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TOU rates are determined on-line so as to balance 
supply and demand (see Schweppe, Tabor and Kirtley 

C131). 

Incentive-based load management 

Differential rates based on interruptibility of service. 
load factor. peak load. voltage. etc, have also been 
quite common, primarily for large commercial users. 
However. there have been few economic analyses of 
such pricing policies. Direct load management 
options. which allow an electric utility to curtail 
selectively electric power service in case of a shortage, 
can reduce the required reserve capacity and hence 
decrease capital cost. It is, therefore, beneficial to 
differentiate electric power service based on load 
management contingencies included in the service 
contract and to offer incentives in the form of lower 
rates to customers willing to accept such 
contingencies. 

One of the simplest forms of incentive-based load 
management is the installation of power limiters (fuses) 
at customers’ sites. accompanied by a capacity charge 
determined by the fuse size. A similar effect can be 
achieved through self-rationing by simply imposing a 
capacity charge based on the customer’s peak load 
over a billing period. Panzar and Sibley [ 123 analysed 

such a self-rationing approach when peak capacity and 
energy use are priced linearly. A more general case 
involving jointly non-linear pricing of capacity and use 
has been analysed in a recent paper by Oren, Smith 
and Wilson [ll]. Self-rationing can be easily 
implemented, but it may curtail consumption even 
when generation capacity is under-utilized. 

A more powerful form of load management is the 
interruptible service contract, which (in case of a 
shortage) allows the utility to curtail a customer’s 
power supply (with some advance warning) to a 
prenegotiated level. Such service agreements are quite 
common in the USA and abroad among large 
industrial customers and institutions. Some economic 
aspects of interruptible service contracts have been 
analysed by Marchand [S] and by Tschirhart and Jen 
[IS]. Also. relevant to this topic is the work by Harris 
and Raviv [6] in analysing optimal pricing of supply 
priorities. 

Sl~~citrl ittcetttiw proyrtttntnes jbr t~rsider~tirrl IIS~JI~S 

The general applicability of product differentiation 
based on delivery conditions in the low-demand 
portion of the electric power market has been limited 
until recently by the technology and cost of metering 
and load control devices. This barrier is disappearing 
with advancements in microelectronics, which make 
detailed metering and control of residential loads 

200 

technologically and economically feasible. (For a 
survey of recent advances in electronic metering 
technology. see Gorzelnik [SJ.) Many utilities nob 
offer residential customers interruptible service for 
specific devices such as water heaters and pool pumps. 
Experimental programmes are also under way offering 
residential customers TOU rates and incentives for 
accepting various forms of load control contingencies. 
Demand Subscription Service. a programme offered 
by Southern California Edison (SCE). allows 
customers to subscribe for a firm level of power and 
receive a credit proportional to the difference between 
this level and their estimated normal peak load. The 
utility is then allowed, upon a short warning, to limit 
the customer’s power to the subscribed level for up to 

six hours as many as 15 times per year. This is done 
remotely by activating a fuse at the customer’s site 
through a radio signal. 

Another experimental, incentive-based load 

management programme currently implemented at 
SCE involves ‘cycling’ of residential air conditioners. A 
device attached to the air conditioner allows the utility 
to interrupt it, remotely, for a fixed fraction of the time. 
In exchange. the customer receives a credit depending 
upon the fraction of time he is willing to be interrupted 
and proportional to the capacity of his air conditioner. 

Rate structures analysed 

The optimal product differentiation programme for 
electric power service requires pricing mechanisms 
that are easily implemented. that exploit the 
heterogeneity of customers’ preferences, and that are 
consistent with production cost and technological 
constraints. For example, the distribution of 
customers’ choices of service reliability must be 
compatible with the overall reliability of the 
generation system. Implementation of such policies at 
the low end of the electric power market, ie residential 
and small commercial customers, must also rely on 
self-selection opportunities, since more direct price 
discrimination would impose unrealistic information 
requirements. 

In this paper we define and analyse a rate structure 
that differentiates electric power according to both 
load pattern and service reliability. This rate structure 
is a generalization of Demand Subscription Service in 
that it offers multiple levels of interruptible service. The 
customer can choose increasing probability of 
interruption for successive increments of his load. The 
charge for each load increment depends upon its 
selected interruptibility and the length of time it is 
utilized. This pricing, like TOU rates, induces 
customers to flatten their load pattern over time. In 
addition, it spurs customers to select lower reliability 
levels for the peak portion of their load. This price 
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structure is similar in some respects to the quality- 
differentiated tariff discussed by Oren. Smith and 
Wilson [lo], with quality level interpreted as service 
reliability. Here, however. there is no fixed charge, and 
the tariff may vary non-linearly with usage. 

Demand-layered vs TOU pricing 

Demand fluctuations over a time period (eg day, week. 
month, year) are conveniently represented by a ‘load 
duration curve’ L(t), which is the load having duration 
t or less for each value oft. Normally, t is expressed as a 
fraction of the total time period; however, for clarity of 
our subsequent discussion we assume it is measured in 
hours. This representation is commonly used to 
describe the generation cost as a function of duration 
and the optimal mix of generation technologies. 

Cost structure 

Alternative generation technologies are typically 
characterized in terms of their capacity cost F&W and 
energy cost V&Wh. Thus, the energy cost for 
technology i as a function of duration t is given by the 

function 

ci( t) = F; + yt (1) 

When a diverse set of technologies is available, the 
minimum cost function is given by the lower envelope 

of the graphs of the two-part cost functions. as shown 

in Figure 1. The breakpoints delineate the efficient 
duration range of each technology. The optimal 
capacity of each technology can then be determined by 
projecting these ranges onto the load duration curve 
(Figure 1). 

Loud slice approach 

In calculating long-run generation cost. one typically 
assumes an optimal technology mix. A convenient way 
to represent this cost is to view the load duration curve 
as a ‘stack’ of horizontal load slices operating for 
different durations, as illustrated in Figure 1. The 
generation cost for a load slice of duration t is thus 

c(t)=minc,(t) (2) 

Hence. the total generation cost for the load duration 

curve L(r) is 

LIO) 

(3) 

0 

where r(L) is the inverse function of L(t), defined as 

t(L)=max {rlL(r)>L) (4) 

AcoSt per kW 
Technology I : c3 ( t 1 

Technology 2 : c, ( f I 
Technology 3 : cl ( 1 ) 

Figure 1. Load slice versus TOU costing with optimal technology mix 
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Time slice approach 

An alternative representation of the generation cost is 
obtained by viewing the load duration curve as an 
array of vertical time slices representing the load in 
each time interval. The time slice cost formula follows 
from integrating Equation (3) by parts, which yields 

f(O) 

C[L(t)] =c(o+)L(o)+ 
s 

c’(r)l(t)dt (5) 

O- 

Here c’(r) is the marginal energy cost of the most 
efficient technology per kWh for the time slice 
[t,t+dt]. An additional capacity cost ~(0~) per kW, 
which equals the capacity cost of the peaking 
technology, is assigned to the load L(0) occurring 
during the system’s peak. 

