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Abstract—Many wholesale electricity markets call on the inde-
pendent system operator (ISO) to determine day-ahead schedules
for generators based on a centralized unit commitment. Up until
recently, the Lagrangian relaxation (LR) algorithm was the only
practical means of solving an ISO-scale unit commitment problem,
and it was the solution technique used by most ISOs. Johnson et al.
[1] demonstrate, however, that equity, incentive, and efficiency is-
sues will arise from use of LR solutions, because different com-
mitments that are similar in terms of total system costs can result
in different surpluses to individual units. Recent advances in com-
puting capabilities and optimization algorithms now make solution
of the mixed-integer programming (MIP) formulation by means
of branch and bound (B&B) tractable, often with optimality gaps
smaller than those of LR algorithms, which has led some ISOs to
adopt B&B algorithms and others proposing to do so.

With the move towards B&B, one obvious question is whether
the use of MIP will eliminate or reduce the issues with LR raised by
Johnson ef al. Using actual market data from an ISO, we demon-
strate that both LR and MIP solutions will suffer the same equity
issues, unless the ISO unit commitment problems can be solved
to complete optimality within the allotted timeframe—which is
beyond current computational capabilities. Our results further
demonstrate that the size of the payoff deviations are not mono-
tone in the size of the optimality gap, meaning smaller optimality
gaps from B&B will not necessarily mitigate the issues Johnson et
al. raise. We show that the use of ‘“make-whole’’ payments, which
ensure units recover any startup and no-load costs not recovered
by inframarginal energy rents, can help to reduce surplus volatility
and differences to some extent.

Index Terms—Electricity market design, power systems eco-
nomics, unit commitment.

I. INTRODUCTION

ITH many jurisdictions moving towards competitive
tholesale electricity markets, an important but con-
tentious issue has been the proper role of the independent
system operator (ISO) in determining unit commitments. In
many restructured systems, an ISO operates central energy mar-
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kets and has the authority to commit and schedule generators
based on load forecasts and multipart offers, including non-
convex costs and unit operating constraints. Until recently, the
Lagrangian relaxation (LR) algorithm was the practical means
of solving a commercial-scale unit commitment. Johnson
et al. [1] demonstrate, however, that centralized scheduling
of resources owned by multiple parties by means of an LR
algorithm may face difficulties that do not arise when resources
are centrally owned. A case study based on load data and a
stylized generator set from Pacific Gas and Electric Company
shows that variations in near-optimal unit commitments that
have negligible effects on total system costs could yield sig-
nificantly different payoffs to individual resources—meaning
the details underlying the solution methodology could impact
which generators are “winners” and “losers” in dispatch de-
termination. Johnson et al. [1] further raise an incentive issue:
generators, knowing the dispatches and payoffs resulting from
LR solutions are sensitive to the specific solution found, may
profitably misrepresent their cost and constraint parameters to
affect the outcome of the market. Indeed, Newbery [2] notes
that one of the criticisms of the original British Electricity
Pool was that generators were able to manipulate their offers
to maximize their payoffs. The potential for misrepresented
bids would, of course, call into question the efficiency of the
resulting commitment, since it may potentially be based on
incorrect cost and constraint parameters. Another issue com-
plicating a market with nonconvex costs is that linear price
payments that compensate generators only for energy produced
may be confiscatory, a prime example of which is a near-mar-
ginal unit which does not receive sufficient inframarginal rents
from linear prices to recover its offer-based fixed costs. These
issues raise concerns regarding the feasibility of proper mech-
anisms to oversee an equitable centrally committed market
and generators’ incentives to submit truthful offers in such a
market—calling into question the efficiency of the underlying
unit commitment solution.

One of the issues that has traditionally plagued the use of
mixed-integer programming (MIP) in solving unit commitment
problems has been the inability of branch and bound (B&B) al-
gorithms to provide a solution within a reasonable amount of
time. Because many markets frequently resolve commitment
and dispatch problems with limited solution times, ISOs rely
on software to provide a feasible and near-optimal commitment
within a short time frame. Streiffert ez al. [3] demonstrate, how-
ever, that recent advances in computing capabilities and im-
provements in optimization algorithms now allow MIP to be a
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viable alternative to LR. Even if the B&B algorithm times-out
before finding an optimum, one is still left with a primal-fea-
sible solution and a bound on the optimality gap.! These in-
termediate solutions are often found within the same amount
of time an LR-based algorithm takes, and they typically have
optimality gaps of the same size or smaller than LR commit-
ments. Moreover, Streiffert ef al. [3] and Li and Shahidehpour
[4] note that B&B benefits more in comparison to LR from
having additional solution time, as the B&B algorithm is able
to find better solutions or tighten the optimality gap with addi-
tional time. Streiffert ef al. [3] also note that a MIP-based algo-
rithm can represent complex units such as combined-cycle com-
bustion turbines (CCCTs), pumped storage, and cascaded water-
shed hydro systems better than LR can. The units within a water-
shed hydro system, for instance, violate the problem decomposi-
tion assumptions underlying LR, meaning approximations such
as peak-shaving are typically employed to use an LR algorithm
in systems with these types of units. CCCT units also violate the
decoupling assumption and require special algorithms, such as
that proposed by Lu and Shahidehpour [5]. A MIP-based imple-
mentation does not require such special algorithms and can typ-
ically more fully represent complex units. Finally, a MIP-based
solution algorithm allows ISOs to easily introduce new types
of unit-operating and system constraints to the formulation of
the problem, whereas LR-based techniques generally require
extensive reprogramming of the feasibility heuristics to ensure
that the final commitment satisfies all the necessary conditions.
These overwhelming advantages and the tractability of MIP al-
gorithms have led several ISOs, such as PJM, to implement
MIP-based solution methods as opposed to LR. Moreover, the
California ISO’s Market Redesign and Technology Update and
the new ERCOT nodal market will feature centralized commit-
ment solved using MIP, and ISO New England (ISONE) is sim-
ilarly exploring the switch from LR to MIP.

