Chapter 31

Valuation of Electricity
Generation Capacity

Shi-Jie Deng* and Shmuel S. Oren’

31.1 Introduction

The emerging restructuring of the power industry in the United States and abroad has resulted
in change of ownership on a massive scale of electric generation assets through divestiture,
merger, and acquisition of physical plants or long-term entitlement to the plants’ output.
Such ownership transfers are typically done through public auctions. Establishing the
market value of generation assets has become an important problem for utility commissions
and private organizations buying or selling such assets. The generation capacity of a typical
power plant is measured in hundreds of megawatts (MW) and the selling price runs into
hundreds of millions of dollars. Hence, even a few percentage points of improvement in
the valuation accuracy can have substantial financial consequences. The public interest in
such valuation stems from the fact that in most jurisdictions the proceeds from the sales
offset ratepayer’s liability for stranded costs of uneconomic investments that were made
by regulated utilities. Private entities bidding for these assets are obviously interested in
establishing their market value, which will guide their bids. Market-based valuation of
generation asset is also important for investors in new generation capacity and for financial
institutions that are financing such investments.

The uncertain energy prices that prevail in the new competitive electricity markets
make the generation asset valuation problem challenging as compared to what it used to be
under the old regulated regime, where electricity prices were set by regulators based on a
fixed rate of return on investment. Under the rate of return regulation investment decisions
in generation capacity were typically based on a discounted cash flow (DCF) method that

*School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA
30332 (deng @isye.gatech.edu).

*Industrial Engineering and Operations Research, University of California at Berkeley, 4135 Etcheverry Hall,
Berkeley, CA 94720 (oren@ieor.berkeley.edu).

655
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was used to evaluate the expected future cash flow associated with the generation capacity
under consideration. This paradigm is being changed by the restructuring of the electricity
supply industries and the transition to market-based prices.

It has been recognized in the literature (e.g., [6)) that in the presence of price uncer-
tainty the traditional DCF approach tends to undervalue assets by ignoring the optionality
available to the asset owner. In a well-developed financial and physical market for elec-
tricity, the payoffs of an electric power plant can be approximated by a series of financial
instruments on electricity, and thus financial methods can be applied to value a power plant
via valuing the appropriate set of financial instruments. Such an approach is employed
in [3] for the valuation of power generation assets. In particular, the authors construct a
“spark spread option”—based valuation model for fossil-fuel power plants. They demon-
strate that the option-based approach better explains the observed market valuation than
does the DCF-based approach. In fact the DCF valuations underestimate, by nearly a factor
of four, the sale prices of several power plants divested by a southern California utility.
However, the pure option pricing approach tends to oversimplify the valuation problem by
ignoring operational costs and constraints on a power plant, such as startup costs, ramp-up
constraints, and operating-level-dependent heat rate.

While it is imperative to recognize the embedded optionality to properly value gener-
ation capacity, it is of equal importance to recognize that physical operating characteristics
of a real asset often impose restrictions on exercising the embedded options. It is therefore
important when applying financial option pricing methodology to examine the impact of
operational constraints on the capacity valuation. We explicitly incorporate several operat-
ing characteristics of a power plant into its valuation and illustrate by way of a numerical
example the significance of accounting for operating constraints and costs.

In section 31.2, we highlight several key operating characteristics of a fossil-fuel
power generation asset and describe the valuation problem of the power plant in a com-
petitive power market environment. We construct a discrete-time mean-reverting trinomial
lattice for the electricity and the generating fuel prices in section 31.3. We then formulate a
stochastic dynamic programming (SDP) model based on the lattice price processes for our
valuation problem incorporating operational constraints and outline the solution procedure.
In section 31.4, we present results from numerical experiments to illustrate the significance
of the impact by each of the operating characteristics on the valuation at different operating
efficiency levels. Finally, we conclude with observations and remarks.

