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Abstract We present an empirical analysis of a supply function equilibrium
model in the Texas spot electricity market. We derive conditions for optimal
bidding behavior in a spot market with ex ante bilaterally contracted sales. By
estimating costs, we are able to derive a set of ex post-and ex ante-optimal
supply functions and use a non-parametric behavioral model to compare our
theoretically optimal supply functions to actual offers made. Our results show
that with the exception of the largest generators, firms make offers with mark-
ups and markdowns far in excess of what a model of profit-maximizing behavior
suggests.

Keywords Electricity markets · Supply function equilibrium · ERCOT ·
Market power

1 Introduction

With the recent move towards liberalized electricity markets, there has been a
need for economic theory to predict behavior in and performance of restruc-
tured markets. Industrial organization gives a wide variety of equilibrium mod-
els based on varying behavioral assumptions, which have been used to this
end. Proponents claim this type of modeling can provide market participants a
means of evaluating their past bidding behavior, market monitors a means of
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examining the efficiency of their markets, and regulators a means of comparing
different market designs. Klemperer and Meyer’s (1989) supply function equi-
librium (SFE) model is often touted as a good model of spot electricity markets
because it encapsulates the underlying structure of the market well. This can be
seen in there being many applications of the model to predict market perfor-
mance, Green and Newbery (1992), Newbery (1998), and Green (1996) being
some of the seminal studies in this area.

In spite of the myriad applications of the SFE model, there has been lim-
ited empirical analysis showing the soundness of the model in characterizing
actual firm behavior. For example, Wolfram (1999) and Kim and Knittel (2004)
attempt to provide this analysis for conjectural variations type models, show-
ing them to generally be uninformative. In this paper we use historical offer
data from years 2002 to 2003 in the spot Balancing Electricity Service (BES)
market administered by the Electricity Reliability Council of Texas (ERCOT)
to test the behavioral predictions of an SFE model. Our work is related to
that of Hortaçsu and Puller (2005) and Niu (2005). Hortaçsu and Puller con-
duct an empirical analysis of the BES market by applying Wilson’s (1979)
share–auction model and assuming each firm’s contract price and position is
private information. Their share–auction model is more robust than a standard
SFE due to its allowing firms to have this private information. To make their
model analyzable, however, they make an assumption that each firm’s optimal
supply function will be additively separable and linear in the private informa-
tion (AS-LPI). This assumption essentially amounts to rivals’ private contract
information entering a firm’s profit function as a horizontal shift in its residual
demand curve, and their model becomes a standard SFE, yielding the same
inverse-elasticity markup rule. In their analysis they calculate each firm’s ex
post-optimal supply function (EOSF), which is the firm’s optimal response to
the actual offers of its rivals, and test for consistency of the model by comparing
actual to potentially achievable profits. Their results show the large incumbent
utilities to perform moderately well while most of the smaller power generating
companies (PGCs) submit supply functions which are too ‘steep.’ They then
show the efficiency losses from this observed behavior—both from the large
PGCs exercising their market power and the small PGCs withholding their
generation from the market. Niu analyzes a linear SFE model by comparing
the actual market-clearing price for energy (MCPE) to that which would result
from her theoretically profit-maximizing benchmark. Her results show actual
prices match her theoretical predictions well when the BES clears for incremen-
tal energy, but there is a large gap when it clears for decremental service. These
two studies of the BES focus their analyses primarily on market outcomes. We
take a different approach, which is to compare the entire range of the actual
and optimal offer curves. Moreover, we conduct our analysis by comparing
both EOSFs as well as a set of Nash equilibrium supply functions for what we
term the strategic bidders in the market. Our results turn out to be similar to
the aforementioned studies, showing the two large PGCs (TXU and Reliant
Energy) to submit offer curves which are somewhat consistent with our derived
EOSFs. The next largest PGC, Calpine, offers with markups which are far in
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excess of what our ex post-optimal analysis predicts. By comparing Calpine’s
offers across different time periods, we provide evidence suggesting that these
high markups are largely due to a period of learning during the first quarter of
2002. As for the other PGCs, we find that they submit offer curves which are too
‘steep,’ with markups and markdowns far in excess of our model’s predictions.
We provide evidence suggesting that these excessively high offers are meant to
economically withhold their generation from the balancing market. Finally, by
restricting our analysis to the three large PGCs and calculating Nash equilib-
rium supply functions for these firms alone, we show that the SFE model does
a relatively good job of characterizing the bidding behavior of what we term
‘strategic bidders’ for incremental balancing energy offers.

The remainder of this paper proceeds as follows: Sect. 2 describes the ER-
COT markets and specifically the BES spot market. Sect. 3 discusses our supply
function model of the BES market, our assumptions underlying the model, and
the methodology for deriving our EOSFs. In Sect. 4 we present our econometric
analysis comparing actual supply functions to our calculated EOSFs, and discuss
some findings of learning and economic withholding by various PGCs. Sect. 5
presents our methodology for deriving Nash equilibrium sets of ex ante-optimal
supply functions, and compares these to the actual offers of what we term the
strategic bidders in the market. Sect. 6 concludes our analysis, discusses some
implications for the efficient design of spot balancing markets, and highlights
some of the issues underlying the use of supply function models by regulators
in market monitoring and design.

2 The ERCOT electricity markets

ERCOT acts as the system operator for the NERC region by the same name,
which covers most of southern and central Texas.1 Restructuring efforts in
ERCOT began to take hold in 2001, with market-based trading and dispatch
beginning in late 2001. Wholesale electricity trading, procurement of ancillary
services, and reliability are achieved both through bilateral action on the part of
market participants and a number of centrally operated energy markets, with
the bulk of wholesale electricity traded bilaterally between parties. Prior to each
day, market participants submit resource and obligation schedules to ERCOT
through Qualified Scheduling Entities (QSEs). The QSEs are meant to act as
intermediaries between stakeholders and the system operator, and they also
act as aggregators for smaller generators and utilities—by allowing multiple
firms to submit schedules and bids through a single QSE. For example, in 2001
the same QSE submitted schedules and bids for both Reliant Energy and City
Public Service of San Antonio.

Invariably, suppliers and consumers of electricity would need a market
through which to buy and sell excess energy, since load forecasts are never

1 A small portion of western Texas is part of the WECC, northern Texas is part of SPP, and the
region east of Houston is part of SERC.
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exactly correct and to account for real-time contingencies such as line or
generator outages. The BES is meant to serve as this spot market in which
PGCs—through their QSEs—can submit bids to increment (inc) and decrement
(dec) their generation. Up until mid-2002, QSEs were required to submit bal-
anced day-ahead schedules. This balanced schedule requirement was intended
to discourage the use of the BES as a market to procure baseload resources,
and help ensure that the PGCs and load-serving entities (LSEs) faithfully use
it only as a market of last resort in which to procure balancing energy. Since
the balanced schedule requirement has been dropped the BES now averages
slightly higher balancing sales than it used to, although it is still used mainly
as a balancing market, with typically only 3–5% of total sales traded in the
market. The market itself operates much like a commodity spot market. For
each hour, PGCs submit price/quantity offers specifying the amount of energy
they are willing to inc or dec at a given price, subject to a $1,000 price cap.2

Absent transmission constraints, the market clears as a single power pool—ER-
COT aggregates the offers into a supply curve, and for each 15-minute interval
intersects an essentially price-inelastic demand for balancing energy3 with the
supply curve to determine the least-cost dispatch and a uniform MCPE. Partic-
ipation in the BES market is voluntary, with the exception of a regulatory rule
imposed by the Public Utility Commission of Texas (PUCT) that all QSEs are
required to offer to decrement at least 15% of their scheduled energy at any
price within the price caps. The PUCT’s rationale behind this requirement was
to ensure that adequate decremental energy is available due to a fear that the
QSEs would overschedule resources day-ahead.