Due to the computational complexity of unit commitment
problems and limited solution times, ISOs which implement
B&B-based algorithms do not solve their unit commitment
problems to complete optimality or prove that the best solution
found is optimal. PIM, for instance, allows its MIP optimizer to
run within a certain period of time or until the optimality gap is
below some maximal threshold, and uses whatever intermediate
integer-feasible solution the solver has found. An obvious issue
raised in using MIP to solve the commitment is whether its
use of the B&B algorithm will mitigate or eliminate the issues
raised by Johnson et al. [1], especially in light of the fact that
ISO commitments are not solved to complete optimality using
MIP.

We revisit these issues raised in the design of a central unit
commitment market by studying test problems from an ISONE
data set. We examine properties of a simple unit commitment
problem, which is meant to be comparable to the problem
studied by Johnson et al. [1], by comparing LR solutions to the
actual MIP optimum. Our results are consistent with those in

ITn theory, the B&B algorithm may time out before finding an integer-feasible
solution, in which case heuristics or an alternative solution method would have
to be employed. Nonetheless, PJM currently relies on B&B, and the California
ISO and ERCOT are planning to use MIP in their market redesigns, which are
to be implemented in 2008, since this issue does not tend to arise in practice.

Johnson et al. [1], showing that LR solutions with near-optimal
system costs can result in vastly different payoffs for the indi-
vidual units, both when the LR solutions are compared to one
another and to the MIP optimum. We further show these payoff
differences are due not only to units being committed and
dispatched suboptimally in the LR solutions but also because
of different energy prices resulting from the suboptimal LR
dispatches.

We show that these market design issues can be reduced in
two ways. First, the use of a B&B algorithm which can solve a
unit commitment to optimality will guarantee units receive their
optimal dispatches and payoffs. We demonstrate, however, that
this relies crucially on solving the problem to complete opti-
mality. If the B&B algorithm times-out or is interrupted before
reaching optimality and is just a minuscule fraction of a per-
cent away from optimal, the payoffs to individual units and en-
ergy prices can vary significantly when compared to the MIP
optimum.2

Secondly, due to the possible confiscatory nature of linear
energy-only price payments, most ISOs which operate a central
commitment market make supplemental “make-whole” pay-
ments, which guarantee that units recover their offer-based costs
over the course of the day. We argue that such a make-whole
provision has an added benefit of helping to “smooth out” the
payoffs of near-marginal units which may not receive their
MIP-optimal commitment in a suboptimal LR or intermediate
MIP solution. Because such a unit would be close to marginal,
it would likely require a make-whole payment, implying that
the unit breaks even (in terms of offer-based costs), regardless
of whether or not it is dispatched in the final commitment. We
show that while such make-whole provisions reduce payoff
deviations between the MIP optimum and suboptimal com-
mitments, such deviations will not generally be completely
eliminated.

II. PROPERTIES OF LR AND B&B SOLUTIONS

At its heart, the unit commitment problem finds the least-cost
commitment and dispatch of a set of generating units to meet ex-
pected load over a time horizon consisting of a fixed number of
periods, which we take in our computations to be 24 single-hour
periods. The problem can be formulated as an MIP in which the
operating status of each unit (online or offline) in each planning
period is characterized by a set of binary variables, and a set of
continuous variables indicate the generating output of each unit
in each planning period. In addition to a load balance constraint,
which ensures that expected demand is met in each period, unit
commitment formulations will typically also have ancillary ser-
vice requirements, upper- and lower-generating capacities for
each unit, ramping constraints, minimum up and down times
when units are started and stopped, startup costs which are de-
pendent on the length of time a unit has been offline, and trans-
mission network constraints.

Historically, solving a commercial-scale problem with
hundreds of generating units was impractical using a B&B
algorithm. As such, LR techniques were employed in which

2This can also be true for alternative optimal MIP solutions, if the optimum
is non-unique.
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a Lagrangian dual is obtained by relaxing the load balance,
reserve, and any other “coupling” constraints and penalizing
violations in the objective. When these constraints are relaxed,
the problem decouples in the sense that there is no longer an
interdependency between the generating units, making the
dual problem relatively simple to solve. The LR algorithm
then works iteratively to try and find a set of energy and
reserve capacity “prices” (the objective function penalty coef-
ficients), which incent an optimal commitment and dispatch
of the units. As Wolsey [6] notes, the LR algorithm finds a
dual-feasible/primal-infeasible solution which is a local (but not
necessarily global) optimum, with additional processing of the
LR solution and heuristics needed to restore primal-feasibility.