31.2 Problem description

Real option valuation methods that model generation assets in terms of financial options are
becoming increasingly popular. A key concept employed by these approaches is the heat
rate, which measures the conversion rate from a generating fuel into electricity. In some
rough sense, heat rate represents the number of units of the fuel needed for generating one
unit of electricity. The economic value of a generation plant of given capacity and known
heat rate can then be roughly represented in terms of a spark spread call option, which is
an option that yields its holder the positive part of electricity price less the *strike” heat
rate-adjusted fuel cost at the option’s maturity time. The analogy between a spark spread
option and a generation plant stems from the fact that an owner of a merchant power plant
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(i.e., a power plant that can sell its output into at least one spot market) has the right, but not
the obligation, to generate electricity by burning fuel at any point in time during the lifetime
of the power plant. Suppose that the owner exercises such operational rights economically
over time! and there are no operating constraints/lead times in running the power plant;
then she would receive the spot price of electricity less the heat rate-adjusted generating
fuel cost by selling/purchasing electricity/fuel, respectively, at spot market prices. Thus,
the payoff obtainable by a rational merchant power plant owner at time ¢ is the same as
that of a spark spread call option with strike heat rate being set to the operating heat rate
level of the power plant. The market value of a fossil-fuel power plant can then be obtained
by summing up the values of the corresponding set of spark spread call options with an
appropriate strike heat rate and the maturity time spanning the lifetime of the plant. Deng,
Johnson, and Sogomonian [3] demonstrate that such a spark spread option—based valuation
provides a much better approximation to empirically observed market valuations than does
a DCF valuation.

However, the financial option valuation approach overlooks the differences between
a physical asset and a financial asset. The optionality associated with operating a physical
asset at different time epochs is often constrained by specific operating characteristics of the
physical asset. These operational constraints may impose significant transaction costs on the
exercise of the operational options either directly through setup costs or indirectly through
operational lead times. Thus the financial option pricing formula tends to overestimate the
option value of a real fossil-fuel generator.

The following implicit assumptions underlie a financial option—based valuation model:
(a) a power plant can be instantly turned on or shut down; (b) there are no fixed operating
costs but only variable production costs; and (c) the operating efficiency of a power plant
is constant. Unfortunately, these assumptions are not very realistic. First, fixed costs are
usually incurred whenever a power plant is turned on from the off state. For a steam gen-
erating unit, for instance, water in the boiler needs to be boiled before the unit can generate
electricity, and the amount of fuel required to boil the water often depends on how long
the unit has been shut down. That is, startup costs are involved in the process of turning a
power generating unit on and the costs could be time-dependent. Second, the output level of
a generator cannot be increased instantaneously to the full generation capacity upon turning
on a power plant. A certain time period (e.g., the time for the water in the boiler to reach
boiling temperature) is needed for a power plant to transit from the off state to the fully
operational state. This time lag is often called the ramp-up time. Third, concerning the heat
efficiency of a power plant, the rate at which a power plant converts the generating fuel into
electricity varies with output levels. Specifically, a power plant is more efficient when it is
operated at the rated capacity level than at a low output level.

Our objective is to explicitly incorporate the operating characteristics of a fossil-fuel
power plant into the valuation model and illustrate the effects of these constraints on the
valuation. Inprinciple, one can formulate the operation of a power plant while incorporating
operational characteristics in great detail as a full-fledged dynamic programming problem.
Such an approach was employed by [9] for short-term generation asset valuation by solving
a stochastic unit commitment problem with constraints on startup and shutdown costs,

To “exercise a right economically” means that a rational power plant owner would exercise an operational
right at time ¢ only when the electricity price less generating fuel cost is positive at that time.
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minimum run time, and maximum ramp rate. However, the computational complexity
makes this approach prohibitively difficult to implement for a long time horizon. The
difficulty arises from the fact that operational characteristics affect daily or even hourly
decisions, whereas the lifetime of a plant over which its value is determined is of the order
of 15 years or more.