Given the basic characteristics of the BES, an SFE-type model should be a
theoretically sound representation. SFE assumes firms commit themselves to
supply functions—which is the equivalent of submitting quantity/price offers.
The market clearing mechanism intersects the aggregate supply of the firms with
the market demand function, which need not be price-elastic. In reality, gen-
erators will have excellent information regarding their competitors. Operating
costs are relatively easy to estimate using engineering techniques; the marginal
generating cost of a fossil-fuel driven plant can be estimated from its heat rate
(a measure of its thermal efficiency), which can be determined by combining
institutional knowledge and a variety of commercial sources of heat rate infor-
mation. Given that we as academicians were able to estimate these costs, it is
no leap of the imagination to assume that generators can do it as well. As for
the actual operating status of a rival’s plants, a PGC will see a brief fluctuation
in the power grid’s voltage and frequency if a large generator is taken offline.
Moreover, there are firms that monitor the operational status of plants and sell
this information on a real-time basis. Thus, a PGC should be able to predict
which of its rival’s plants are operating at any given time. Finally, generators

2 Note that negative offer prices are allowed, primarily for decremental energy, with a price floor
of −$1000.
3 Although ERCOT does allow demand-side bids, so few are submitted at such high prices that
balancing load is for all intents and purposes price-inelastic.
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interact in the BES market on an hourly basis everyday. This repeated interac-
tion essentially makes this an infinite-horizon repeated game. The SFE model
assumes that firms play Nash equilibrium strategies, which is often an unre-
alistic assumption in single-shot games due to bounded rationality of players,
difficulty in predicting rivals’ behavior, and other cognitive and behavioral lim-
itations of the parties involved. Due to the repeated nature of the BES market,
it is possible that even if generators would not play Nash equilibrium strategies
in a single-shot game, they may be able to converge towards a Nash outcome
through the repeated interaction and its associated learning effects.4

3 A supply function model of the ERCOT BES

Based on the inherent characteristics of the ERCOT BES market it is a common
belief that an SFE-type model should well describe the behavior of the firms
involved. The specific model we use is an SFE which takes into account the
contracted supply position of each generating firm, while allowing for uncer-
tainty in demand for balancing energy. Our derivation shows that contractual
obligations affect optimal bidding only through the quantity contracted and not
the contract price.5

3.1 Derivation of supply function model

To derive generator i’s optimal offer curve, we solve its profit-maximization
problem for any realization of system load. We define the notation sj(p) to be
firm j’s supply function—specifying quantity supplied at each price—cj(qj) to
denote firm j’s total cost function, QDA

j to be the quantity that firm j has contrac-

tually obligated itself to supply at the contracted price, pC
j ,6 and D(p, ε) to be

the stochastic market demand for balancing energy. We assume that this market
demand has the separable form D(p, ε) = D(p) + ε, in which D(p) is a deter-
ministic function of price, and ε is a random shock with support ε ∈ [εmin, εmax].
Firm i’s objective is to maximize its profits:

4 It it worth noting that the repeated interaction in the BES does also allow for supergame equilib-
ria, especially a multitude of cooperative or collusive equilibria in which suppliers raise the MCPE
above what would result from repeated stage-game Nash behavior. Based on our analysis of bidding
behavior, however, we do not believe this to be the case in the BES.
5 Specifically, our derivation shows optimal offers in the BES are independent of the contract price
so long as that price is not a function of the MCPE. Because bilateral contracts are meant to hedge
against spot price volatility, contracts generally exhibit this type of price independence.
6 Because only the contract position and not the price affects the profit-maximizing behavior
of a firm in the BES market, we assume a single contract price for notational ease. One could
reformulate the problem with multiple contract prices, although the result would remain the same.
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where RDi(p, ε) = D(p) + ε − ∑
j �=i(sj(p) + QDA

j ) is firm i’s residual demand
function, for any possible realization of ε. Note that we have specified forward
contracts to settle as contracts for differences based on the prevailing MCPE
in the BES market. Firm i sells all its generation through the BES market and
reimburses (or is reimbursed by) its contract counterparties for the difference
between the ex post realization of the BES MCPE and the contracted price.
Differentiating Eq. 1 and setting the result equal to zero gives the first-order
necessary condition (FONC) for firm i’s profit-maximization problem:

p − c′
i(RDi(p, ε)) = −RDi(p, ε) − QDA

i
∂
∂p RDi(p, ε)

. (2)

Given the offers of its rivals, the FONC in (2) is a differential equation character-
izing firm i’s optimal choice of p for each possible ε. Moreover, our specification
of the profit function as a contract for differences implicitly defines a boundary
condition on this differential equation. If RDi(p, ε) = QDA

i (firm i has zero
dispatch in the BES), then p = c′

i(RDi(p, ε)). Furthermore, if firm i’s rivals bid
non-decreasing supply functions (which they must in the BES), we will have
∂
∂p RDi(p, ε) < 0. This then gives us RDi(p, ε) > QDA

i �⇒ p > c′
i(RDi(p, ε))

and RDi(p, ε) < QDA
i �⇒ p < c′

i(RDi(p, ε)), i.e. each firm will markup its inc
offers above marginal cost, and markdown its dec offers below marginal cost.
When a PGC is dispatched to inc generation, it is paid the MCPE and incurs
the marginal generating cost of increasing output. Symmetrically, if a PGC is
dispatched to dec, it foregoes the cost of generation but must pay ERCOT the
MCPE (it essentially ‘buys’ its scheduled generation back from ERCOT). Thus,
the markup and markdown rules implied by Eq. 2 make intuitive sense.

3.2 Assumptions and data

Derivation of optimal supply functions requires data on generation costs of the
firms. Implicit in our derivation is that firms decide their bidding at a firm-wide
level—as opposed to generation plants or units making individual offer deci-
sions. Our analysis is confounded by an identification problem due to the QSE
relationships between firms. A number of PGCs interact with ERCOT through
a QSE which is used by other PGCs. In most cases, however, the schedules of
individual PGCs can be identified because their generation assets and bids are
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Table 1 Individually-identified generating firms

PGC % Gen. Cap. PGC % Gen. Cap.