Our results comparing LR and MIP solutions are based on
a simplified model of the ISONE commitment problem, which
includes minimum up and down times, ramping constraints,
hourly load balance constraints, and a single type of load-based
ancillary service requirement. To simplify the model, marginal
generating costs are assumed to be constant, startup costs
are not time dependent, and transmission constraints are ig-
nored—making our model similar to that studied by Johnson
et al. [1]. The specific formulation studied is given in the
Appendix.

Johnson et al. [1] further simplify their model by eliminating
never-used resources and units which are not economically dis-
patchable from the generator set and only considering 17 units
in their commitment problem. Our model, by contrast, includes
the full ISONE generating set of 276 dispatchable units. This
both reflects our desire to study a commercial-scale unit com-
mitment problem and to highlight drastic improvements in the
capabilities of MIP solvers, which could not solve a unit com-
mitment problem of this size a decade ago.? The data used are
based on actual cost and operating constraint offers, which are
submitted by generators to ISONE on a daily basis. Because the
cost parameters used in the unit commitment consists of offered
costs, they may not reflect a unit’s actual operating costs. As
such, our calculations of a unit’s net payoffs will not necessarily
reflect revenues less costs, but rather its “offer-based surplus.”#

A. Comparisons of LR Solutions

The LR algorithm we employ is a “textbook” subgradient al-
gorithm which utilizes a geometric step-size sequence, as de-
scribed by Wolsey [6]. A myopic recommitment heuristic is
then used to obtain a primal-feasible commitment from the dual
solution, and finally, a linear program is used to determine a
least-cost dispatch based on the fixed primal-feasible commit-
ment of the units. Although our LR algorithm is not finely tuned,
the results we report are for solutions which are all within 1.82%
of the MIP optimum. The different solutions are obtained by ad-
justing the rate of convergence of the step-size sequence used in
the subgradient algorithm step. Our calculations of unit payoffs
assume the market settles with a uniform energy price in each

3Indeed, the 17-unit model studied by Johnson et al. could not be tractably
solved by MIP solvers a decade ago.

4If a generator’s revenues resulting from its commitment and dispatch is given
by R and its actual cost of meeting the schedule is ¢, then the generator’s actual
profits will be given by IT = R— c. The generator, in making an offer to generate
to the ISO, will state its costs are given by ¢, which may be different from c;
thus, its offer-based surplus will be S = R — é.
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TABLE I
COMPARISON OF LR SOLUTIONS AND MIP OPTIMUM,
WITH LINEAR ENERGY PAYMENTS ONLY

Optimality ~ Units

Solution | Total Cost (§)  Gap (%) Affected
MIP 8,074,002.55

1 8,181,665.93 1.33 125
2 8,212,269.01 1.71 128
3 8,202,929.15 1.60 132
4 8,171,416.63 1.21 141
5 8,125,904.86 0.64 109
6 8,220,547.52 1.82 128
7 8,211,208.66 1.70 132
8 8,124,845.51 0.63 112
9 8,180,528.20 1.32 129
10 8,189,867.05 1.44 125
11 8,116,566.01 0.53 112

hour based on the dual variable associated with the load-bal-
ance constraint. Pricing energy based on these dual variables
captures the correct marginal cost of serving the system’s loads,
and it has the property that it “smooths out” prices between pe-
riods in which intertemporal constraints are binding. In prac-
tice, however, most ISOs settle based on prices resulting from
the day-ahead optimal power flow (OPF) model, which gener-
ally do not capture these intertemporal constraints and as such
will not correctly account for binding ramp constraints in deter-
mining prices.> In the context of our simple unit commitment,
these OPF prices would be equivalent to setting the hourly en-
ergy price based on the highest marginal cost unit which is run-
ning in that hour but not held at minimum load. Unit payoffs are
nearly identical with both pricing schemes, and as such, we only
report calculations with energy prices based on the unit commit-
ment dual variables.

Table I summarizes the 11 near-optimal LR solutions used in
our analysis, showing the size of the final optimality gap (with
primal-feasibility of the dual solution restored) and the number
of units affected by not receiving their MIP-optimal offer-based
surplus.

1) Unit Surplus Comparisons: Table II provides summary
statistics of the offer-based surpluses of five select units across
the 11 LR solutions, showing the extent to which the surplus
of individual units can vary between the different solutions and
deviate from the MIP optimum. For computation of surplus per
MWh generated, this value is set to zero for a unit which re-
ceives no dispatch. Furthermore, the columns labeled “cv” re-
port the coefficient of variation, which is the ratio of the standard
deviation and mean, and provides a unit-free metric of surplus
variability. Units 1 and 5, for instance, are not committed at all
under the MIP optimum but are dispatched in a number of the
LR solutions, always running at a net loss. Unit 1, when com-
mitted by the LR algorithm, runs at a substantial loss as it is
given little dispatch with which to recover the large startup cost
it incurs. Although some units are made worse off by the LR
commitments, others such as units 3 and 4 are generally run at
a net gain under the LR solutions whereas they are run at a loss
in the MIP optimum.