Implications jbr pricing 

The two representations of the generation cost 
described above suggest two alternative pricing 
approaches. The time slice approach corresponds to 
the common TOU pricing combined with a demand 
charge. An ideal cost-based pricing policy of this type 
will impose a TOU energy rate that equals the 
marginal energy cost at that time, plus a demand 
charge equal to the marginal capacity cost on every 
kW used during the system’s peak. Such a scheme 
exactly recovers generation cost and is best. 
However, predetermining the chronology of the 
different rating periods and the time of the peak (which 
is necessary for implementation) requires a perfect 
forecast of the equilibrium load pattern. Such a 
forecast would have to anticipate load shifts in 
response to the rate structure, which would be 

exceedingly difficult when demands in different time 
slices are interdependent. Main [7] discusses such 
difficulties. 

The load slice approach suggests a pricing policy, 
often referred to as demand-layered (DL) pricing, that 
imposes on every load slice a tariff tthat is non-linear in 
duration. In particular, this non-linear tariff could be 
the minimum cost function c(r) mentioned earlier. In 
such a pricing scheme, each customer’s payment is 
based on his individual load duration curve. The 
volume discount on duration induces customers to 
flatten their load duration curves. Demand-layered 
pricing and its comparison to periodic pricing of 
electric power is the subject of a PhD thesis by Main 
[7]. A more recent article on this topic is by Ballonoff 
[l]. Oren, Wilson and Smith [ 1 I] present a theoretical 
analysis of a related pricing scheme in which price 
varies non-linearly in both capacity and usage. 
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The main disadvantage of DL pricing is that it does 
not account for complementarities in the customer 
load patterns. Hence, it may be socially inefficient in 
the sense that it does not equate marginal benefit of 
consumption across users at every point in time. This is 
because the marginal price faced by different 
customers at any time depends on their entire load 
pattern which thus allows Pareto improvements 
through redistribution of power. This shortcoming 

should be weighted, however, against the fact that DL 
pricing requires only a forecast of the system’s 
equilibrium load duration curve (rather than the 
chronological load pattern), which is not susceptible to 
peak shifting problems. We will demonstrate that if 
customers’ load patterns are synchronous, then DL 
pricing will be as efficient as TOU pricing. 
Assumptions for customer preference structures that 
yield such synchronization are presented later. 

In this paper we adopt the demand-layered 
approach partly because it provides a natural 
framework for differentiation of electric power service 
according to reliability. In this framework, each load 
increment (or slice) can be assigned a level of reliability 
and the non-linear tariff for a load slice can be varied 
according to its service reliability. Thus, a customer’s 
total charge will be determined by his load duration 
curve and his choice of service reliability for each load 
increment. 

The demand model and customer self-selection 

We consider a price plan that offers the option of 
selecting a different duration time and reliability level 
for each load slice. The general form of the price plan is 

p(r, t) = total charge for a load slice of duration t at 
specified reliability level r 

Each load slice is priced independently, in the sense 
that its price depends only upon the duration t and the 
reliability r selected for it. This type of pricing can be 
non-linear in duration and reliability, but it is linear in 
capacity, since each load slice of duration t and 
reliability r is priced the same. The substitution of 
longer duration consumption for peaked, short 
duration consumption can be encouraged, for 
example, by a price plan in which 

p,(r. t) > 0 and pr,(r, t) <O 

where the subscripts denote partial derivatives. That 
is, the marginal charge for duration time is decreasing. 
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The reliability r for a load slice is defined as follows: 

r = the long-run average fraction of a load slice that 
will be serviced when reliability I is selected 

load cycle represents the 24-hour day, for example. the 
load duration curve L(r) would actually be an average 
of many daily load duration curves, observed under a 

variety of conditions. We analyse the effects of random 
fluctuations about the average load curve by assuming 
that there is a scaling function h(~!) for which 

Consumer preference model 

Aggregate consumer response to price is defined by the 
function L(p,t), which describes a family of system 
load duration curves, parametric on a uniform price 
p/kWh. Alternatively, the inverse function t(L,p), 

defined as in Equation (4) for any value of p, may be 
interpreted as a family of demand functions for energy, 
parametric on the load level L. The peak load pricing 
literature often characterizes demand in terms of a 
function L*(H,p), which gives the load demanded at 

time 8 as a function of price p/kWh. The duration 
demand function t(L,p) can be related to L*(0,p) as 
follows: 

h(w)L(t)= the actual system load duration curve 
under the random conditions M’, where 
j-h(w)dw = 1 

t&p)= Mf0lL*(O,yDL) (6) 

where M(Q) denotes the Lebesgue measure of the set 
R. We assume that consumption decisions for different 
load slices are independent, but that the duration and 
reliability for a particular load slice are determined by 
a single decision entity (one user or a coalition of users 
coordinating their consumption). This assumption is 
analogous to that of independent time slices in the 
TOU pricing literature. 

It is natural to expect that the likelihood of supply 
interruption would be dependent upon the random 
conditions w as well. If w is determined by temperature 
during the summer months, for example, both It(w) and 
the likelihood of supply interruption would increase 
and decrease together. We assume that \I’ is a one- 

dimensional variable, uniformly distributed between 
zero and one, that has been defined such that both /r(w) 
and the likelihood of a supply interruption increase 
monotonically with M‘. This resealing can be achieved 
without loss of generality for one-dimensional 
monotonic variables. (If temperature T has a 
cumulative probability distribution M(s), for example. 
the random variable w = M( T) is uniformly distributed 
between zero and one.) We then define the indicator 
random variable R(r. w) as follows: 

R(r, w) = 
1 if M‘<i 

0 otherwise 

Given this assumption, the inverse of L(p,t) with 
respect to p may be interpreted as a marginal value 

The thickness dL of the load slice in Figure 1 is viewed 

measure for the load slice at load level L. Thus, if we let 
as an average value. Under the random conditions w, 
each load slice is scaled as follows: 

D(L. t) = the maximum willingness to pay for the load 
slice at level L when its duration is t 

h(w)R(r, w)dL= the thickness of a load slice under 
the random conditions M’ 

then &(L, t)/?t, denoted u,(L, t), is the inverse of L(p, t) 

with respect to p. 

Assuming no satiation, we have that t’, is positive. 

Because the values of the various load slices are 
independent and L,(p, t) ~0, it must also be the case 
that lower load slices (ie those corresponding to 
smaller values of L) are more valuable than higher load 
slices. That is, for any fixed price p, longer durations 
are assigned to lower L values for the load duration 
curve. Thus, we have u,<O for all L and t. We assume 
that value functions corresponding to different values 
of L do not cross, or equivalently, that the demand 
curves do not cross. This implies that uLt ~0. 

Thus. L serves as an index of the same load slice in all 
circumstances but is equal to the height of the load slice 
only for the average system load duration curve. 

This model assumes. in effect, that the service for a 
particular load slice is either off or on (depending on 
the value of R), and that the thickness of the load slice 
is scaled to account for the random demand 
fluctuations. Because of the definition of w, the set of 
events us 6 r corresponds exactly to receiving service 
with probability r. The product of h(w) and R(r,w) 

introduces a correlation that can be used to reflect the 
increased likelihood of supply interruptions occurring 
during random conditions that produce unusually 
high demand. 