TXU 22 BP Energy < 1
Reliant Energy 17 Bryan Texas Utilities < 1
Calpine 8 City of Garland < 1
Central Power and Light 6 Rio Nogales Power Project < 1
City of San Antonio Public 6 Tenaska Gateway Partners < 1
Service
City of Austin 4 Cogeneration Lyondell < 1
Lower Colorado River 3 Bastrop Energy Partners < 1
Authority
West Texas Utilities 2 Mirant Wichita Falls Management < 1
Midlothian Energy 2 South Texas Electric Cooperative < 1
Guadalupe Power Partners 2 Brownsville Public Utility Board < 1
Lamar Power Partners 2 AES Deepwater < 1
Brazos Electric Power 1 Gregory Power Partners < 1
Cooperative
Sweeny Cogeneration < 1 Extex Laporte < 1
General
Hays Energy < 1 Denton Municipal Electric < 1
Tractabel Power < 1 Air Liquide < 1
Ingleside < 1

located within a congestion zone where no other PGC sharing the same QSE is
present. Thus, although two PGCs may use a single QSE, if their assets are in
different zones, then the QSE schedules and offers from the two firms can be
distinguished. In some cases, however, multiple PGCs sharing congestion zones
submit offers through a single QSE—in these cases individual offers cannot be
distinguished. We assume that if a single PGC represents more than 70% of
the actual electricity generated within a congestion zone for its QSE, then all
offers and schedules from that QSE within that congestion zone are for that
single firm. As Table 1 shows, we are able to cover the major PGCs and the vast
majority of the bidding assets in ERCOT. Optimal offers for firms which can-
not be identified are not derived, but their actual offers are used in conjunction
with actual system load in deriving the deterministic portion of market demand,
D(p).

To derive each firm’s cost function, we assume that plants in its generation
portfolio are dispatched in economic merit order. Thus, a firm that is generating
5,000 MW will generate its 5,000 cheapest megawatts available. PGCs dispatch-
ing resources out of merit order due to operational or other constraints is not
captured in our analysis. Because of their significant ramping constraints, we
assume nuclear units do not bid strategically and are instead run at 100% of
available capacity. Finally, because of the difficulty in estimating resource avail-
ability, we exclude hydroelectric, wind, and solar plants from the generation
portfolios. We feel justified in making this simplifying assumption since these
renewables constitute less than 5% of ERCOT’s installed generation capacity.
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For fossil fuel-driven plants, we assume that each unit has a constant mar-
ginal cost. The fuel cost is the product of its heat rate and fuel price. We impute
an average heat rate for each month using heat produced and net generation
for each plant as reported in EIA Form 906. For months in which that data
is unavailable, the tested heat rate is used instead. We realize that there is
some endogeneity from using this average heat rate, as it is affected by bidding
behavior through the actual dispatch of a given unit, but since the bulk of gen-
eration is traded bilaterally we believe this effect to be minimal. Fuel prices for
natural gas is estimated using the Henry Hub spot price plus $0.10/mmBTU
for transportation. Although it is common practice for PGCs to contract for
fuel and pay a price different from the spot price, it nonetheless represents the
opportunity cost of burning the fuel. The cost of other fuels are estimated using
the heat content-weighted average of that fuel procured in each given month, as
reported in EIA Form 423. In addition to fuel costs, generators are also subject
to emission fees from both the US Environmental Protection Agency (EPA)
and the Texas Commission on Environmental Quality (TCEQ). The TCEQ
charges each polluting plant the greater of a fixed fee to administer its moni-
toring program and a charge based on actual emissions of pollutants. For plants
paying the fixed fee, we assume no marginal emission cost. For plants subject
to the variable emission-based charges, we estimate the cost per megawatt by
dividing the total charge for the year by the plant’s net generation for the year.
In addition to the TCEQ’s emission program, the EPA charges for SO2 emis-
sions as part of its acid rain program. The program is administered through
an emissions trading program, whereby a polluter must obtain emission credits
for each ton of SO2 emitted. Using TCEQ data, we are able to estimate the
average SO2 output per megawatt-hour generated and multiply that by the cost
of an emission permit as reported by Cantor-Fitzgerald Environmental Trading
Brokerage. Finally, we add an estimated variable operations and maintenance
cost for each plant based on its generating technology.

In determining a firm’s cost of providing inc and dec service, we assume
that all units which had not experienced an outage (as recorded in ERCOT’s
outage scheduler) were available to ramp generation. Thus, we ignore ramping
constraints and any intertemporal constraints on a unit’s on or off time. Tak-
ing account of these constraints would require detailed operational data not
available to us.

Our derivation of the supply function model showed that a PGC’s forward
contract position will affect its profit-maximizing offer function only through the
quantity contracted, QDA

i , and not the contract price. One difficulty in account-
ing for this impact is that, in general, a PGC’s contract position is private
information which is not available to us. In their analysis of the BES, Hortaçsu
and Puller (2005) estimate each PGC’s contract position by counterfactually
applying the boundary condition of Eq. 2, which states that a PGC’s optimal
markup is zero if its imbalance quantity is zero. That is, letting pDA

i be the price
at which PGC i offers zero imbalance sales, if PGC i is submitting offers in
accordance with the supply function model then its contracted quantity should
satisfy c′

i(Q
DA
i ) = pDA

i . Although this method of finding contracted sales is
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correct when PGCs are acting in accordance with the supply function model,
our aim is to analyze the extent to which firm behavior is consistent with the
model and as such would prefer to use a forward contract estimate which does
not require us to assume that PGCs behave as the model dictates. We therefore
follow the approach seen in Niu (2005), which is to use a PGC’s day-ahead
schedule as a proxy for the contract position. Although a generator may wish
to deviate from its contracted sales, we implicitly assume any such deviation
can be implemented through the BES and as such a PGC would schedule its
contracted position.

3.3 Derivation of ex post-optimal supply functions

We begin our analysis by first deriving for each firm a set of EOSFs. That is,
in each bidding period, for each firm, we find a supply function satisfying Eq.
2 for every possible ε, given the actual realized offers of its rivals. We then
compare the actual offers of each firm to our theoretically EOSFs. One reason
for conducting this ex post analysis is to screen-out PGCs whose behavior is far
from optimal in our subsequent evaluation of the Nash equilibrium SFE model.
Qualitative analysis of the offers shows that most PGCs, especially smaller
municipalities, cooperatives, and cogenerators, are reluctant to deviate from
their scheduled generation by participating in the BES. These firms will typi-
cally economically withhold their generation by making offers with substantial
markups and markdowns to minimize the odds of being dispatched except when
there is extremely high demand for BES energy. Because the EOSFs are the
optimal reaction to the actual offers of each PGC’s rivals, it captures the degree
to which a firm is able to anticipate its rivals’ behavior and optimally react,
even when rivals are not Nash players. By excluding these obvious non-Nash
players in our subsequent Nash calculation, we will effectively recognize that
such persistent behavior is accounted for by the strategic PGCs, whose behavior
we try to model with our Nash equilibrium model.