Table II demonstrates a further complication in markets
with nonconvex costs—that linear prices can be confiscatory—
indeed, all of our LR and the MIP-optimal commitment leave

5Although it is possible to include ramping constraints in a multiperiod OPF,
most ISOs solve each period individually and do not include these constraints.
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TABLE II
OFFER-BASED SURPLUS OF SELECTED UNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH LINEAR ENERGY PAYMENTS ONLY

MIP Offer-Based ~ MIP Offer-Based
Unit Surplus ($/MWh)  Surplus ($) LR Ofter-Based Surplus ($/MWh) LR Offer-Based Surplus ()
Mean Max Min cv. | Mean Max Min cv
1 0.00 0.00 -685.40  0.00 -952.56  -0.64 | -7,458.07 0.00 -13,715.84 -0.73
2 -7.97 -6,886.92 -0.40 0.48 -0.69 -0.87 | -348.94 414.92 -595.33 -0.83
3 -16.58 -2,387.39 3.44 4.68 3.98 0.73 478.53 673.22 -764.94 0.83
4 -1.73 -18,498.82 0.02 0.47 -0.13 9.89 152.48 4,186.96 -1,182.71 10.20
S 0.00 0.00 -42.43 -20.33  -50.03 -0.19 | -12,564.29 -2,642.30 -19,510.97 -0.39
All 30.06 9,047,685.89 30.90 31.18 30.65 0.01 9,298,276.20  9,385,277.46  9,224,431.24  0.01
TABLE III

TOTAL SETTLEMENTS OF SELECTED UNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH LINEAR ENERGY AND MAKE-WHOLE PAYMENTS

Unit H MIP Settlements ($)

LR Settlements ($)

some generators with net losses. Absent a nonlinear pricing
scheme, the potential for confiscation could lead generators
to withhold themselves from the market or to distort the cost
or constraint parameters in their offers to ensure themselves
sufficiently high energy rents, with the potential to lead to an
inefficient commitment. Most ISOs overcome this confiscation
problem by paying uniform hourly energy and ancillary ser-
vice prices with supplemental make-whole payments, which
guarantee that a unit will recover any portion of its offer-based
costs not covered by inframarginal energy and ancillary service
rents over the planning horizon.® One shortcoming of this
make-whole payment scheme is that the linear prices are not
market-clearing, which is to say that if price-taking generators
could adjust their generation and reserved capacity to maximize
profits, there would generally be load imbalances. Recently,
O’Neill et al. [7] propose a set of nonlinear prices which
yield a Walrasian equilibrium and ensure nonconfiscation in
a general competitive market with indivisible units or other
nonconvexities, overcoming these issues. Despite the attractive
properties of the prices proposed by O’Neill et al., ISOs do not
implement their pricing scheme.

Table III shows the total settlements paid to the five units
in Table II, assuming that the market makes energy payments
only (i.e., no payments for ancillary services) and includes a
make-whole provision. Comparing the range of settlements paid
to individual units and the range of total settlements for all the
units between the different solutions, we see that payments to
individual units can vary between different LR solutions, even
though total payments to all generators tend to be relatively
close. The high settlement cost of unit 1 in some of the LR so-
lutions, for example, reflects the fact that unit 1 is started up in
these solutions and must be given a supplemental make-whole
payment, but because it displaces another unit, the impact on
total settlement costs is small.

6Using our notation from before, if a generator’s revenues resulting from its
commitment and dispatch is given by R and its offer-based costs of generating
according its commitment and dispatch is given by é, then its make-whole pay-
ment will be/glax{ 0, &¢— R}, which ensures that the generator’s net offer-based
surplus is NS = R — é 4 max{0,é — R} > 0.

Mean Max Min cv
1 0.00 7,967.03 14,485.50 0.00 0.80
2 59,887.67 60,006.78 60,380.20 59,965.29 0.00
3 11,800.00 12,259.62 15,400.00 11,832.53 0.09
4 638,994.42 552,554.96 559,340.71 535,352.53 0.01
5 0.00 36,270.18 51,557.40 17,585.80 027
All 17,283,791.33 17,643,817.52  17,719,380.91 17,567,988.90  0.00

An added benefit of including a make-whole provision is that
it can help to “smooth out” the payoff differences between the
LR solutions and MIP optimum and reduce the volatility of
the LR payoffs by truncating the distribution at zero. More-
over, when compared to the MIP optimum, LR solutions gener-
ally commit the correct baseload and mid-merit units and differ
mainly in the dispatch of marginal units. Because a marginal
unit often receives little inframarginal energy rents and requires
make-whole payments, the net offer-based surplus of such a unit
is zero regardless of whether it is committed in an LR solu-
tion. As such, if the stated cost in the offers of these marginal
units reflect their actual costs, then these marginal units which
must be made whole will break even, regardless of whether
or not they are committed. Table IV presents summary statis-
tics comparing the absolute value of differences in net offer-
based surplus to individual generators between each LR solution
and the MIP optimum, with and without make-whole payments.
The results show that when measured on a per-MWh-gener-
ated basis, the make-whole payments reduce the difference in
and variability of payoffs, both by truncating the distribution
and smoothing out net payoffs to near-marginal units. When
looking at total surplus, the average in the deviations is reduced;
however, the maxima are not affected since some units receive
much higher payoffs under the LR commitment than under the
MIP-optimum, which would not be affected by a make-whole
provision. Importantly, comparing across the 11 LR solutions,
we see that with a make-whole provision, the payoff differences
are on average the same (with the one exception of solution 4),
despite nontrivial differences in the optimality gap of the LR so-
lutions, indicating that with regard to the equity of generators’
offer-based surplus, there are only modest gains from closing
the optimality gap of a near-optimal LR commitment.