Consumer surplus formula 

The consumer surplus depends explicitly upon how 
random fluctuations in demand are modelled. If the 

Oprimal consumption selection 

If we assume that income effects can be neglected, the 
consumer’s optimal choices of r and t for each load 
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slice are determined independently so as to maximize 
expected consumer surplus. The expected consumer 
surplus is given by the integral over M’. which simplifies 
to 

S(r. t, L)= [o(L. t) -p(r, r)]H(r) 03) 

where 

H(r)= 
s 

h(w)dttl, with H(O)=0 and H( 1)= 1 

0 

The price function p(r,t) is assumed to be twice 
continuously differentiable except for a discontinuous 
jump upward at r =O+ to capture capacity charges. It 
isalso assumed that r(L.O+)=O and p(O.t)=p(r,O)=O. 

The optimal pair (r(L). t(L)) is determined by solving 
the maximization problem 

max (S(r,f,L)=H(r)[tl(L,t)-p(r,t)]J 
O<r< I 
Od!6T 

(9) 

In addition to the constraints on r and t in Equation 
(9). the reliability options available to the consumer 
may be constrained further as a result of technological 
considerations. These are introduced explicitly later 
when we consider the supplier’s optimal pricing 
problem. The supplier’s optimal price function 
automatically induces consumer choices that satisfy 
the constraints imposed by technological con- 
siderations. This is a practical necessity, because the 
deliverable reliability options are determined by the 
aggregate system load curve and cannot be specified in 
terms of an individual customers’ load duration curve. 

A solution method for the consumer is now 
proposed so that the constraints t>O and r30 are not 
binding in the above optimization. Basically, the 
solution begins with the load slice L=O, which is 
assumed to satisfy r(0). r(O)>O, and shows, by 
continuously increasing L, that the non-negativity 
constraints on I’ and t do not become active as long as 
the consumer surplus remains positive. 

Lemmu 1. The solution of the first-order necessary 
condition S,=O or (S,>O and I’= 1) can never have 
~20. r =O, or r >O. r=O. 

Proof: If t=O. we have. using r(L,O)=O, that 

S,(r.O,L)= -h(r.)p(r~,O+)-H(r)p,(r,0+)~0 

Since the sum of the terms on the left is negative for any 
1.20, there is a contradiction and t#O. Similarly, if 
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r =O, we have, using H(0) = 0 and ~‘(0. t) = 0. that 

S,(O,t.L)=O=h(O)r(L,f)>O for all f>O 

which again is a contradiction. since in this case the 
lirst-order necessary conditions require that I’= 1. 

QED. 
The constraints I’,< 1 and r < T may be active. 

however. Thus the necessary conditions for a 
maximum of Equation (9) may be written as 

S,(r,t,L)=O or (r= 1 and S,(l.t.L)>Oj 

(10) 
and 

S,(r,t,L)=O or (r= T and S,(r, T. L)>Ol 

(11) 
where 

S,(r,t)=h(r)tr(L,t)- [H(r)p(r.t)), 

and 
(12) 

S,(r,f)=H(r){c,(L.t)-p,(r, f)) (13) 

From Equations (10) and (1 l), it can be seen that any 
solution r(L), t(L) of Equations (10) and (11) produces 
a non-negative consumer surplus, since 

(14) 
or, multiplying through by H(r),%(r), we have 

S(r.t, L)= [H(r)2/h(r)]l?,(r.t)~0 

(15) 
Furthermore. the surplus for each load slice L with r(L) 

and r(L) optimally selected is monotonically 
decreasing in L. To demonstrate this, we define 
S*(L)=S[r(L),f(L),L] to be the surplus evaluated along 
the trajectories determined by Equations (10) and (11). 
We assume that S*(O) > 0 to avoid degeneracy. By the 
chain rule, we have 

dS*(L)/dL= I.‘&+ r’s, +H(r(L))o,(L,t(L))<O 

since the first two terms are zero by Equations (10) and 
(11) and rL is assumed to be negative for all values oft 
and L. Thus. there is at most one value Lo such that 
S*(L,) =O. The solution for the consumer would thus 
proceed monotonically in L until Lo is reached, at 
which point it is optimal to consume no further load 
slices. Thus, for L < Lo. the internal conditions (10) and 
(11) determine the maximum of Equation (9). For 
L > Lo, ‘no consumption’ is specified by selecting f =O. 
The parameter Lo is determined from S*(L,)=O. 
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The modified load duration curve 

The average load duration curve for the system implied 
by the selection t(L) is its inverse L(t). However, the 
actual average system load curve will be truncated at 
the top as a result of the implementation of the 
interruptible service options. The resulting truncated 
curve can be determined analytically by integrating 
over all load slices under random conditions w and 
with reliability selection r(L). This gives 

At a point satisfying Equations (17) and (18), the 
Hessian V2S is given by 

v2s = h’v - {HP),, -HP,, 

- HP~, H(v,, -PA 
(19) 

Taking the total derivative of Equations (17) and (18) 
with respect to L yields the vector equation 

LO) 1 

L(t) = 

ss 

h(w)R(w, r(L))dwdL 

0 0 

=o (20) 

L(I) 

= H(r(L))dL 
s 
0 

(16) 

When p(r, t) is additively separable, then prI =0 and 
thus V2S becomes diagonal. Hence, Equation (20) can 
be written as 

WP),,r’ = hvL (21) 

(P,, - v,,)Ht’ = Ho, (22) 
Regularity conditions 

It is necessary for practical reasons that t(L) and r(L) 

be monotonically decreasing functions of L in the 
optimal solution. Since t(L) is the inverse of the 
consumer’s load duration curve, t’(L) ~0 is required by 
definition. Furthermore, since partial interruption of 
electric power service reduces the load from the top 
down, reliability selections must also decrease 
monotonically with load level L. Fortunately, both of 
these conditions can be guaranteed ‘for free’ with the 
price structure p(r, t) that we develop for the supplier. 
It is shown in Lemma 3 that, without loss ofgenerality, 
the supplier’s price function can be specified as an 
additively separable function p(r, t) =g(r) + f(t). 
Lemma 2 shows that for this form of the price 
function, the monotonicity of t(L) and r(L) are 
equivalent to the second-order necessary conditions 
for the solution of Equation (9). 

Since vu <O and v,cO, the terms on the right in 
Equations (21) and (22) are strictly negative (for 
strictly negative r’ and t’). It thus follows that if r’ and t’ 
are negative, then the diagonal elements of the Hessian 
V2S must be non-positive. Since the Hessian is 
diagonal, this implies its negative semidefiniteness. 
When r’ and t’ are bounded below (ie no jumps in r(L) 

and t(L)), these diagonal terms are strictly negative and 
hence the Hessian is negative definite, which satisfies 
the sufficiency conditions for a maximum. QED. 

To guarantee both the required monotonicity and 
the second-order conditions for Equation (9), we 
require in the case of a separable price function that 
v,,-pp,,<O and (Hp),,<O. The first condition is 
equivalent to the common assumption in the non- 

$/kWh 

\ 

Lemma 2. If the function p(r, t) is additively separable, 
ie p(r, t) =g(r) + f(t), then the conditions r’(L) <O and 
t’(L) ~0 guarantee that second-order necessary 
conditions for an interior solution to Equation (9) are 
satisfied. Furthermore, if r’(L) and t’(L) are also 
bounded from below, then the second-order sufficiency 
conditions for Equation (9) are satisfied. 

