dt+

∫ T

(
dt dB

1
t +

∫ T

(
et dB

2
t

}



where qt = ,p�t� − 1
2-

2
p �t�, bt = -p�t�, ct = ,q�t� − 1

2-
2
pq�t� −

1
2-

2
q �t�, dt = -pq�t�, and et = -q�t�. It follows that pT and qT

conditional on time ( follow a bivariate lognormal distribu-
tion: �log pT 
 log qT �∼N�m1
mq
 s

2
u2q
 �, where

m1 = E(�log pT 	= log p( +
∫ T

(
at dt


mq = E(�log qT 	= log q( +
∫ T

(
ct dt


s2 =Var( �log pT �=
∫ T

(
b2t dt


u2q =Var( �log qT �=
∫ T

(
�d2t + e2t � dt
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 =Corr( �log pT 
 log qT �

= �E( �log pT log qT 	−E(�log pT 	E( �log qT 	�/�s ·uq�

=
((

log p( +
∫ T

(
at dt

)(
log q( +

∫ T

(
ct dt

)

+
∫ T

(
btdt dt−

(
log p( +
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(
at dt

)

·
(
log q( +
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(
ct dt

))/
�s ·uq�

=
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(
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)/
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Equation (16) is then calculated to give the following
function:

x∗( �pT � = �pT − r�exp
(
mq +:uqs�log pT −m1�+ 12u2q�1−:2�

)
+ r exp�mq + 12u2q�

− exp
(
m1 +mq + 12�s2 +u2q�+:suq

)
� (17)

Equation (13) is obtained by substituting the parameters m1,
mq , s, uq
 and  into Equation (17). �
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