2) Energy Pricing: Because an LR solution generally yields
a suboptimal commitment, it is possible that the energy prices
found in the least-cost dispatch will be “incorrect” in the sense
that they do not reflect the correct marginal cost of dispatch from
a least-cost commitment. Such commitment and the resulting
pricing errors have the potential to affect generator incentives,
send incorrect price signals to market participants, and leave
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TABLE IV
ABSOLUTE VALUE OF UNIT OFFER-BASED SURPLUS DEVIATIONS BETWEEN LR SOLUTIONS AND MIP OPTIMUM
($/MWh) (

Without Make-Whole Payments ~ With Make-Whole Payments =~ Without Make-Whole Payments ~ With Make-Whole Payments
Solution Mean  Max cv Mean Max cv Mean Max cv Mean Max cv
1 61.19 94224  3.66 0.33 468 1.76 1,605.50  26,950.13 2.54 972.35 26,950.13  3.59
2 71.92 94592 338 0.33 480 1.79 1,716.95  26,950.13  2.42 972.63 26,950.13  3.59
3 73.66  939.30 3.31 0.33 4.80 1.79 1,686.54  26,950.13  2.43 972.63 26,950.13  3.59
4 57.46 94355 333 0.39 480 1.61 1,806.36  33,641.06 2.63 1,225.27  33,641.06 3.56
5 7.28 952.56  8.20 0.33 4.80 1.79 1,404.04  26,950.13  2.82 972.63 26,950.13  3.59
6 7190 94592  3.38 0.29 4.54 1.80 1,604.52  23,556.04 2.41 845.49 23,556.04  3.60
7 73.64 93930 3.31 0.29 4.54 1.80 1,574.11  23,556.04 2.42 845.49 23,556.04  3.60
8 5.57 353.56  5.00 0.29 4.54 1.80 1,261.20  23,556.04 2.87 845.49 23,556.04  3.60
9 6295 93194 356 0.29 454  1.80 1,462.95  23,556.04 2.49 845.49 23,556.04  3.60
10 61.22 94224 3.66 0.29 454 1.80 1,493.36  23,556.04 2.48 845.49 23,556.04  3.60
11 5.60 353.56 497 0.33 480 1.79 1,373.63  26,950.13  2.87 972.63 26,950.13  3.59
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Fig. 1. LR and MIP prices.

uncommitted generators who would be “in the money” out of
profitable dispatch. Moreover, these pricing errors can further
confound the deviations in generator payoffs.

Fig. 1 plots the load profile for our test problem, the MIP-op-
timal energy prices, and energy prices from the LR commit-
ments. In 22 of the hours, the prices in the LR solutions are
identical to one another and the range of the prices are plotted
for the other 2, which show little variability. Furthermore, the
LR prices are the same as the MIP-optimal prices in ten of the
hours, indicating that our LR algorithm is capable of dispatching
the “correct” marginal unit in some hours. There is, however, a
large deviation in hour 19 with the LR commitments yielding
energy prices which are more than $45 higher than the corre-
sponding MIP-optimal price. Importantly, this mispricing ap-
pears in all our LR solutions—even the ones with smaller op-
timality gaps—reflecting the fact that such errors can occur in
general, regardless of the size of the duality gap. One of the is-
sues of such mispricings is that it further confounds the issue of
payoff deviations resulting from LR solutions. Unit 3 in Table II,
for instance, receives its MIP-optimal commitment and dispatch
in most of the LR solutions, yet because much of its generation
is dispatched in hour 19, it runs at a net offer-based gain in the
LR commitments whereas it should run at a net loss in the MIP
optimum from linear energy-only payments.

payoff is dependent not only on it receiving its correct commit-
ment but also on the commitments of other units. Moreover, be-
cause the LR dual solution is generally primal-infeasible, the
marginal unit in some hours may be determined by the feasi-
bility heuristic, meaning the final set of energy prices can be
sensitive to the specifics of the heuristics utilized in restoring
feasibility of the dual solution. In our simple model with fixed
loads, these mispricings represent wealth transfers between sup-
pliers and consumers, meaning there are no welfare losses from
the prices themselves.” In a more general setting with price-
elastic demand, transaction, or virtual bids, such mispricings
could cause efficiency losses both from prices being too low,
which could result in inefficient trade, or prices being too high,
which could result in efficient trades being priced out of the
market.

B. MIP Implementation

Although recent computational and algorithmic advances
make direct solution of the unit commitment by B&B tractable,
ISOs cannot currently solve their commitment problems
to complete optimality within the allotted timeframe. Most
ISOs, upon receiving generation offers and other market data
day-ahead, must return commitments and a schedule to gen-
erators within a few hours. The formation of these schedules
oftentimes requires solving multiple unit commitment, OPF,
and other optimization problems. As such, ISOs which have
implemented or are proposing to use MIP in their unit com-
mitment set limits on the solution time and rely on the best
integer-feasible solution found at the end of that time. Although
ISOs boast their ability to find feasible solutions with minuscule
optimality gaps, if an ISO is left to rely on an intermediate
integer-feasible but suboptimal solution, the same issues of
generator payoffs, energy pricing, and inequity of the resulting
dispatch arise as with suboptimal LR commitments.