Proof. By Equations (lo)-(13), an interior solution 
{r(L), t(L)} must satisfy 

$(r, t) = h(r)v(L, t) - fH(r)p(r, t)}r=O (17) 

and 

S,(r, t) = H(r){v,(L, t) - p,(r, t)} =O (18) 

I 
L 

Duratiotl ( t ) 

Figure 2. Marginal price and marginal value functions for 
duration. 
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linear pricing literature (eg Goldman, Leland and 
Sibley [4]) that the marginal price function should 
cross each marginal value function exactly once from 
below (see Figure 2). The second condition states that 

the marginal price paid by the consumer should be a 
decreasing function of r. This can be argued intuitively, 
if reliability is valued only for its ability to increase the 
probability of consumption of each given load slice. 

The primary assumptions required for the 
consumer’s preference structure can be summarized as 
follows: 

l Random scaling of demand and random 
fluctuations in reliability, applied uniformly to all 
load slices. 

l Independently optimized decisions on load slice 
consumption. 

l Non-crossing marginal demand curves, each 
intersected at most once from below by the 
marginal price function. 

l Decreasing marginal payments for reliability. 

The supplier’s problem 

We now consider the problem of choosing optimal 
prices to be charged by an electric utility. For practical 
reasons, pricing cannot discriminate directly on the 
basis of the identity of a particular load slice. However, 
through pricing that introduces customer self-selection 
of both duration time and reliability for each load slice, 
the price plan can be designed to encourage both 
flattening of the system load duration curve and the 
selection of lower reliability service options for peak 
demand. 

Pricing objective function and constraints 

The supplier’s objective is defined as the maximization 
of a weighted sum of total surplus and net revenue. 
This includes as special cases net revenue and total 
surplus maximization as well as the maximization of 
total surplus, subject to a net revenue constraint. An 
important element in this objective function is the 
production cost. It is assumed that the generation 
system has a fixed capacity configuration, and hence 
capacity costs are treated as sunk costs, which appear 
in the net revenue constraint. The optimized operating 
cost, on the other hand, is assumed to be attributable 
to individual load slices through a function c(I’, t,L), 
the average cost per kW for a load slice of type L with 
duration t and service reliability r. An explicit formula 
for C(T, t,L) illustrating this assumption is derived in 
the Appendix. 

In maximizing his objective function, the supplier 
must take into account the relationship between his 
pricing policy and the customer’s selection of t(L) and 

r(L) based on Equation (9). The monotonicity 

constraints t’(L)< 0 and r’(L)< 0 will be enforced, 
which guarantees that the solutions of the customer’s 
first-order conditions satisfy the second-order 
conditions for Equation (9). In addition to the self- 
selection constraints, the supplier may have further 
restrictions on the reliability options due to 
technological considerations. For example, a fixed 
total generation capacity Y may limit the deliverable 
reliability for a load slice at level L because of the 
requirement that h(r)Ld Y. This would imply a shifting 
upper bound on deliverable reliability of the form 

r(L)<R(L)=min(l,h-‘(Y/L)) 

Note that in this definition, R(L) is monotonically 
decreasing in L. We include the constraint r(L) <R(L) 

explicitly in the problem, with the understanding that 
it may express other reliability considerations as well. 

The supplier’s optimization problem may then be 
expressed as follows: 

LO 

max 
s 

[H(r)& t) --c(r, t, L) 
INr.r).r(L) 

f(L).L, 0 

+ @fi(dp(r, t) - c(r, t, L)}ldL 

subject to r = r(L) and t = t(L) satisfying 

H(r)[v,(t, L) - p,(r, t)l - i(L) = 0 

with 

(23) 

i(L)>O, t<T, and I(L)[t-T]=O (24) 

WMt, L)- (H(r)p(r, t)},--(L)=0 

with 

c((L)>O, r< 1, and p(L)[r- l]=O (25) 

H(r){u(f, Lo) -pP, t)} =o (26) 
r=rlL,) 
I = UL.) 

rGR(L), t<T (27) 

r’(L)<O, t’(L)<0 (28) 

In this formulation, a is the weighting parameter for 
net revenue. If we wish to maximize total surplus 
subject to a new revenue constraint, then a is the 
Lagrange multiplier, which needs to be determined 
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endogenously to satisfy the constraint. Equations (24) 

and (25) are equivalent to the first-order conditions for 
consumer surplus maximization. We have introduced 
slack variables I(L) and p(L) to account for the 
boundary conditions r = T, S, > 0, and r = 1, S, > 0. The 
monotonicity constraints and the upper bounds on 
r(L) and t(L) have been included as well. 

The optimal induced consumer behaviour 

We obtain the solution to the above problem by using 
Equations (24)-(26) to eliminate p(r, t) from the 
objective function. This reduces the supplier’s problem 
to one of determining the optimal selection r(L), t(L) 
for each load level L and the cutoff level L,. A price 
function p(r, t) that will induce these optimal selections 
can then be determined through the self-selection 

constraints Equations (24)-(26). The mechanics are as 
follows. 

If we integrate the term apH in Equation (23) by 
parts, we obtain 

L. 

aHpL 
L, _” I s 0 

- aL[r’{Hp},+ t’Hp,]dL 

0 

Using Equations (24)-(26) to replace the terms {HP},, 
Hp,, and the term HpL evaluated at Lo, we may rewrite 
the objective as 

LO 

max aHvL 
Lo 

r. L, I s o + {vH -(l +a)c-ar’L[hv-p] 

147 0 

- at’L[Hu, - I]}dL (29) 

where the independent variables have been 
suppressed. We first note that t’l=r’p=O for all L, 
since either the slack variables vanish or the 

corresponding functions t(L) or r(L) are constant. 
Hence, the terms containing 1 and p in Equation (29) 
can be eliminated. 

We assume for now that the monotonicity 
constraints on r and t are not binding, but we do 
explicitly account for the upper bounds on r and C. If 
any of the monotonicity constraints are violated, it is 
possible, in principle, to modify the solution using a 
procedure similar to that employed by Goldman, 
Leland and Sibley [4]. This procedure may, however, 
become quite cumbersome if both monotonicity 
constraints are violated simultaneously. In order to 
simplify our discussion, we do not deal with the case in 
which the monotonicity constraints are binding. We 
introduce the Lagrange multipliers q(L) and c(L) for 
the respective constraints r(L) < R(L) and t < T. This 
causes us to subtract from the integrand in Equation 

ENERGY ECONOMICS October 1986 

= -a(u,hL + hv + r’Lh’v + t’hv,L) (30) 

and 

(29) the term q(L)[r - R(L)] + i(L)[t - Tj. These 
multipliers must be non-negative and satisfy the 
standard complementary slackness conditions (ie 
either the multiplier is zero or its corresponding 
constraint is binding). 