Our focus in this paper is on long-term asset valuation. Our primary objective is to
demonstrate a computationally feasible approximation method that will capture the essence
of the operational constraints in a stochastic dynamic programming framework with realistic
stochastic price models. A second objective is to assess the magnitude of the error intro-
duced by ignoring the various operational characteristics of a generation asset and how this
error varies with the heat rate of a plant. Our approach compromises on modeling the oper-
ational details by using a rather simplistic representation of some key operational aspects.
Specifically, we represent the startup cost, ramp-up time, and output-dependent operating
heat rate as described below and solve a stochastic dynamic program under the assumption
of a discrete-time mean-reverting trinomial stochastic price model for electricity and fuel.
A similar approach employing a more elaborate (and more precise) characterization of the
underlying price processes is discussed in [5].

Startup cost We assume that there is a constant fixed cost ¢y, associated with the action
of turning on a power plant from the off state because the water in the boiler of the generator
must be heated before the generator can generate power. In general, the cost for starting up
a generating unit depends on how long the unit has been turned off. The longer the unit is
off, the more heat is dissipated from its boiler, and thus the higher the cost incurred when
reheating the water. Nevertheless, we simplify this effect by assuming that the startup cost,
Csuart» 1S @ CcONstant.

Ramp-up time We approximate the ramp-up time (which introduces a lag in the exercise
of the real on/off option) by assuming that whenever a power plant is turned on from the
off state, there is a fixed delay time of length D before electricity can be generated. Once
a power plant is turned on, it always takes a short period of time (i.e., ramp-up time) for its
generating unit to reach certain operating output levels. Similar to the case of startup cost,
the length of the ramp-up time also depends on how long the power plant has been off. To
reflect this aspect to first order, we assume that there is a constant time lag between the time
point at which a generating unit is turned on and the time point at which the generating unit
reaches its full output capacity.

Output-dependent operating heat rate While it is known that the dependency between
the power output level and the operating heat rate follows a nonlinear functional form
(see [10]), we make a simplifying assumption by considering only two possible output
levels for a plant: the rated capacity level Q per unit of time, called maximum output level,
with an operating heat rate of Hr; and the minimum capacity level Q (Q < Q) per unit of
time, that is, the minimum output level allowable in order to keep a power plant operational,
with a corresponding heat rate of Hr. The constraint 0 < Hr < Hr reflects the fact that a
fossil-fuel power plant is more efficient when operated at a high output level than at a low
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output level. We also assume that the switching between the maximum capacity level and
the minimum capacity level is instantaneous and costless.

31.3 A stochastic dynamic programming approach to
capacity valuation

In valuing the power generation capacity, price models for electricity and the generating fuel
are key ingredients. We employ a mean-reverting stochastic process to model the prices.
Mean reversion has been demonstrated to be a common feature in almost all commodity
prices, including energy prices (see [8]). In particular, we construct a discrete-time lattice
price process that approximates the continuous-time mean-reverting electricity price model
described in [3] and value a power plant based on the price lattice. The lattice (binomial
tree) approach to option pricing was rigorously developed by [2]. Our approach is related to
[1] and [7], which deal with pricing options on a multinomial lattice when there are multiple
state variables.

Consider a finite time horizon of [0, T'] for the capacity valuation problem. Tosetup a
discrete-time framework, we divide the interval [0, T'] into N subintervals, [0, #;], (1, 5], . ..
(tv—1, ty = T] of equal length At = T/N. Let the natural logarithm of the prices of elec-
tricity and the fuel be the state variables at time ¢, denoted by (X,, Y,). We assume that
the state of the price processes changes value only at ; (i = 1,2,..., N) and the state
vector (X,, Y;) takes on a finite set of values. With the understanding that (X;, ;) denotes
(X,,Y,)(i=0,1,2,..., N), we rewrite the vector process {(X,,Y;) : t =10, t,...,tn}
as {(X;,Y) :i=0,1,..., N}. We start with the construction of the discrete-time price
processes and then present the valuation model formulation.