Table V summarizes the progression of the MIP optimizer in
CPLEX 9.120 solving our simple unit commitment with the de-
fault settings. The problem was formulated using AMPL 10.100
using default presolver settings. We note that unlike commer-
cial MIP-based unit commitment software packages, we did not
fine-tune the formulation of the problem, the settings in CPLEX,

7Although the payments are wealth transfers which do not incur consumer
welfare losses, the suboptimal commitment and dispatch of the system obvi-
ously results in productive efficiency losses.
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TABLE V
PROGRESSION OF INTEGER-FEASIBLE SOLUTIONS FOUND IN B&B TREE OF SIMPLE UNIT COMMITMENT PROBLEM WITH MAKE-WHOLE PAYMENTS

Total Cost ($)

MIP Gap (%)

Absolute Value of Unit Offer-
Based Surplus Deviations ($/MWh)

Solution Mean Max cv
1 8,074,400.39 0.0049275 0.00 0.02 1.56
2 8,074,045.70 0.0005345 0.00 0.00 n/a
3 8,074,020.25 0.0002192 0.00 0.00 n/a
4 8,074,014.91 0.0001531 0.00 0.00 n/a
5 8,074,003.06 0.0000063 0.00 0.00 n/a
TABLE VI TABLE VII
PROFITABILITY OF SELECT UNITS UNDER OPTIMAL AND ENERGY PRICES OF INTERMEDIATE SOLUTIONS
INTERMEDIATE B&B SOLUTIONS OF SIMPLE UNIT COMMITMENT FOUND IN BRANCH AND BOUND TREE
‘WITH LINEAR ENERGY PAYMENTS ONLY
Energy Price of Solution ($/MWh)
Unit || MIP Offer-Based Suboptimal MIP Solution Hour | 1 2 3 4 5 Optimum
Surplus ($/MWh) Offer-Based Surplus ($/MWh) 2 45.84 4430 4430 4430 4430  44.30
Mean Max Min ov 11 11495 6449 5972 5972 59.72 59.72
3 0.00 102,61 10070 -10549  -0.03 23 48.96 50.24 4896 50.24 50.24 50.24
7 -90.70 -72.56 0.00 -90.70 -0.56
8 -90.70 -18.14 0.00 -90.70 -2.24
All || 30.06 30.06 30.08 30.06 0.00 summarizes the progression of integer-feasible solutions found

or introduce problem-specific cutting plane algorithms to im-
prove the solutions or solution times of the problem.8 CPLEX
finds five intermediate suboptimal integer-feasible solutions, all
of which have smaller optimality gaps than our LR commit-
ments. Moreover, should the ISO use one of the intermediate
solutions but include a make-whole provision, the net offer-
based surplus to each unit is identical to that under the MIP
optimum in all but the first solution, with the largest deviation
being $0.02/MWh in the first solution.

Table VI shows that should the ISO not include a make-whole
provision, then the surplus of individual units can differ between
the suboptimal solutions and the MIP optimum, indicating inter-
mediate solutions from a B&B algorithm will suffer the same
issues as LR commitments, regardless of the size of the opti-
mality gap. Units 7 and 8, for instance, are identical in terms of
the stated cost and operating constraint parameters in their of-
fers, and they receive the exact same commitment and dispatch
in the MIP optimum but are given different commitments and
dispatches in every intermediate MIP solution.

Table VII shows that as with suboptimal LR commitments,
the intermediate MIP solutions can also yield incorrect energy
prices due to an incorrect dispatch. With our simple problem,
there are only differences in three of the hours and only in the
first three solutions—energy prices in all other hours equal the
MIP-optimal prices in all the intermediate solutions, and the last
two intermediate solutions had the same energy prices as the
MIP optimum. Nonetheless, the first solution, the optimality gap
of which is a fraction of a percent, yields an energy price in hour
11 which is nearly twice the MIP-optimal price.

Although our results show that when the market includes
make-whole payments the intermediate solutions to our unit
commitment problem have virtually eliminated the generator
payoff issues prevalent with LR commitment, the formulation
used is a simplification of any actual unit commitment solved by
an ISO and excludes many important system details. Table VIII

8We did set the integrality and optimality gap tolerances to zero in order to
ensure the final solution given by CPLEX is indeed the MIP-optimum.

by CPLEX in solving ISONE’s complete unit commitment
problem, which includes virtual, transaction, and demand bids,
time-dependent startup costs, stepped generation costs, mul-
tiple types of ancillary service requirements, and a dc-load flow
model. Due to the inclusion of the demand bids, the problem is
formulated to maximize total social surplus from energy traded.
The problem is once again formulated using AMPL 10.100 and
solved by CPLEX 9.120 using default settings except that the
integrality and optimality tolerances in CPLEX were set to zero
to ensure the final solution given is the MIP-optimum. CPLEX
iterates through 38 suboptimal integer-feasible solutions before
finding the MIP optimum.