The Euler conditions for the above maximization 
are then given as follows: 

d/&=hv -( 1 +a)c,-aL(r’h’o+ t’hu,) -q 

= (d/dL){ - aLhu} 

d/at = Hu, - ( 1 + a)c, - aL(r’hu, + t’Hv,,) -i 

= (d/dL){ -aLHv,) 

= - a(Hu,,L + Hu, + r’hv,L + t’Hu,,L) (31) 

Also, since Lo is unconstrained, the total derivative of 
the objective function with respect to Lo must vanish at 
the optimum. Thus, at L = Lo, we have 

a[Hv,+Hv,t’+hur’]L+(l+a)(Hv-c)-alr’hu 

-at’Hv,=O 

which simplifies to 

H(rMt, Lo) + bHWv,(t, Lo& -c(r, t, Lo) =o 
rpr(Lo) 
I = l(L,) 

(32) 

Equations (30) and (31) can be simplified to the form 

h(r)v(L, t)+ bh(r)v,(L,t)L-c,(r,t, L)=q(L) (33) 

where 

b=a/(l +a) 

and 

H(r)r,(L, r) + bH(r)u,L(L, r)L -c,(r, t, L) = i(L; (34) 

Using Equation (33), we can simplify Equation (32) to 

(H(r)Cc,(r, ~~L,)+rlW,)l -hMr, t, Lo)) ,_r,b,=O 
t-flL,l 

(35) 

The solution of these equations is carried out as 
follows. First, we note that no derivatives of the 
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optimal trajectories appear in the equations, so that 
they can be solved simultaneously, pointwise in r, t, 

and L. It is probably best to begin by determining L,, 

r(L,), and t(L,) from Equations (33). (34) and (35). The 
value of q(L,) is determined from these three equations 
because either q >0 and r= R(L,) or else r] =0 and r is 
arbitrary. The constraint r(L) = R(L) may be active in 
several places. However, each of these is determined in 
sequence as the solution is developed by solving 
Equations (33) and (34). By the monotonicity of r(L), 

the constraint t ,< T becomes active at most once. Thus 
we continue our solution in the direction of decreasing 
L until the optimal f value touches this constraint. We 
then have t= T from that point onward, and we 
continue to solve for r(L) using f(L)= 7: 

duration t. In Equation (38) it is the elasticity of 
demand for duration, parametric on fixed reliability 
level r. 

Determining the optimal price function 
Ph 0 

Given the optimal trajectory {r(L).t(L)} satisfying 
Equations (23)-(28) and the boundary level L,, the 
solution is completed by determining the correspond- 
ing price plan p(r,t). It is useful first to determine 

P(L) = p[r(L), +VJ, which is the price for a load 
slice at level L when duration and reliability are 
optimal. Using the chain rule, we have 

Elasticity interpretation of the necessary conditions 

Equations (33)-(35) can be interpreted as variants of 
the classical constrained monopoly pricing rule 

1+ bCWP)lPll~‘(P) = C/P (36) 

which holds simultaneously at each marginal price 
level. The second term on the left-hand side is the 
reciprocal of the demand elasticity, scaled by the factor 
h = u/( 1 + a), where a is the weighting of net revenue in 
the objective function. 

Next we substitute into Equation (39) the consumer 
self-selection constraints (24) and (25). Note that A=0 
unless t = T, in which case r’ = 0. Similarly, p = 0 unless 
r = 1 and correspondingly r’ = 0. Thus. we always have 
r’hu= r’{Hp}, and t’Hv, = t’Hp,, ie 

d(HP)/dL= hurl+ Hv,t’= [d(Hv)/dL-Hu Jlr=r,L,.r=r,L, 

(40) 
The resulting function HP is thus monotonically 
decreasing in L. 

To bring Equations (33) and (34) to this form, we 

can interpret pr= {Hp), as the average marginal price 
of reliability per load slice and p’= Hp, as the expected 
marginal price of duration per load slice with 
reliability I’. Using conditions (24)-(26) for interior I 
and t, we then have 

Integrating Equation (40) along the optimal 
trajectory {r(L),t(L)), using the boundary condition 
(26), and then dividing through by H gives 

p(L) = 4L WI + { lIH(r(L))} 
s 

[H(r(l))v,(l,t(l))ldl 

Consequently, it follows that 
Note that this form always holds, even when r(L) = 1 or 
t(L) = T 

df/dL = hr, and dp’ldL = HL‘,~ 

Equations (33) and (34) can thus be rewritten as 

1 + b[(L/l,‘)l(crL/dl,‘)] = c,/p’ (37) 

1 + h[ (L/p’)/(dL/dp’)] = q/p’ (38) 

Since r(L) and t(L) are monotonically decreasing in L, 
the index L is also the demand for reliability r or lower 
and the demand for duration t or less. Clearly L is the 
demand for load slices of level L or less. Hence, the 

term in brackets in Equations (37) and (38) is the 
reciprocal of the apprdpriate demand elAti&ty. In 
Equation (37) it is the elasticity of demand for 
reliability improvement, parametric on a fixed 

While Equation (41) completely specifies P(L), this 
pricing function cannot be directly implemented, since 
L is not observable for individual customers. Instead, 
the function p(r, t), satisfying p(r(L), t(L))= P(L), must 
be determined. The function p(r, t) and its first partial 
derivatives are specified only along the trajectory 

{r(L),t(L)) in th e r-f plane. This leaves considerable 
freedom in the choice of p(r, r). We show in Lemma 3 
that it is always possible to meet the required 
conditions with an additively separable function of the 

form pk. t) =.f(r) + g(r). 

Lemma 3. Let P(r, t) be an arbitrary function of r and t, 
and let r(L) and t(L) be monotonically decreasing 
functions of L defining a trajectory in the r-f plane, 
parametric on L. Then there exists an additively 
separable function p(r, t)=f(t)+g(r) such that, for 
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r = r(L), t = t(L), and all values of L, (49) and (50) 

P(r, t) = p(r, t) 

P,(r,r)=p,(r,t)=g’(r) 

and 

(42) 

(43) 

~~4) 

f(t)=G,AL,))- W(r),~)dT s 
P,(r, r) = p,(r, r)=f’(r) (44) 

Proof. Allowing for discontinuities in P(r, t) along the 
axes, let 

LV) 

where L(f) is the inverse function of t(L) defined by 

Equation (47). 
The function g(r) can then be determined from P(L) 

and f(t) as follows 

g(r) = W49) -f(4 L(r))) 

f(t)=P(O+,O+) + P,(r(l),t(l))t’(l)dl 
s 

0’ 

(45) 

where L(r) is the inverse function of r(L) defined in 
Equation (47). 

and Implementation 

L(I) 

g(r) = 
s 

P,(r(l), rU))r’(l)dl (46) 

0. 

Individual customer preferences 

where 

L(r)=min{Llr(L)= r) and L(t)=min(Llt(L)= t}(47) 

Differentiating Equations (45) and (46) with respect to 
t and r along the trajectory {r(L),t(L)} verifies 
Equations (43) and (44). Then, adding Equations (45) 
and (46) and invoking the chain rule yields 

L 

f(t(L))+g(r(L))=P(O+,O+)+ dWhW)) 

s 

0’ 

= PW), WA) 

QED. 

(48) 

The load slice model assumes in effect that each type of 
load slice is priced and consumed independently. Each 
customer’s load duration curve is then composed of a 
collection of predetermined load slice types. This does 
not assume that all customer load duration curves 
have the same shape, because the distribution of load 
slice types can vary by customer. The constraint that is 
imposed is that all load slices that have equal durations 
should have equal reliability levels across all 
customers. In this section, we develop the precise 
assumption that guarantees this for the customer 
demand functions. This is the ‘weak separability’ of the 
demand function family indexed by customer type, 
which was used in a different context by Panzar and 
Sibley [ 123. 