31.3.1 A discrete-time mean-reverting price process

From here on, the generating fuel is specified to be natural gas. The following continuous-
time mean-reversion models are employed in [3] for modeling the returns of electricity price
s¢ and natural gas price sf:

dX, = «.06.—X,)dt+o.dB!, GL1)
dY, = kg6, — Y)dt + poydB! + /1 — plo,dB?, '
where X; = InS; and ¥, = In $¢; 0, and 0, are the long-term means of X, and Y,

respectively; «. and k, are two positive mean-reverting coefficients indicating the rates
at which the electricity price and the natural gas price revert to their respective long-term
means; o, and o, are the instantaneous price volatilities of electricity and natural gas,
respectively; p is the instantaneous correlation coefficient between the electricity and the
natural gas price returns; and B, and B? are two independent standard Brownian motion
processes.

Using the same set of parameters (k;, 6;, o;, p) as those in (31.1), we construct two
discrete-time mean-reverting price models for electricity and natural gas on a recombining
trinomial lattice as follows. We choose a state space following [7]. Starting from each
log-price state vector (X,, Y;) attimet (t = 0,1,2,..., N — 1), there are three possible

states (X, ,, Y/, ) (i = 1,2,3) toreach attime (1 + 1), as illustrated in Figure 31.1.
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Figure 31.1. Construction of a trinomial lattice.

Let the price state movements on the trinomial lattice be

X+ 0o [3VAL (state 1),
Xn+l = X, (state 2)7

X, - ae\/gx/ At (state 3),

Y, + pog\/;/At +o,y/ 1 — p2\/g\/At (state 1),
Yori = Y, —o,/1 — p2%\/At (state 2), (31.2)
Vo = 000 /3BT + 00 /T= 02 [IV/AL (state 3),

where Ar = %, n =0,1,...,n — 1. Define a set of transition probabilities on the
trinomial lattice so that the resulting price models for electricity and natural gas are mean-
reverting. Let p; denote the transition probability moving from a given state (X,, ¥,) to
state (X!, Y, ) (i =1,2,3)and let P = (p|, p2, p3)'- If the conditions

_1l < [x,(e ~Xa) | K y,.)]m< %

I
3 9\/6;() 2«/60
( "
-3 < EmVAr <y, (31.3)
_2 x.(e Xy _ @ t) '
3 < [ NG bZ«/Eag ]\/A_t <3
hold, then
Lol KeB—X) | Ke(8=Y)
pi: 3+[¢a; + 5t ]\/At,
P=1{ p2: -_l; — &) (j%; ")\/E, (31.4)
8
. L= Kr(eg—xl) _ K (B —=Yy) /
p3: 3 [ «/60(. __2~/60X ] At.

The conditions in (31.3) are for ensuring that the probabilities p; (i = 1, 2, 3) are between
0 and 1. If any of the conditions in (31.3) is not satisfied, then P is defined as
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ST
If Kz,(?/_ Yn) r— > Z P = Dy 0,
60, Lol
’ &5 ; (31.5)
Ko (O Y'" pr: ]
If Y5 )\/ <—=, P=1 py: 1,
Voo, p3: 0
2 Y,. /AT p: 0
% t<§’ p_l m: %_Kk(9 Y,.)\/—
K (A Xn) '(a(o =Y / _1 -
V6o, + 60, ] At = 3 Py 2 Kx(e yn) /
2 K(9 Yn)
n(a Y..> /A7 p: 3+ VA
—_= t -
3 = <5 pP= o n(e,e m\/—
x(e X,,)+n 2 y")]«/A_t>2 =3\ p2: 35—
2/ea, - p3: 0.
(31.6)
1 Ke(Be—Xu) k@ =Y) | / 2 .
3<[9‘/6§'/' e ] Ar<s o (1) 56— Ya)
if{ -3< K_—R(\/%;S")‘/E <1, p=1] P2 z— ‘(0 Ay)v
K,(«‘),—X,,) —- Kx(eg_yn) _2 p3 : 4 + Klt — Iy /
[ N 2o ]«/At 5 3
_1 ke (B =Xu) Ke Yu) / 2 (0, —Y,
3<[ V6o, + 2«/6(7}\] At<3’ p1 - 3+K( )\/_
T x,g(e Y,,) Af <, P={ p: Lo K“(e 3,")\/_
e (6, x,,) n(9 =ONNIvESS! .
[ Véa, 260, ] Ar > 3’ ps: 0.
(31.7)