One complication which arises in the supply function analysis is the format of
offers into the BES. The differential equations governing the optimal behavior
of the firms assumes continuously differentiable supply functions. Offers into
the BES, however, are price/quantity pairs defining a step function. ERCOT
limits each QSE to submitting 20 steps for each of the inc and dec side of its
supply function (giving a total of 40 steps) in each bidding period. von der Fehr
and Harbord (1993) raise the issue of step functions confounding an SFE-type
analysis, concluding that only mixed-strategy equilibria will exist. Baldick and
Hogan (2002) argue to the contrary saying that with enough offer points a step
function can closely resemble a continuously differentiable supply function.
While ERCOT allows a total of 40 steps in each offer curve, PGCs actually use
around 5–10 steps, making the argument somewhat tenuous. Nonetheless, in
comparing offer curves, we ‘flatten’ our optimal offer curve into a step func-
tion to make it conform to the actual offer curve submitted. In doing so, we
assume the offer quantities to be fixed, based on those quantities actually used
by the firm. For instance, in the hour ending 3:00am on 4 August, 2002 Tenaska
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Gateway Partners’ offer curve consisted of 10 steps—5 for inc and 5 for dec
service. The inc offers had steps at 625, 626, 650, 651, and 768 MW. In deriving
optimal supply functions we assume that the PGC uses the same offer quantities,
and we flatten the supply function by using the optimal prices at those quantities
in each ‘flat.’ Furthermore, in constructing each firm’s residual demand curve,
the step function format of the offer curves will give a stepped residual demand
function. Since it would be overly zealous to assume that PGCs anticipate the
exact location of these steps, we smooth-out the residual demand curve using a
kernel function as seen, for instance, in Wolak (2003). We estimate the deriva-
tive of the residual demand function using a finite difference method, as direct
differentiation of the kernel function proved highly sensitive with respect to the
choice of the smoothing parameter.

Our period of study is 2002 and 2003, with all bid periods (24 per day)
included. However, assuming the BES clears as a simple power pool requires
that there be no binding transmission constraints. Thus, any hour with a con-
gested transmission line would have to be removed from our sample, since the
BES would clear with multiple MCPEs for each congestion zone. In accounting
for the effects of congestion, we removed any day in which there was any inter-
zonal congestion. The rationale for removing days with any congestion from the
sample is that any anticipation of congestion on the part of PGCs could likely
lead to substantially different behavior on the part of any PGCs with locational
market power. We felt that excluding days with any interzonal congestion (even
in a few of the 15-min-long clearing periods) would, to some extent, control for
such a distortion of the bids.7 This restriction does not, however, allow us to con-
trol for periods in which transmission lines were nearly congested. Again, any
anticipation of congestion in these instances could likely affect a PGC’s opti-
mal offer decision. After excluding congested days, our sample was reduced to
340 days, giving a total of 8,160 bidding periods.

4 Comparison of actual offers to ex post-optimal supply functions

In comparing the actual to optimal offer curves, our approach is to study the
nature of the entire range of the supply function as opposed to using pointwise
tests of optimality, such as those seen in Hortaçsu and Puller or Niu’s study of
the BES. A simple qualitative comparison of the actual and theoretical offer
curves suggests that the supply function equilibrium model is a rather poor
representation of the behavior of most firms. We find that almost all firms offer
dec service with substantial markdowns from marginal cost, which are much
greater than can be explained by our model. Furthermore, most firms overbid
their inc service, with the exception of the two largest power producers: TXU
and Reliant Energy. The third major player in the market, Calpine, submits

7 Our sample selection criterion differs from that in Hortaçsu and Puller who use the same single
hour in each day and exclude hours during which congestion occurred. Thus if congestion occurred
in periods adjacent to the sample period but not during the sample period the sample was not
excluded.
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Fig. 1 Actual and optimal offers example

inc offers which are on average about one order of magnitude greater than ex
post-optimal, although we later show that this is due to substantially overpriced
offers early on in the infancy of the BES market. Figure 1 shows a sample actual
offer curve and EOSF for City of San Antonio. Note that in the particular bid
period shown, inc offers (quantities greater than zero) match rather closely,
whereas the dec offers differ substantially with the offers in the middle of the
curve being marked down more than the optimal and the markdown being less
than optimal for extreme decs.

4.1 Non-parametric model of firm behavior

In order to compare the offers quantitatively we estimate an econometric model
of firm behavior which posits that generators, in making their offers, choose
markups over marginal cost to be some multiple of the theoretically optimal
markup. Defining bi,t(q), b∗

i,t(q), and c′
i,t(q) to be firm i’s actual offers, optimal

offers, and marginal cost function (respectively) in bidding period t, we can
define firm i’s actual and optimal markup in bidding period t as MUi,t(q) =
bi,t(q) − c′

i,t(q) and MU∗
i,t(q) = b∗

i,t(q) − c′
i,t(q), respectively. Our model is then:

MUi,t(q) = φi · MU∗
i,t(q),

where the multiplier, φi, can be thought of as a measure of conduct. A value of
φi close to zero yields zero markup or perfectly competitive behavior. Higher
values of φi would be indicative of more rational profit-maximizing behavior,
with φi = 1 being perfect rationality. Values of φi > 1 would be indicative of a
firm trying to exclude itself from the market, overly zealous exercise of market
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power, collusion, or other behavior which is inconsistent with or not accounted
for by our model.

One possible estimation approach would be to assume the φi parameter fixed
along the range of the supply function, in which case the model could be esti-
mated by standard parametric techniques such as least squares. We believe this
specification would be overly restrictive on firm behavior, by assuming constant
‘conduct’ in bidding throughout their offer curves. The shape of actual offer
curves suggests that some firms opt to ‘hockey-stick’ their supply functions—
offering most of their generation at reasonable prices and a small quantity at a
very high price, giving their offer curve a hockey-stick shape—even more than
theoretically optimal. Furthermore, we find that most PGCs submit dec offers
with extremely high markdowns (suggesting a high value of φi), but some offer
inc bids with more reasonable markups (suggesting a lower value of φi). In view
of such anecdotal evidence against a fixed multiplier, we opt for a model with a
variable conduct multiplier that varies with quantity:

MUi,t(q) = φi(q) · MU∗
i,t(q), (3)

where φi(q) is an unspecified smooth function of the offer quantity, q. In order to
estimate this model, we divide Eq. (3) through by the optimal markup, MU∗

i,t(q),
to yield a standard non-parametric model:

MUi,t(q)

MU∗
i,t(q)

= φi(q) + ηi,t(q), (4)

where the error term, ηi,t(q), with E[ηi,t(q)] = 0 and Var(ηi,t(q)) < +∞, allows
for the fact that a firm may misestimate its rivals’ offers or miscalculate its own
optimal reaction. We estimate the model in Eq. 4 using a Nadaraya (1964)—
Watson (1964) kernel estimator, in which φi(q) is estimated as:

φ̂(q) =
∑N

n=1 K
(q−qn

h

)
φn

∑N
n=1 K

(q−qn

h

) ,

where φn and qn are observed markup ratios and corresponding imbalance
quantity. The function, K(·), is called a kernel or smoothing function, and we
opt for the standard of using the normal density function. The parameter, h,
which is called the window width or bandwidth, controls the weight put on
neighboring observations in estimating φ̂(q). We use an optimal bandwidth,
h∗ = O(N−1/4), which ensures the estimator is consistent.