For individual customer type u, let us define the 
following : 

The components of the additively separable price 
function p(r, t) can be uniquely determined as follows. 
For r > 0 and t < T, Equation (24) implies 

L*(O, u) = the load curve (measured in real time) for 
customer type u 

L”(t)=the load duration curve for customer 

type u 

f’(t)=P,(r,t)=u,(t,L) (49) 

Furthermore, at the boundary L=L,, we have by 
Equation (26) (assuming r(L,)>O) that 

r’(l) = the reliability selections of customer type 
U 

t”(l) = the duration time selections of customer 

type u 

f(r(Le)) +g(r(La)) = r(Le, r(Le)) (50) 

We may arbitrarily set g[r(Lo)] =O, ie zero reliability 
charge for the lowest level of reliability offered. Then, 
along the trajectory {r(L), t(L)}, we have by Equations 

L”, = the maximum load of customer type ~1 
G(u) = the probability distribution of customer 

types 

The load level 1 used above refers to the height of the 
customer’s load curve, as opposed to L, the height of 
the system load curve. Clearly, however, the following 
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relationships must hold : 

t”(r)=M{elL*(e,U)~l} 
(53) 

L”(t)=(t”)-‘(t) 

If the preferences for load slices are uniform and 
independent across customers (a condition that 
corresponds to weak separability), then 

L corresponds to I= (t”)- ’ [t(L)] 

and 

r”(l)=r{L(t”(l))} (54) 

where r(L) and L(t) are the system functions derived 
earlier. The relationship in Equation (54) implies that 
load slices having equal durations will have equal 
reliabilities. 

Pricing and interruption of service 

Interruption of service in case of shortage can be easily 

implemented. The supplier would simply select a given 
reliability level r, and all customer load slices 1 such 
that r”(l) <r would be interrupted. The level r would be 
selected, so that the total supply and demand are 
brought into balance. A customer’s monthly bill can 
also be computed in a straightforward manner. The 
fact that the price function is additively separable 
means that the bill is the sum of an energy charge, 
which is increasing in reliability. These would be 
computed as follows: 

total charge= H(r”(l))g(r”(l))dl (demand charge) 
s 
0 

(55) 
L; 

+ H(r”(l))f(t”(l))dl (energy charge) 
1 

J 

i, 

In Equation (55) it is assumed that all customers u 
share the same scaling function H(r). This restriction 
could be relaxed without affecting the applicability of 
the formula. 

In applying the above approach, only a few discrete 
reliability levels would typically be offered, so that the 
function g(r) is approximated by a vector of demand 
charges per kW corresponding to the reliability 
options. Demand Subscription Service at SCE, 
mentioned in the introduction, is an example of two 
reliability levels (interruptible/non-interruptible). 

Also,f(t) would be approximated by a piecewise linear 
function. 

When the individual loads are not synchronized. the 
billing formula (55) will generate excess revenue 
because of the cost savings from the complementarities 
in customer loads. Furthermore, the marginal energy 
price at a given point in time will differ across 
customers, according to their respective load patterns, 
so that marginal benefits are not equated across users. 
This is clearly not socially efficient, since a costless 
reallocation of power could improve social welfare. 
There is, however, a class of preference structures 
under which individual loads are synchronized. 
Proposition 1 defines a general class of demand 
functions L*(B,p,u) that lead to synchronized load 
curves. 

The billing and load control approach described 
above does not require explicit knowledge of the 
system load slice index L that corresponds to the load 
slices making up the customer’s load duration curve. 
The system’s average load duration curve L(t) is 
related to the individual load curves as follows. Letting 
t(L) be the inverse of L(r), we have 

L*(O, u)dG(u) > L (56) 

U 

If the individual loads are synchronized so that the 
same mapping from real time to duration holds for all 
customers, then the individual load duration curves 
may be added directly, ie 

L(t)= L”(t)dG(u) 
s 
” 

(57) 

Weakly separable demand functions 

The class of demand functions that yield load curves 
and reliability selections satisfying Equations (54) and 
(57) can be characterized as follows. 

Proposition 1. Let L*(B,p,u) be a weakly separable 
function of the form 

L*(e, P. u) = ~~W@p),u) (58) 

and assume that A( W, u) is monotonically increasing in 
I+! Then for any fixed p, the mapping from real time 0 
onto duration t implied by Equation (53) is 
independent of the index u. 
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Proof Let t(e,~,u) denote the duration value for 
customer u, corresponding to real time 0 under price p. 

The mapping t(0, p, u) is given by 

t(e,P,u)=M{rlL*(~,P,u)~L*(e,P,u)} (59) 

If Equation (59) holds, however, then clearly for any a, 
we have 

t(~,P,u)=~{qW~p)~ W(KP)) (60) 

which implies that r(0, p, u) is independent of u. QED. 
We now show that the assumption of weak 

separability is also sufftcient to guarantee that 
preferences for load slices will be uniform across all 
customer types, as discussed earlier. 

Proposition 2. Let v(L, t,u) denote the willingness of 
consumer u to pay for a unit load slice of duration t at 
system load level L. Then the weak separability 
condition (58) implies that v(L, 1, u) is independent of u. 

Proof. Let t(e,p) be as in Equation (60) and let L(t,p) 

represent the system’s average load duration curve as a 
function of price per kWh. To be consistent with the 
consumer’s demand function L*(8, p, u), the value 
function u(L, t, u) must satisfy the condition 

u,(L[t(e,P),Pi.t(e,p),u)=p (61) 

for all u. Differentiating both sides of Equation (61) 
with respect to u proves that u,,(L, t, u) = 0. This implies 
that the function u(L,t,u) must be of the form 

u(L,t,u)=u’(L,t)+LqL,u) (62) 

Clearly, however, u(L,O, u) =0 for all values of L and u. 
Hence u2(L, u)=O for all values of L and u, which 
proves that u(L, t, u) must be independent of u. QED. 

Value function estimation 

The value function u&r) can be estimated from the 
system load duration curve L(t) that results in response 
to a uniform energy price. The load duration curve 
resulting from charging a fixed energy price p per kWh 
(call it L(p, t)) satisfies the following relationship: 

u,(L(P,t),t)=p for all t (63) 

Thus, for any fixed p. the load duration curve L(p, r) is 
a level set of the function u,(L,t). Based on demand 
elasticity estimates, the sensitivity of the load curve to 
the price p, and thus other level curves of u,(L, t), could 

be estimated. Segmenting the market into customer 
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classes with separate value function estimates could be 
expected to improve the accuracy of the estimation 

process. As a first cut, however, the value function can 
be inferred from the system load curve with no 
additional market research information. 

TOU rate with a block declining-demand charge 

It is interesting to note that the pricing policy based on 
individuals’ load duration curves. can alternatively be 
implemented as a TOU rate with demand charges. The 
relationship between the two implementations is 
similar to that between demand-layered and TOU 
pricing. 

Let us assume for simplicity that f(t) is piecewise 
linear with breakpoints at O+,t,.t,,. . . ,t,, and 
corresponding slopes&J;, . . . J-i,. Given a forecast of 
the system load pattern, it is possible to map the 
duration intervals to their corresponding chronologi- 
cal time intervals, as illustrated in Figure 3. This 
defines the rating periods for a TOU rate structure, 
with the energy rate corresponding to duration 
interval [ti, ti + i] equal to fi. The reliability price and 
the fixed chargef(O+) will be imposed as a demand 
charge on kW used during the system’s peak. A 
customer’s service contract will specify his load level 
breakpoints Ly, at which the respective reliability level 
ri and corresponding demand charge rate gi take effect. 
This determines the customer’s successive interruption 
levels under increasing shortage conditions, with a 
corresponding block declining-demand charge applied 
to the customer’s load during the system’s peak. 
Figure 3 illustrates the two alternative rate structures 
discussed above. They are equivalent if each 
customer’s load is synchronized with the total system 
load. 