The transition probabilities defined in (31.4)-(31.7) yield two mean-reverting price pro-
cesses for electricity and natural gas. For instance, suppose that the conditions in (31.3) are
satisfied in the current state (X,,, ¥,,); thus (p|, p2, p3) are given by (31.4). In (31.4), if the

current Y, is greater than 6,, meaning that the current natural gas price is above its long-term

mean, then %@=1) ;5 2 negative number. Therefore from (31.4) we see that p,, which is the
N g P

probability of moving toward a decreasing level of Y,,4, is increased. On the other hand, if
the current Y, is a number less than 8,, meaning that the current natural gas price is below

Ko (0, — Yy

its long-term mean, then ) becomes a positive number. Therefore from (31.4) we

see that p, and p3, which are tt;e probabilities of moving toward increasing levels of Y1,
are increased. Similarly, when the current X,, is greater/less than its long-term mean 6,,
the probability of moving toward a decreasing/increasing level of X,,;; is increased. The
transition probabilities defined in (31.5)-(31.7) also have such mean-reverting property with
respect to the price state vector (X, Y,).2

2This discrete-time model may not converge in distribution to the previously mentioned continuous-time mean-
reversion model (see also [4]). The parameters need to be estimated directly from the discrete model structure.
To guarantee the convergence to the continuous-time price model, a quadnomial rather than a trinomial lattice is
needed, as shown in [5].
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31.3.2 Valuation of a merchant power plant with operational
constraints

Suppose that the log-prices of electricity and natural gas evolve according to the lattice
process {(X,,Y;) : t = 0,1,..., N} constructed in section 31.3.1. Moreover, we make
the following assumptions regarding the operational characteristics of a natural gas—fired
merchant electric power plant.

Assumption 1 The power plant of interest is subject only to the three operating character-
istics described in section 31.2.

Assumption 2 When running the power plant, the operator takes one of the three possible
actions at discrete time points. The three possible actions are to shut down the plant,
to run the power plant at its minimum capacity level (turn on the plant first if it is
currently off), and to run the plant at its maximum capacity level (turn on the plant
first if it is currently off). We denote these three actions by off, on_min, and on_max,
respectively.

The operator of the merchant power plant seeks to maximize the expected total profit of the
power plant with respect to the random price vector (S¢, S¥) over the operating time horizon
by making optimal decisions regarding whether to turn on or shut down the generating unit
as well as how to operate the unit. Under the risk-neutral probabilities, the expected total
profit of a power plant over its operating time horizon yields the value of the power plant
during that time period.

Before getting into the formulation of the valuation problem, we introduce some
additional notation. The operating time horizon T is divided into N periods. The power
plant operator makes the operational decisions at the beginning of every m periods, i.e., the
operator takes action only in periods 0, m, 2m, 3m, ..., km, ..., etc.

n index for periods (1,2, ..., N);
X, state variable indicating the logarithm of the electricity price in period n;
Y, state variable indicating the logarithm of the natural gas price in period n;

w state variable indicating whether the power plant is currently on or off; w = 0 means
that the power plant is currently off; w = | means that the plant is currently on;

B discount factor over one time period,
ay, action taken by the power plant operator in period #;
@ the action space, and ® = {off, on_min, on_max}.

Csart, @, Hr, C, and Hr are defined in section 31.3.1. The ramp-up time is assumed to
be one period’s delay for simplicity. Let the value function V,,(X,, ¥,, w) be the expected
total profit of the power plant over time periods n,n + 1,n+ 2, ..., N, given the current
price state vector (X,,, ¥,) and the current operating state w of the power plant. Then
Vu(X,, Yy, w) is obtained by solving the following three recursive equations with proper
boundary conditions.
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Ifn # k-m,wherek =0, 1, 2, ..., then the operator takes no action in period n. The
value of a power plant is equal to the discounted expected future value of the power plant.