In order to make offers between different periods comparable we normalize
the offer quantities, q, to be the fraction of the total offer amount that a firm
makes in each given bid period, meaning q is restricted to q ∈ [−1, 1]. For
example, in Fig. 1, San Antonio made 4 inc and 5 dec offers for that hour. Its inc
quantities were for 15, 10, 25, and 25 MW, giving a total offer of 75 MW. Those
bid points would correspond to q = {1/5, 1/3, 2/3, 1}. Symmetrically, the dec
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bids would correspond to values of q ∈ [−1, 0). We make these normalizations
because firms may offer varying absolute quantities in different bid periods, yet
our model attempts to capture how the markup multiplier, φi,t(q), varies along
a firm’s supply function.

4.2 Non-parametric estimates

By using the offer data from each individual firm, we estimate the model in Eq.
4, comparing its actual offers to a supply function which is an optimal response
to the realized offers of its rivals. In making this comparison we seek to deter-
mine the extent to which each PGC can conjecture the actual behavior of its
rivals and optimally react to that conjecture by submitting offers that maximizes
its profits ex post. In general, this could prove to be a complicated task as a
firm would have to predict the behavior of each rival and take account of that
in making its own offer decision. Due to the repeated nature of the interaction,
though, we surmise that over time a rational generator may be able to anticipate
its rivals’ behavior and adjust its pattern of offers to that behavior. As Fig. 1
shows, City of San Antonio has been able to make such an adjustment to some
extent in submitting inc offers which closely match its ex post-optimal supply
function.

Figures 2–4 show the estimated φ̂NP(q) for the three largest PGCs participat-
ing in the BES, along with an asymptotic pointwise 95% confidence interval,
and a φ = 1 line which would correspond to ex post profit-maximizing behav-
ior. In addition, Table 2 summarizes the estimated values and gives upper- and
lower-confidence interval bounds of φ̂NP(q) for the three major PGCs. Table
3 gives summary estimates for the conduct curves of all PGCs. Our estimates
show that with the exception of TXU and Reliant Energy, most PGCs’ markups
are several orders of magnitude above those predicted by our EOSF model.
This result is consistent with anecdotal evidence as well as other analyses of the
BES market.

We note that many of the φ̂NP estimators have a peak in the neighborhood
of q ≈ 0 with a corresponding wide confidence interval band. Recall that offers
with q ≈ 0 correspond to net balancing sales RDi(p, ε) − QDA

i ≈ 0, which our
derived optimality condition implies should have a markup or markdown close
to zero. Thus, the ratio φi = MUi,t(q)/MU∗

i,t(q) will be very sensitive to any
error a firm makes in calculating its offers in this range or in our estimating
a firm’s marginal cost (which is subject to some uncertainty), giving the peak
and the corresponding wide variance band due to the heteroskedasticity of the
errors at q ≈ 0.

The estimates of TXU’s conduct curve show their actual markups to be within
a reasonable multiple of our derived EOSFs, at between 10% and 120% of opti-
mal. This is still somewhat surprising as TXU is a major holder of generating
assets within ERCOT (approximately 22% of nameplate capacity) and often a
pivotal supplier in the BES, which affords it much market power. One possible
explanation for this apparent restraint is the fear of regulatory action. After
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Fig. 2 TXU conduct function estimates

Fig. 3 Reliant energy conduct function estimates

the inception of the BES market, the PUCT has revised the ERCOT tariffs
several times, adding various market mitigation rules such as: a ‘shame-cap,’
which immediately reveals the identity of any QSE submitting an inc or dec
bid into the BES above or below a certain price; and a ‘hockey-stick’ curtail-
ment rule, which Hurlbut, Rogas, and Oren (2004) designed to help mitigate
price-gouging in bid periods where the BES offer stack is exhausted. Moreover,
the PUCT has been under political pressure from advocacy groups to impose
further market-mitigation rules due to the perceived persistence of unjustifiably
high MCPEs. Many of these market-mitigation procedures have been opposed
by the PGCs, including TXU. Part of TXU’s restraint in its bidding behavior
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Fig. 4 Calpine conduct function estimates

Table 2 Summary statistics of conduct function estimators

q −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

TXU
φ̂NP(q) 0.410 0.298 0.155 0.272 0.712 1.247 0.235 0.089 0.109 0.167 0.226
ÛNP(q) 0.446 0.354 0.185 0.360 1.443 2.705 0.758 0.141 0.141 0.192 0.241
L̂NP(q) 0.373 0.242 0.125 0.184 −0.020 −0.211 −0.288 0.037 0.077 0.141 0.210

Reliant Energy
φ̂NP(q) 38.888 22.816 2.702 0.386 0.108 0.141 0.962 0.896 0.875 1.486 2.225
ÛNP(q) 41.24 25.758 4.120 0.606 0.630 0.936 1.548 1.169 1.107 1.843 2.697
L̂NP(q) 36.536 19.873 1.284 0.166 −0.413 −0.654 0.377 0.623 0.644 1.129 1.752

Calpine
φ̂NP(q) 37.851 22.703 13.476 19.051 36.385 33.531 3.637 0.202 0.947 9.775 21.785
ÛNP(q) 65.276 42.197 20.046 24.974 62.567 88.293 23.714 3.239 7.254 32.741 52.15
L̂NP(q) 10.425 3.208 6.907 13.127 10.203 −21.231 −16.441 −2.835 −5.360 −13.192 −8.580

may reflect a form of self-imposed mitigation to keep the MCPE sufficiently
low to try and ward off further regulatory action. Due to TXU’s position as the
dominant PGC in the market, it was a pivotal supplier in many of the bidding
periods in 2002 and 2003, in which case it could have easily set the MCPE at the
price cap of $1,000. Such behavior, however, would have triggered an investi-
gation and potentially regulatory intervention. A second plausible rationale for
TXU’s bidding behavior is the native load served by TXU Energy—a subsidiary
of the TXU Corporation which is one of the largest LSEs in Texas. During the
study period, TXU Energy’s retail rates were frozen by the PUCT, and given
TXU Energy’s large customer base of 2.9 million, an excessively high MCPE
may have actually reduced the holding company’s total profits as it could not
recover the full cost of energy procurement through retail rates. The effect of
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Table 3 Firm conduct estimates for ex post-optimal bid curves

q −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

TXU
φ̂NP(q) 0.410 0.298 0.155 0.272 0.712 1.247 0.235 0.090 0.109 0.167 0.226
ÛNP(q) 0.446 0.354 0.185 0.360 1.443 2.705 0.758 0.141 0.141 0.192 0.241
L̂NP(q) 0.373 0.242 0.125 0.184 −0.020 −0.211 −0.288 0.037 0.077 0.141 0.210