As the table clearly highlights, complex unit commitment
formulations, which are more reminiscent of the actual prob-
lems which must be solved by ISOs, still present market de-
sign issues, even when solved using a B&B algorithm. Solutions
which are a minuscule fraction of a percent away from optimal
nonetheless result in different payoffs to individual generators.
Moreover, the progression of solutions shows that the surplus
deviations are not a decreasing function of the size of the opti-
mality gap. Solution 17, for instance, gives generator surpluses
which are on average within $0.04/MWh of the MIP optimum,
yet the next four solutions, all of which have smaller optimality
gaps, result in larger average and maximum surplus deviations.

Just as with the suboptimal LR commitments, intermediate
solutions found by CPLEX in solving the MIP to optimality can
lead to energy pricing errors, with some extreme cases of the in-
termediate prices being more than 10% from the MIP-optimal
prices. Although our unit commitment model included network
flow constraints, none were binding in the optimum or in any of
the intermediate solutions, and as such, the locational marginal
prices were identical across the network. Table IX summarizes
the range of energy price deviations between the 38 interme-
diate solutions and the MIP optimum, showing again that so-
lutions which are a millionth of a percent away from optimal
can nonetheless have substantive price differences. Moreover,
the size of the deviations is not monotone in the size of the opti-
mality gap, as shown by comparing solution 31 to all the inter-
mediate solutions found after it.
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TABLE VIII
PROGRESSION OF INTEGER-FEASIBLE SOLUTIONS FOUND IN B&B TREE OF COMPLETE UNIT COMMITMENT PROBLEM WITH MAKE-WHOLE PAYMENTS

Optimality Absolute Value of Unit Offer-
Total Surplus Gap (%) Based Surplus Deviations ($/MWh)

Solution Mean Max cv

Optimum 10,873,267.23

1 10,743,126.26  0.011968893 | 0.44 3.07 139

2 10,780,344.54  0.008545977 | 0.49 297 138

3 10,791,726.53  0.00749919 0.71 3.64 137

4 10,836,621.47  0.003370262 | 0.62 254 137

5 10,837,058.63  0.003330057 | 0.59 243 137

6 10,837,740.91  0.003267309 | 0.76 3.01 1.37

7 10,837,952.97  0.003247806 | 0.76 3.01 1.37

8 10,839,184.76  0.00313452 0.73 291 1.37

9 10,839,379.80  0.003116582 | 0.66 3.04 137

10 10,839,458.47  0.003109347 | 0.71 3.04 137

11 10,839,613.51  0.003095088 | 0.69 294 137

12 10,839,764.98  0.003081158 | 0.67 2.88 137

13 10,842,307.12  0.00284736 0.25 1.04 1.38

14 10,859,035.14  0.001308906 | 0.19 0.82 1.38

15 10,859,165.69  0.0012969 0.20 0.85 138

16 10,859,165.78  0.001296892 | 0.19 0.82 138

17 10,859,280.44  0.001286347 | 0.04 032 146

18 10,863,244.27  0.000921798 | 0.19 0.84 138

19 10,866,290.84  0.000641609 | 0.17 413 1.90

20 10,866,499.64  0.000622406 | 0.20 561  2.06

21 10,866,761.13  0.000598357 | 0.19 430 1.81

22 10,870,211.13  0.000281065 | 0.04 441  6.90

23 10,871,577.89  0.000155366 | 0.23 1.67 141

24 10,871,675.08  0.000146428 | 0.23 1.81 1.41

25 10,871,987.07  0.000117735 | 0.25 137 1.39

26 10,872,163.04  0.000101551 | 0.27 144 139

27 10,872,312.67  0.00008779 0.22 435 171

28 10,872,789.77  0.000043911 | 0.24 392  1.60

29 10,872,868.80  0.000036643 | 0.23 2.01 1.42

30 10,872,961.30  0.000028136 | 0.01 0.79 434

31 10,872,961.38  0.000028129 | 0.01 073 745

32 10,872,995.32  0.000025007 | 0.03 020 1.39

33 10,872,995.41  0.000024999 | 0.02 0.14 141

34 10,873,156.39  0.000010194 | 0.26 1.08 1.38

35 10,873,156.48  0.000010186 | 0.25 1.03  1.38

36 10,873,193.80  0.000006753 | 0.24 099 138

37 10,873,256.39  0.000000997 | 0.02 0.11 1.40

38 10,873,267.14  0.000000008 | 0.01 0.07 141

TABLE IX
PERCENT DIFFERENCES IN ENERGY PRICE DEVIATIONS BETWEEN INTERMEDIATE INTEGER-FEASIBLE SOLUTIONS AND MIP OPTIMUM

Solution | Mean Max Min Solution | Mean Max Min
1 227% 7.13% -2.36% 20 0.89% 5.03% -2.08%
2 2.51% 9.87% -4.40% 21 0.89% 5.03% -2.08%
3 3.65% 10.22%  -2.08% 22 0.14% 5.03% -3.03%
4 3.17% 10.22%  -3.44% 23 1.18% 5.03% -1.83%
5 3.05% 10.22%  -3.44% 24 1.21% 5.03%  -1.06%
6 3.90% 10.40%  -5.08% 25 1.33% 5.03% -1.83%
7 3.90% 10.40%  -5.08% 26 1.41% 5.03% -0.47%
8 3.81% 10.22%  -2.08% 27 1.10%  4.60% -1.83%
9 331% 10.22%  -5.08% 28 1.20%  4.60% -0.47%
10 3.60% 10.22%  -5.08% 29 1.20%  4.60% -0.47%
11 3.48% 10.22%  -5.08% 30 0.04% 143%  -0.47%
12 3.38% 10.22%  -5.08% 31 -0.02%  0.00%  -0.47%
13 1.29%  4.60% -4.40% 32 0.17% 3.13% -0.47%
14 1.00%  4.60% -4.40% 33 0.11% 3.13%  -0.47%
15 1.05%  4.60% -4.40% 34 135%  4.60%  0.00%
16 1.00%  4.60% -4.40% 35 1.29%  4.60%  0.00%
17 -0.19%  5.03% -7.19% 36 1.23%  4.60% -1.06%
18 1.03% 5.03% -7.19% 37 -0.13%  0.00%  -3.03%
19 0.77% 5.03% -4.40% 38 0.06% 1.43%  0.00%