Vn(Xm Ym ‘Ll)) = ﬂ . En[vn+1(Xn+l’ Yn+lv w)], (318)

where E,[-] denotes the conditional expectation given information available in period n.
Ifn=k-m,wherek=0,1,2,... and w = 0, then

on_max : —Cstant + ﬂ . En[vn+l(Xn+l, Yn-} I l)],
V,,(X,,, an O) = mgé on_min : —Cgstan + ﬂ i En[vn+l(Xn+ls Yn+ly l)]: (319)
" off : ﬂ - En[vn+l(Xn+h Yn+l’ O)]

Ifn=k-m,wherek =0,1,2,... and w = 1, then

Q - [exp(X,) — Hr - exp(¥,)]

on_ max :
- + ﬂ . En[vn+l(Xn+ly Yn+l, 1)],
Va(Xp, Yu, 1) = max . Q - [exp(X,) — Hr - exp(Y,)] (31.10)
1, €D on_min : - -
e + B+ EalVas1 (Xus1, Yasr, D],
off : B EVisi(Xig1, Y1, O
The boundary conditions are
Vs, y, w)=0 Y(x,y)e RL,w=0,1. (31.11)

31.3.3 The solution of the SDP

With the trinomial price model constructed in section 31.3.1, the optimal policies of the SDP
have a barrier control form. There exists a “no-action” band on the plane of the natural gas
price (plotted on the horizontal axis) and the electricity price (plotted on the vertical axis).
If the price vector (Sf, S¢) consisting of the market prices of natural gas and electricity is
inside this band, then it is optimal for the plant operator to maintain the status quo. If the
price vector is above the upper boundary of the band, then, depending on the state of the
power plant, the operator should increase the output level of the plant from off to on or from
minimum capacity to full capacity. If the price vector is below the lower boundary of the
band, then it is optimal for the operator to reduce the output level of the power plant to off
or minimum capacity depending on the state of the plant.

31.4 Numerical experiments

We have implemented this proposed methodology for valuing a natural gas—fired power
plant to examine the impact of operational characteristics on the capacity valuation. We
report some numerical results for a hypothetical 100 MW gas-fired power plant over a 720-
day period. We assume that the gas power plant incurs a startup cost whenever turned on and
that it takes 1 day to ramp up the power plant from the off state to a desired output state but
there is no delay in increasing/decreasing output level once the power plant is on. For startup
cost, we examine two possible values, $6000/start and $12,000/start. The maximum and the
minimum capacity levels are assumed to be 100 MW and 50 MW, respectively. Moreover,
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Table 31.1. Parameters for mean-reversion price models.

ki |3 i | 2.25
6, | 3.15 || 6, | 0.87
[e3] 0.75 (4] 0.6

P 21.7

Table 31.2. Value of a natural gas—fired power plant with/without physical char-
acteristics.

[ Heat Rate (H Ruax MMBtw/MWh) |_8000 [ 9500 [ 12000 [ 14000 I
Cap. Value 5211 mill. | 3.236mill. | 1.381 mill. | 0.679 mill.
(nophy. constr.)

Cap. Value

(3 phy. constr./stup=$6k) 5.153 mill. | 3.176 mill. | 1.335 mill. [ 0.648 mill.

Pctg. Val. Overstate.
(ignoring 3 phy./stup=36k)
Cap. Value

(2 phy. constr./stup=3%$0)

Pctg. Val. Overstate.
(ignoring stup only/stup=$6k)
Cap. Value

(3 phy. constr./stup=$12k)
Pctg. Val. Overstate.

1.13% 1.88% 3.43% 4.83%

5.207 mill. | 3.230 mill. | 1.378 mill. [ 0.677 mill.

1.06% 1.70% 3.21% 4.51%

5.121 mill. | 3.144 mill. | 1.312mill. [ 0.632 mill.

[v), [v/
(ignoring 3 phy./stup=$12k) 1.75% 2.93% 5.28% 7.45%
Cap. Value . . . .
(2 phy. constr./stap=$0) 5.207 mill. | 3.230 mill. 1.378 mill. | 0.677 mill.
Petg, Val. Overstate. 1.68% 2.74% 5.05% 7.12%

(ignoring stuponly/stup=%12k)

the ratio between the operating heat rates at the minimum and the maximum capacity levels
of the power plant is assumed to be 1.38 : 1. Under the mean-reversion price assumption
for electricity and natural gas, the trinomial lattice is built with Az being 1 day. The operator
of the power plant makes operating decisions at all nodes of the lattice, i.e., m = 1. The
initial prices of electricity and natural gas are assumed to be $21.70 and $3.16, respectively,
which are sampled from the historical market prices.