Reliant Energy
φ̂NP(q) 38.888 22.816 2.702 0.386 0.108 0.141 0.962 0.896 0.875 1.486 2.225
ÛNP(q) 41.24 25.758 4.120 0.606 0.630 0.936 1.548 1.169 1.107 1.843 2.697
L̂NP(q) 36.536 19.873 1.284 0.166 −0.413 −0.654 0.377 0.623 0.644 1.129 1.752

Calpine
φ̂NP(q) 37.851 22.703 13.476 19.051 36.385 33.531 3.637 0.202 0.947 9.775 21.785
ÛNP(q) 65.276 42.197 20.046 24.974 62.567 88.293 23.714 3.239 7.254 32.741 52.15
L̂NP(q) 10.425 3.208 6.907 13.127 10.203 −21.231 −16.441 −2.835 −5.360 −13.192 −8.580

Central Power and Light
φ̂NP(q) 6.482 7.086 8.252 11.3 17.665 19.195 −17.738 −14.751 −10.479 −6.581 −4.454
ÛNP(q) 9.566 10.218 10.349 13.145 21.818 53.54 0.142 −8.226 −7.324 −4.197 −1.919
L̂NP(q) 3.398 3.954 6.155 9.455 13.511 −15.149 −35.618 −21.277 −13.634 −8.965 −6.990

City of San Antonio Public Service
φ̂NP(q) 2.921 2.481 2.855 4.327 6.882 6.523 0.625 2.498 5.795 10.692 15.167
ÛNP(q) 3.158 2.665 2.996 4.535 7.245 8.634 2.273 3.700 6.896 12.342 16.916
L̂NP(q) 2.684 2.298 2.715 4.118 6.518 4.413 −1.023 1.297 4.693 9.042 13.419

City of Austin
φ̂NP(q) 12.192 6.335 3.536 4.263 7.896 20.122 30.647 25.85 23.646 27.333 33.879
ÛNP(q) 12.919 6.935 3.914 4.858 10.346 36.898 56.852 46.089 40.105 40.209 44.359
L̂NP(q) 11.466 5.734 3.158 3.668 5.445 3.347 4.442 5.611 7.188 14.457 23.4

Lower Colorado River Authority
φ̂NP(q) 4.908 4.987 5.450 7.100 9.099 7.459 −0.807 −0.949 −1.022 1.868 3.490
ÛNP(q) 5.680 5.756 5.994 7.749 10.118 9.776 1.595 0.487 0.534 5.689 6.993
L̂NP(q) 4.135 4.218 4.906 6.451 8.081 5.142 −3.208 −2.386 −2.578 −1.954 −0.013

West Texas Utilities
φ̂NP(q) 8.363 8.122 10.655 19.319 31.167 19.712 −42.041 −30.326 −22.213 −14.949 −10.192
ÛNP(q) 9.878 9.188 12.177 21.456 34.289 63.716 11.601 1.605 −1.858 −1.648 −1.222
L̂NP(q) 6.849 7.056 9.132 17.182 28.046 −24.293 −95.683 −62.256 −42.568 −28.249 −19.161

Midlothian Energy
φ̂NP(q) 86.959 69.883 50.416 430.98 1821 2415.9 1946.8 399.65 8.887 −0.184 −0.685
ÛNP(q) 112.54 108.07 123.5 772.12 2383.4 2839.3 2656.3 837.64 73.59 3.909 0.600
L̂NP(q) 61.375 31.693 −22.669 89.847 1258.6 1992.4 1237.4 −38.328 −55.815 −4.276 −1.971

Guadalupe Power Partners
φ̂NP(q) 137.69 105.76 70.338 47.232 202.87 846.16 216.07 16.876 3.274 27.155 116.1
ÛNP(q) 158.29 134.64 94.787 75.534 275.21 1014 363.75 59.314 16.801 44.643 142.09
L̂NP(q) 117.1 76.871 45.889 18.929 130.52 678.32 68.399 −25.562 −10.254 9.666 90.106

Lamar Power Partners
φ̂NP(q) 3299.7 3054.2 1192.5 32.262 4.591 0.309 −5.148 −2.923 −1.416 −2.572 −3.773
ÛNP(q) 3982.3 3860.8 1998.1 155.34 17.65 12.728 2.464 2.190 16.376 24.903 29.265
L̂NP(q) 2617 2247.7 386.89 −90.815 −8.469 −12.111 −12.759 −8.036 −19.208 −30.047 −36.811

Brazos Electric Power Cooperative
φ̂NP(q) 240.14 153.06 58.654 48.951 63.833 89.879 112.28 42.427 7.619 48.723 63.835
ÛNP(q) 258.63 181.44 73.436 60.235 79.14 125.89 396.89 135.58 98.954 254.29 134.97
L̂NP(q) 221.65 124.69 43.871 37.667 48.527 53.872 −172.32 −50.732 −83.716 −156.85 −7.299
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Table 3 continued

q −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Sweeny Cogeneration General
φ̂NP(q) 72.132 65.248 80.056 120.92 150.36 −51.798 −165.05 −92.266 −60.122 −46.99 −35.291
ÛNP(q) 79.296 68.959 82.617 125.59 155.95 −1.311 −147.21 −85.501 −56.175 −42.795 −33.075
L̂NP(q) 64.968 61.537 77.496 116.25 144.77 −102.28 −182.88 −99.03 −64.07 −51.184 −37.506

Hays Energy
φ̂NP(q) 74.401 66.108 146.38 1533.8 3752.1 4255 3844.9 1901.2 145.79 −0.411 −1.911
ÛNP(q) 87.246 95.471 429.08 2459.3 4700.6 4853.1 4925.3 3353.2 611.45 35.956 1.182
L̂NP(q) 61.555 36.745 −136.32 608.33 2803.5 3656.9 2764.5 449.21 −319.88 −36.777 −5.004

Tractabel Power
φ̂NP(q) 408.7 371.92 375.67 2284 6403.9 7618.7 4249.3 482.14 −2.531 0.828 15.847
ÛNP(q) 435.56 436.93 857.9 3659.5 7767.1 8616.1 5486 925.11 51.921 9.2552 25.917
L̂NP(q) 381.84 306.92 −106.55 908.48 5040.7 6621.2 3012.6 39.171 −56.983 −7.598 5.777

Ingleside
φ̂NP(q) 659.66 150.31 23.786 13.834 16.168 0.215 −10.786 −6.120 −3.263 −3.647 −7.976
ÛNP(q) 832.64 229.6 46.04 20.423 17.632 6.556 −8.541 −5.28 −2.520 −1.771 −4.856
L̂NP(q) 486.69 71.031 1.531 7.245 14.705 −6.125 −13.032 −6.959 −4.006 −5.522 −11.097