III. CONCLUSION

We have revisited some of the issues raised by Johnson ef al.
[1] surrounding the design and implementation of a centralized
unit commitment. We demonstrated that different near-, but
sub-optimal commitments from an LR or B&B algorithm can
result in different payoffs to individual generators, calling into

question the incentive properties of a market with centralized
unit commitment. We further showed that the suboptimal com-
mitments will generally yield incorrect energy prices, which
will present additional efficiency implications in a market with
price-responsive demand. With an LR algorithm, these mis-
pricings can be further seen as nontransparent or “black-box”
pricing insomuch as these energy prices will be determined
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by the marginal unit in each hour which is often found by the
feasibility heuristic, which may be viewed as opaque, arbitrary,
or convoluted.

We showed that make-whole payments can reduce the
problem of generator surplus differences. Make-whole pay-
ments help to smooth out the net offer-based surplus earned by
near-marginal units, and if the stated costs of these units reflect
actual costs, these units would be indifferent between receiving
their optimal commitments with make-whole payments or not
being committed. While the use of a B&B algorithm which
could solve the problem to complete optimality can, in theory,
overcome these issues entirely, this is as of yet intractable.? If
the ISO must, instead, rely on an intermediate near-optimal
solution, we demonstrated the same issues of surplus and price
differences will arise, even with solutions which are a fraction
of a percent away from optimal.

As such, one should expect the issues raised by Johnson
et al. [1] to remain in centrally committed markets, regardless
of the solution technique used. Moreover, our results showed
that payoff and price deviations are not monotone in the size
of the optimality gap—which is contrary to common belief.
Guan et al. [8] state, for example, that the 1%—2% duality gaps
achieved with LR were sufficient for monopoly utilities but that
the development of competitive markets in which generators
compete to provide their products has increased the need for
more accurate unit commitment solutions. Our results show,
however, that this market design issue will loom, regardless of
how accurate the unit commitment solution is, unless an op-
timum can be found. As such, even though the B&B algorithm
can typically achieve smaller optimality gaps than LR, this does
not guarantee that the equity issues will be “smaller” under
MIP than LR. Overall, our results demonstrate that centralized
markets in which the ISO makes binding commitment decisions
will suffer from the issues raised by Johnson ef al. [1], which
cannot be fully addressed with current computational limits.

APPENDIX
PROBLEM FORMULATION

The simple unit commitment formulation used in our com-
parison of MIP and LR solutions is presented. We first define
the following notation:

Problem Parameters

e [: generator index set

e T': number of planning periods

* SU;: startup cost of unit 7’s offer

e N;: no-load cost of unit 7’s offer

* MC;: marginal generating cost of unit 7’s offer

* K, : minimum generating capacity of unit 7’s offer

e K j’ : maximum generating capacity of unit ¢’s offer

* R;: maximum ramp rate of unit ¢’s offer

* SP;: maximum spinning capacity of unit ¢’s offer

* n;: minimum up-time of unit ¢’s offer

9Similarly, if an LR algorithm could yield a MIP-optimal commitment, then
these issues would be resolved.

* f;: minimum down-time of unit ¢’s offer

* Dy: load forecast in period ¢

* p:percentage of load which must be available in additional
spinning reserves

Decision Variables

* ;. generation provided by unit ¢ in period ¢

* 1, ¢: spinning reserve provided by unit ¢ in period #

* ;4 binary variable indicating if unit ¢ is up in period ¢

* s;: binary variable indicating if unit 4 is started in period #

* h;: binary variable indicating if unit 7 is stopped in period
t

The problem is formulated as minimizing total commitment

costs:

min
q,mu,s,h <
2,t

(MCiqix + Niuiy + SU;Sit)

subject to load-balance:

ZQi,t =1, vVt

K2

spinning-reserve requirement:

Z(Qi,t +7i4) > (14 p), Vi

i
unit minimum-load requirement:

K uis <qiy, Vi, t

unit maximum-load requirement:

Gt +rie < Kfuig, Vit

unit spinning capacity:

0<rit <SPuiy, Vit

unit ramping limit:

—R; < qiy — qip—1 < Ry, Vit

unit minimum up-time:

t

>

T=t—mn;+1

Si,T S Uit VLt

unit minimum down-time:

t
Z hi,T S 1- Uity VLt
T=t—fi+1
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startup definition:

Sit > Wiy — Uip—1, Vit

shutdown definition:

hig > wip—1 — iy, Vit

and variable integrality:

Wity Sity hi,t S {07 1}7 v ivt

constraints.
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