The parameters used to construct the mean-reverting trinomial lattice are given in
Table 31.1.

The value of the underlying power plant is calculated for each of the three cases:
considering all three physical operating characteristics, ignoring the three operating charac-
teristics, and ignoring the startup cost only. The numerical results are presented in Table 31.2.

We plot the value of the power plant accounting for all three operating characteristics
for different heat rates in Figure 31.2. The x-axis represents different heat rates. The
solid curves with crosses and circles plot the capacity value per year with startup cost
being $6000/startup and $12,000/startup, respectively. The capacity value ignoring the
three operating characteristics for different heat rates is plotted by the plain solid curve.
All three curves are plotted against the capacity value axis on the left. The dashed curves
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Figure 31.2. Valuation of a power plant with/without physical characteristics.

Capacity Value

% Ch: i
$30.0 - (3/kWyr) —— Capacity Value (ignoring start-up costs only) o e

Capacity Valuation + 8.0%
—»— %Chg. of Cap. Value due to $6k startup alone W
-+ %--%Chg. of Cap. Value due to all 3 constr. (Startup = $6k) 2 i o
$25.0 —o— %Chg. of Cap. Value due to $12k startup alone ] 7.0%
;=@ --%Chg. of Cap. Value due to all 3 constr. (Startup = $12]¢)"' |
+ 6.0%
$20.0 1
+ 5.0%
$15.0 e L 4.0%
i L 19,
s00 4 3.0%
| + 2.0%
$5.0
+ 1.0%
$0.0 +— . e —— 1 0.0%
75 8.5 9.5 10.5 1.5 125 13.5 14.5

Operating Heat Rate

Figure 31.3. Valuation of a power plant with/without the startup cost.

with circles and crosses plot the percentage by which the capacity value is overstated due
to ignoring the physical operating characteristics with the startup cost being $6000 and
$12,000, respectively. The percentage for which the capacity value is overstated due to
ignoring the operating characteristics ranges from 1.13% for the most efficient plant with a
low startup cost to 7.45% for the least efficient plant with a high startup cost.

Figure 31.3 plots the values of the power plant with and without the startup cost only.
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The impact of the startup cost on capacity valuation is very significant. Ignoring the startup
cost while considering the other aspects accounts for more than 90% of the overstated
capacity value of the underlying power plant.

31.5 Conclusion

We conclude from the numerical results that the operational characteristics affect the valu-
ation of a merchant power plant to different extents depending on the operating efficiency
of the power plant and the assumptions about the electricity and the generating fuel prices.
In general, the impact of physical operating characteristics on power plant valuation can
be very significant under the mean-reversion price models. Moreover, the more efficient
a power plant is, the less affected its valuation is by the operational constraints and vice
versa. The impact on capacity valuation ranges from 1.13% overvaluation for the most
efficient plant with a low startup cost to 7.45% overvaluation for the least efficient plant
with a high startup cost. Among the three operating characteristics of a power plant which
we consider here, startup cost affects the capacity valuation the most. The reason is twofold.
The first-order effect of the startup cost on capacity valuation is that it directly imposes a
transaction cost on exercising the embedded spark spread options in a fossil-fuel power
plant when the electricity price is greater than the fuel cost. The second-order effect of the
startup cost is that it forces the power plant to keep operating at a loss or to forego a profit
when the startup cost cannot be justified by the expected loss-saving or the expected profit
that would result from turning the power plant off or on. In other words, the startup cost
reduces the option value of a power plant. Our sensitivity analysis reveals that, under the
mean-reversion price models, ignoring the startup cost alone can explain more than 90% of
the overstated capacity value of a power plant (as compared to the overstated value when
all three operational characteristics are ignored).
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