Solved example 

To illustrate the solution techniques discussed for the 
optimal price function, a specific example is solved 
here. The required functional forms are given as 
follows : 

h(w)=2w O,<w<l (64) 

c(r, t, L) = K + tVr2 (65) 

u( L, t ) = aL- bra p>o,o<a<1 (66) 

where K, V, a, a, and /I are constants. By integrating 
h(w), we obtain 

H(r) = r2 Obrdl (67) 
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* 
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Demand charge is based on customer’s pd. 

Energy chaga is bond QI customeri toad 

dumtion curve. 

Figure 3. Alternative implementations of multilevel demand subscription pricing. 

The cost function c(r, t, L) is consistent with Equation 
(96) for a single technology, but with a capacity cost K 
per unit of average load. Assuming that total capacity 
is Y, we also obtain the reliability and duration 
constraints 

r(L) <mini 1, Y/2L} = R(L) and t(L) G T= 1 (68) 

From Equations (65) and (66), we obtain 

c,=vr2, c, = 2Vtr (69) 

UL 
= -@L_b-‘t”= --/30/L (70) 

~,=aciL-~r’-’ =uvlt _ (7 1) 

vU = -+/jL-B-‘t”-’ = -a/?v/tL (72) 

From Equation (34), we have 

212 ENERGY ECONOMICS October 1986 

(73) 

Customerk load 
pattern I 

Real tune (8) 

Derrmd ctmrga ir bused on customer’s bad 
dwing systsm’r peak. Energy rates bsed on 
system’s load dumtion curve. 

(74) 

This yields 

t(L)=min{ l,AL-P”‘-“‘} 

where 

,&[ac$l-b/.I)/V]‘“‘-“’ 

Clearly, by monotonicity, t(L)= 1 for all L<L*, where 

L* = A” -x)/P (75) 

From Equations (33) and (73) we have 

~=2r(v-b/3v)-2Vtr>2rVt(l-a)/a>O (76) 

Thus, the upper bound on reliability is always binding. 
Therefore, we have 

r(L)=min{ 1, Y/2L} (77) 

We assume‘here that L* <Y/2, ie that the base load 



with duration r(L)= 1 always has r(t)= 1. We also 
assume that t(L,)c 1 to rule out a completely 
rectangular load. To determine L,, we now use 
Equation (35) which yields 

{r’[l -6bB]u-tVr2-Kjl,=Yi24.1=r(L,)=0 (78) 

Using Equation (73), we can reduce this to 

(Y/2Lo)‘Vt(L,)( 1 -a)/a = K (79) 

and by applying Equation (74), we obtain 

L, = [AY 2V( l -~)/(4~K)]“-““~+2’I-a)1 (80) 

To obtain the total price function P(L), we first 
substitute Equation (74) and (75) into Equation (66) to 
obtain 

u(L, t(L)) = 
aAaL-8/(1 -.I for LaL* 
aL;p 

for L,<L* 
(81) 

By Equations (41), (67), (70), (77) and (81) it follows 
that 

LO 

P(L)=+J”L-fl/” -=I + (2L/Y)2 
s 

(Y/202( -P/I) 

L 
,A”l-8”’ -“‘& 

{[c$+2(1 -cr)]/[/?+2(1 -a)]},A”L-8”‘-“’ 

+K(2L/YJ2 

for L,>L>Y/2 (82) 

Substituting Equations (84) and (85) into Equation 

(5 1) yields 

f(t)= (V/a){(l -@(L,)+at)/[l -bPl 

From Equation (79), however, we have 

(86) 

t(L0)(l/a)/a=(KIV)(2L01Y)2 (87) 

Substituting Equation (87) into Equation (86) yields 
(for f < 1) 

f(t)= [V/(1 -bP)][t + WWW~)21 (88) 

Finally, by Equations (52) and (82), it follows that (for 
rc 1) 

g(r)=aA”{2(1 -a)‘/[p+2(1 -a)]}(2r/Y)pi”-” 

(89) 

+&{(llr’)--[l+2(l -a)/B](2L01Y)‘} 

As was remarked earlier, the separable form 
p(r, t) =f(t) + g(r) holds even when the price is constant 
in r or t. This can, in fact, be verified directly in the 
above expressions. It can be seen that 

P(L*)=f(l)+g(l) and that P(L)=f(t(L))+g(l) for 
L* <LdY/2. The supplier can then enforce the 
constraints r d 1 and t < 1 for the consumer directly. 

Specijc illustration 

The example discussed above can be further illustrated 
by giving its exact form for specific choices of the 
parameter values. Let us use the following: 
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= {aL-P’(‘-z)+ [2(1 -a)‘/[p+2(1 -a)](Y/2)-pi(1 -‘)) a=l,a=l/2,/?=l,K=1/4,V=l andY=l 

aA”+_K 

for Y/22 La L* (83) 

p(L*) for O<L<L* 

where I(=aKafl/{V[fl+2(1-a)]A’-“} 
For O<L<L*, P(L)=P(L*) is constant. As was 

noted earlier, the price function P(L) must also be 
constant when t(L) and r(L) are constant. In this case, 
the customer’s choices are determined by the 
constraints, rather than by consumer surplus 
maximization. 

From Equations (71) and (73) we have (for t < 1) 

u,CL(t),t)= v/11 -l.$] (84) 

Also from Equation (73) it follows that 

oCL0, ~&3)1= [V/41 -bS)]t(Lo) (85) 
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This gives from Equations (74) and (80) 

A=[(l-b)/212, A==A’-==(l--b)/2 

and L, = [( 1 - b)/2]‘12 

Substitution into Equations (74) and (77) gives 

r(L) = 
i 

1 for O<Ld l/2 

1/2L for l/2<L~[(1-b)/2]“2 

1 
r(L) = 

i 

for O<L<(I -b)/2 

C( 1 - bwil 2 for (l-h)/2<L<[(1-b)/2]‘/2 

From Equation (81) we obtain 

u(L, t(L)) = 
l/L for O<L<(l-b)/2 

( 1 - b)/2L2 for (1-b)/2<L 

<[(I-b)/2]“2 
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From Equation (82) it follows that _K= 1/[8(1 -b)]. 
The price function P(L) must be defined in the three 
regions in Equation (82). This gives 

P(L)= [1+1/2L*](l-b)/2+1/[8(1-b)] 

for (l-b)/2~L<1/2 

1 

3( 1 - b)/SL’+ L2/[2( 1 -b)] 

for 1,/2QL~[(l-b)/2]‘~~ 

(l-b)/2+9/[8(1-b)] forOdL,<(l-b)/2 

From Equations (88) and (89) we can also obtain the 
components of the price function: 

.f(t)= 1/2+t/(l-b) for O<r<l 

g(r)=-l/2+(1-b)r2/2+1/[8(1-b)?] forO<r<l 

These last two expressions show how the optimal price 
componentsf(t) and g(r) are related to the marginal 
cost V and to the weighting factor b (b =0 corresponds 
to welfare maximization). It can be verified directly for 

this example that ffr(L))+g(r(L))= P(L) for all L, as 
required. 