BP Energy
φ̂NP(q) 1139.1 738.91 161.76 555.18 2267.4 2420.9 1036.4 135.6 21.412 201.92 396.49
ÛNP(q) 1253.4 973.98 286.45 1024.2 3054 2862.9 1426.5 306.18 93.832 488.14 558.66
L̂NP(q) 1024.7 503.83 37.068 86.209 1480.9 1978.9 646.35 −34.976 −51.008 −84.299 234.33

Bryan Texas Utilities
φ̂NP(q) 67.502 62.421 73.056 91.267 104.45 102.79 −29.111 −59.537 −40.866 −55.148 −73.723
ÛNP(q) 73.779 71.937 84.456 105.14 122.1 152.76 87.021 −13.49 −5.718 −24.767 −60.958
L̂NP(q) 61.224 52.906 61.656 77.391 86.809 52.814 −145.24 −105.58 −76.014 −85.529 −86.488

City of Garland
φ̂NP(q) 31.018 37.131 45.934 60.541 72.503 44.056 −49.748 −38.466 −26.87 −21.353 −20.896
ÛNP(q) 32.217 38.807 47.866 63.218 77.552 75.353 −35.201 −31.337 −20.741 −14.073 −16.523
L̂NP(q) 29.818 35.455 44.002 57.865 67.454 12.76 −64.295 −45.595 −32.998 −28.634 −25.269

Rio Nogales Power Project
φ̂NP(q) 130.25 140.26 184.3 272.66 361.84 327.53 59.127 −7.509 −8.773 −6.187 −5.346
ÛNP(q) 161.52 173.09 230.04 341.29 469.88 527.04 153.7 15.574 −0.317 −0.750 −0.327
L̂NP(q) 98.985 107.43 138.56 204.03 253.79 128.02 −35.448 −30.593 −17.229 −11.624 −10.364

Tenaska Gateway Partners
φ̂NP(q) 23.603 10.066 6.707 7.232 10.2 1.885 −12.027 −5.519 −2.289 −0.755 −2.377
ÛNP(q) 26.747 12.04 7.684 8.035 11.051 4.790 −10.427 −3.987 −0.457 2.369 −1.174
L̂NP(q) 20.459 8.093 5.729 6.429 9.349 −1.021 −13.627 −7.051 −4.121 −3.879 −3.579

Cogeneration Lyondell
φ̂NP(q) 33.909 41.682 37.625 57.343 165.75 238.03 36.914 −8.322 1.543 156.63 231.86
ÛNP(q) 348.4 376.69 117.34 73.837 210.66 324.32 87.83 −2.745 17.484 223.97 294.08
L̂NP(q) −280.58 −293.32 −42.089 40.848 120.84 151.74 −14.002 −13.899 −14.399 89.291 169.64

Bastrop Energy Partners
φ̂NP(q) 7107.2 6968.4 5388 719.98 8.163 −2.980 11.014 12.234 4.586 −0.562 −1.916
ÛNP(q) 8177.7 8103.8 6670.1 1401.9 135.12 15.845 21.962 36.881 71.695 97.758 107.94
L̂NP(q) 6036.6 5833 4105.9 38.038 −118.79 −21.804 0.067 −12.413 −62.524 −98.883 −111.78

Mirant Wichita Falls Management
φ̂NP(q) 1900.4 1652 1272.6 902.76 646.16 485.1 362.01 193.97 76.32 73.529 84.1
ÛNP(q) 2366.5 2418.3 2093.3 1580.4 1191.5 1103.7 1320.8 591.04 256.6 191.43 147.37
L̂NP(q) 1434.3 885.67 451.88 225.14 100.81 −133.51 −596.79 −203.11 −103.96 −44.377 20.826
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Table 3 continued

q −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

South Texas Electric Cooperative
φ̂NP(q) 246.67 223.42 261.99 384.41 516.49 581.31 119.56 −46.411 −46.736 −70.477 −75.031
ÛNP(q) 280.9 266.41 284.11 409.09 554.71 711.57 306.58 −9.351 −11.376 −46.834 −62.865
L̂NP(q) 212.44 180.44 239.87 359.74 478.26 451.05 −67.468 −83.472 −82.095 −94.121 −87.197

Brownsville Public Utility Board
φ̂NP(q) 1291.8 554.13 74.277 7.9159 5.0634 4.4561 0.61217 −1.313 −1.961 −8.626 −17.122
ÛNP(q) 1699.7 851.84 178.92 28.581 11.426 7.055 1.767 −0.237 1.075 0.720 −6.346
L̂NP(q) 883.83 256.42 −30.363 −12.749 −1.299 1.857 −0.543 −2.389 −4.997 −17.972 −27.898

AES Deepwater
φ̂NP(q) 48.884 48.884 48.884 48.885 49.378 316.22 585.6 586.1 586.1 586.1 586.1
ÛNP(q) 72.919 74.573 80.243 92.525 117.53 587.56 791.82 719.64 682.07 664.71 659.65
L̂NP(q) 24.849 23.196 17.525 5.244 −18.773 44.893 379.37 452.56 490.14 507.49 512.55

Gregory Power Partners
φ̂NP(q) 71.079 73.507 114.15 140.83 126.88 24.593 −33.78 −18.166 −5.669 2.490 2.893
ÛNP(q) 78.674 84.024 137.63 166.58 160.98 79.681 −1.816 −6.3 6.169 19.022 18.114
L̂NP(q) 63.485 62.991 90.674 115.08 92.787 −30.495 −65.744 −30.032 −17.506 −14.041 −12.329

Extex Laporte
φ̂NP(q) 253.88 235.31 151.71 16.094 1.523 1.564 2.230 3.197 3.982 3.996 3.792
ÛNP(q) 343.13 575.13 600.84 187.94 45.69 7.981 3.309 3.932 4.482 4.545 4.186
L̂NP(q) 164.62 −104.51 −297.41 −155.75 −42.643 −4.853 1.151 2.462 3.482 3.447 3.398

Denton Municipal Electric
φ̂NP(q) 85.735 63.219 42.33 53.15 89.583 153.19 197.96 509.23 3021.7 4885.7 5285.9
ÛNP(q) 92.863 82.649 59.818 89.571 153.93 434.32 713.13 1365.7 4441.7 6735.6 5592.3
L̂NP(q) 78.606 43.79 24.842 16.728 25.239 −127.94 −317.21 −347.29 1601.7 3035.9 4979.6

Air Liquide
φ̂NP(q) 644.11 613.1 652.72 921.92 1362.3 651.69 42.235 −18.553 −10.483 −16.994 −26.711
ÛNP(q) 709.21 700.35 793.14 1179.2 1863.3 1047.2 167.52 8.163 −4.304 −10.769 −19.871
L̂NP(q) 579.01 525.85 512.29 664.67 861.4 256.19 −83.046 −45.269 −16.663 −23.22 −33.552

this restraint may eventually wear down, however, once the regulated ‘price to
beat’ lapses in the ERCOT market.