It is interesting to graph the cost, price and value 
functions for this example. This is most directly done 
as a function of the load slice index L. In Figure 4, for 

b=O.l, the three functions H(r(L))u(L,t(L)), 
H(r(L))P(L), and c(r(L),t(L),L) are plotted as a 
function of L. The value and price functions are scaled 

by H(r(L)) to make them correspond to the realized 
values after interruption effects are included. Note that 

the consumer surplus decreases monotonically to zero, 
as required by Equation (16). As L approaches zero, 
the consumer surplus becomes infinite. 

The consumer’s optimal selections are plotted in 
Figure 5. Note that r(L)= 1 for L< l/2 and r(L)= 1 for 
L<i&O.45. This means that S,>O for LC l/2 and 
S,>O for LcO.45, ie the upper bounds on the 

Expected net revenue 

0.8- 

2.4 

, Expected consumer surplus 

01 II/ , I I I I \I1 I 
040 044 048 0.52 0.56 0.60 0.64 0.60 

Load slice CL 1 

Figure 4. Cost, price and value functions. 

1.0. 

0.8- 

0.6- 

0.40 0.44 0.40 0.52 0.56 0.60 0.64 068 

Lood slice (L) 

Figure 5. Optimal selections. 

0.4 

0.2 

o! I I I I 
0 0.2 0.4 0.6 0.8 IO 

Froctlonol durotlon ( 1) 

Figure 6. Duration charge per kW. 

consumer choices are binding. For L~0.45, the price 
and cost functions in Figure 4 are constant, while the 
value function approaches infinity as L approaches 
zero. 

We can also compute the expected load duration 
curve that will result from these selections. The 
nominal load duration curve is L(t), the inverse of r(L), 
which is given by 

L(r)= 
[( 1 - b)/2]l” for O<r<(l -b)/2 

(1 - b)/2r1” for (l-b)/2<rdl 

From Equation (16), for H(r(L))=min{ 1,(1/2L)‘}, we 
have 

Llll 

L(t)= H(r(L))dL i 
J 
0 

L(t) for 0 d L(r) d l/2 

= 1 - 1/[4L(r)] for 1/2bLlr)<[(1-b)/2]“2 
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purposes of our analysis do not constrain its 
applicability, but they do cause a degradation in the 
social efficiency of the resulting pricing policies when 
they are violated. The objective function is flexible in 
that it accommodates any selected weighting of net 
revenue and social welfare objectives. The solved 
example illustrates explicitly the dependence of the 
optimal price policy upon this weighting factor. 

Reliobllity ( r 1 

Figure 7. Reliability charge per kW. 

ooL------J 
0.2 0.4 0.6 0.0 1.0 

A very useful insight derived from our analysis is the 
additively separable form of the optimal pricing 
function. This property simplifies the implementation 
of the resulting price schedules. As remarked in the 

implementation section, no individual preference data 
need be gathered to implement such a plan, because 
the essential trade-offs between load slice value and 
duration selection can be inferred from the average 
system load duration curve. A more accurate model of 
customer preference could, however, be obtained by 
applying market research techniques to segment the 
customer base into similar classes and estimate 
separate value functions for the model in each class. 
Different price schedules would then be offered to meet 
the needs of each of the separate classes. A similar 
variety of price plans is characteristic of electric power 
service pricing today in that residential and various 
classes of commercial users are offered different 
schedules. This paper’s development can provide the 
basis for designing experiments with such price plans 
and for future research to investigate the attractiveness 
of specific pricing functions. 

Fractional duration I t ) 

Figure 8. Selected and realized average load duration 
curves. 

This shows how the nominal load duration curve L(t) 
is partially curtailed by the selected interruption 

function r(L). 

Conclusion 

In this paper we have investigated a price structure 
that permits non-linear pricing in duration and the 
offering of interruptible service contracts based on 
load level. We believe that our analysis is unique in 
that it includes both of these features, which 
simultaneously encourage flattening of the customers’ 
load duration curves and permit a direct load 
management programme to be offered as a menu of 
options for the customer. In particular, the inclusion of 
the correlation between random demand level and the 
likelihood of supply interruption is an important 
realistic feature. The assumptions imposed for the 
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The generation cost function 

We derive here an expression for c(t,r,L) under the 
assumption that the generation system consists of n 
technologies with fixed capacities Xi, X,, . . . ,X,. Each 
technology is characterized by an amortized fixed cost Fi per 
kW capacity and a variablecost 4 per kWh. We assume that 
the technologies are indexed in the optimal dispatching 
order, ie. Vi < V, < < I(#:,. Let Yi denote the cumulative 
capacities, ie 

In particular, 

V(w,L,r)= 
f$ if Yi_i <h(w)L<Yi and w<r 

0 otherwise 
(W 

Since h(w) is monotonic by assumption, we can define 

Yi:.= i xj 
,=* 

(91) 

Then, the random variable V can be defined by 

The effect of uncertainty in the available capacity can be 
roughly approximated. as in Chao [3]. by assuming that the 
installed generation capacity of each technology is composed 
of a large number of small generation units. each of which 

fails independently with a probability ai characteristic of that 
technology. Each of the capacities Xi can then be regarded as 
the expected available capacity of technology i, which is the 
installed capacity times the probability ai. Similarly, the fixed 
cost F, may be interpreted as the amortized fixed cost per 
available kW, which is the cost per installed kW divided by 
ui. 

V(w,L,r)= 
{ 

F for Wi_l(r,L)<w<wi(r,L) 

0 forw>r 

The width of a load slice under conditions w is h(w) times its 
average width. Consequently, the expected cost of serving a 
load slice of type L, with duration t and chosen reliability r, is 
given by 

Since we are dealing with short-term pricing decisions, we 
may regard the total fixed cost of the system as a sunk cost that 
will only enter as a constant in a net revenue constraint and 
that will not affect the supplier’s objective function. 
According to our demand model, a load sliceof type L will be 
served at load level h(w)L, where w is a random variable 
controlling the scaling function h(w). The energy cost per 
kWh for serving a load slice of type L is therefore a discrete 
random variable that can assume values V,, V,, . , V, and 
whose probability distribution depends on L, w. and I’. 

0 

= f i v{H(wi(r,L))-H(wi_,(r,L))) 
i=, 

Let 

1(r,L)=max{ilh(r)L> Yi-,) (94) 
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Then, according to Equation (91), it follows that The above cost function conforms to the general form 
assumed in the text. Note that c(r, t,L) is linear in t. We also 

wi(r, l)= 
i 

r _ 
for i>l(r,t) 

n ‘(YJL) for i<l(r,L) 
(95) 

obtain from Equation (96) 

c, = t V,h(r) (97) 
Consequently, Equation (93) can be rewritten as 

I-I 
c(r,t,L)=t{u,H(r)- 1 [h-‘(YJL)](l$-K_,)} 

i=l 

(96) 

where I is given by Equation (94). Finally. we note that the 
reliability level of any load slice L is constrained by the 
relations h(r)L< Y,, and r(L)< h- l(Y,/L). 
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