Similar to TXU, Reliant’s actual inc bids seem to match our theoretical
optima rather closely, with the φ̂NP estimator being relatively close to 1. In con-
trast to TXU, though, Reliant’s dec bids are on average marked down far below
what our model predicts. This pattern of high markdowns on dec bids, which
is seen with most PGCs has also been observed by others who have studied
the BES. The behavior is attributed to both a reluctance on the part of PGCs
to ramp down their generation (especially combined-cycle gas turbines) due
to heat rate and ramping considerations, as well as other costs not accounted
for in standard engineering estimates such as higher maintenance costs and gas
imbalance charges. Hortaçsu and Puller analyze the ‘bid-ask spread’ between
the lowest inc and highest dec bid and find that most PGCs have a spread which
is wider than can be explained by the estimated cost of adjusting output.

The most surprising behavior we find amongst the large generators is that of
Calpine. Calpine is an independent power producer with no native load obli-
gation, less regulatory oversight than the incumbent investor-owned utilities
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(IOUs) such as TXU and Reliant, and it has been increasing its share of asset
holdings in Texas (both through purchases and investments in new generation)
to around 8% of nameplate capacity. In spite of its good position in the market
and potential for exercise of market power, our estimates show Calpine’s bid
markups to average an order of magnitude greater than theoretically optimal,
effectively pricing its generation out of the BES market. We find that Calpine’s
seemingly irrational behavior took place mainly in the first quarter of 2002,
and we are able to show that there is a statistically significant difference in its
bidding behavior during and after the first quarter of 2002. This suggests that
Calpine was either initially reluctant to participate in the BES market or that
there were some learning effects associated with participation in the BES mar-
ket. Since the BES market began operation only in late 2001, by 2002 the PGCs
had only been bidding in it for a few months, which suggests that Calpine may
simply not have known how to bid.

The remainder of our estimates, which are summarized in table 3, show the
other PGCs to fairly consistently submit markups and markdowns far in excess
of what is ex post-optimal. One possible explanation of these bidding patterns
is that they may be due to some form of anticompetitive of collusive behavior
on the part of the PGCs. In the context of the BES, collusion would manifest
itself with firms submitting high inc and low dec offers in an effort to raise
the MCPE for incs and lower the MCPE for decs from what would result in a
non-cooperative equilibrium. At first glance, the steep bids of the small PGCs
may seem indicative of collusive behavior not accounted for in our model. Our
findings and other analyses of the BES, however, point against this conclusion.
As we noted earlier, the bulk of generating assets in the ERCOT control area
are held by the three large PGCs. Furthermore, because the vast majority of
electricity sales are contracted forward of the BES market, the small PGCs
hold a relatively small percentage of balancing resources. Moreover, we find
that on average the three large PGCs offer the bulk of balancing resources
into the BES—often over 60%. These facts, coupled with TXU and Reliant
submitting offers close to their EOSFs implies that a small PGC overpricing its
incs and underpricing its decs would have little effect on the MCPE since the
PGC would essentially price itself out of the BES market. In fact, the excessive
markups and markdowns of the small PGCs is commonly explained by them
wanting to exclude themselves from the market, which we study further in the
following section. In her study of the BES, Niu shows that actual inc prices and
those which would result from a linear SFE are on average within 3.9% of one
another, indicating that even if the smaller PGCs are colluding to drive up the
price of incremental balancing energy, these attempts have met with little to
no success. Her analysis of dec prices, however, show the actual price to aver-
age twice her theoretical calculations. If the excessively high dec markdowns
represent ramping costs or constraints, gas imbalance charges, or other factors
not accounted for in these analyses, then the discrepancy in dec prices would
represent a true cost of service. Otherwise, this could indicate some form of
anticompetitive behavior for decremental energy.
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The results of our ex post analysis are fairly consistent with Hortaçsu and
Puller’s findings. One of their metrics of rational bidding is to compare a firm’s
profits under optimal bidding to that under their actual offers, and calculate the
percent of potential profits a firm foregoes with its actual offers. Their results
show that amongst the three largest PGCs, Reliant performs best, realizing
79% of its potential profits in the BES. TXU and Calpine, by contrast, perform
more poorly yielding only 39 and 37% of their potential profits. Their estimates
show the smaller PGCs to consistently perform poorly, generally realizing only
a small fraction of their potential BES profits. It is, however, worth noting that
even in the best cases of Reliant and TXU, all our statistical tests reject the null
hypothesis that φ̂NP(q) = 1, meaning none of the generators are behaving in
accordance with ex post-optimal behavior.

4.3 Market participation

Our estimates of the smaller PGCs’ markup ratios show them to submit offer
curves which are far steeper than our model predicts. The most common expla-
nation for this observation is that smaller power producers, cooperatives, and
cogenerators prefer to generate according to their contracted schedules. To
help ensure this they overbid their generation into the balancing market with
markups and markdowns significantly higher (in some extreme cases up to
three orders of magnitude greater) than predicted by our model. Such behav-
ior would act to keep them out of the balancing market, except when demand
for balancing resources is sufficiently high to guarantee a high profit for being
dispatched in the BES market. One reason behind this desire may be a real
or perceived cognitive cost of solving a sophisticated optimization problem
to make a bidding decision. Smaller generators may have so little ‘money on
the table’ from participating in the BES, that there is little incentive to do so.
Likewise, cogenerators are often only tangentially involved in the electricity
market and may focus their efforts on more-lucrative bilateral sales as opposed
to the BES. Furthermore, since cogeneration is a byproduct of their primary
production process, they may have a strong disincentive to adjust their output
in order to garner slim margins in the BES as doing so may affect their primary
production. Similarly, municipalities may be primarily interested in generating
and procuring resources for their native load, and as such may have less of a
profit-motive to actively participate in the BES market.

This conjectured behavior is supported to some extent by the inc and dec
patterns of the various PGCs. Table 4 shows that many of the smaller PGCs
often opt to exclude themselves from the BES by submitting only dec offers,
which they are required to, without any inc offers. Furthermore, as Table 5
shows, four of the small generators submitted only a single dec offer at the price
floor of −$1, 000 in a number of bid periods. These observed patterns of bidding
are indicative of many of the small PGCs participating in the BES only in so far
as they are required to by the PUCT’s dec offer requirement.

To concretely explore this relationship between dec offer patterns and the
‘size’ of a PGC, we estimate a binary response model. We define yi,t to be an



An empirical analysis of the ERCOT balancing market 21

Table 4 Percentage of bidding periods with only DEC bids submitted

PGC % DEC bid Only PGC % DEC bid only

Brazos Electric Power 97.3 City of Garland 15.4
Cooperative
Mirant Wichita Falls 86.8 Air Liquide 11.9
Management
Hays Energy 84.3 City of San Antonio 9.1

Public Service
Midlothian Energy 71.6 BP Energy 7.6
Bryan Texas Utilities 71.4 Guadalupe Power Partners 7.5
Bastrop Energy Partners 53.5 Central Power and Light 7
Lamar Power Partners 41.7 Cogeneration Lyondell 2.3
Gregory Power Partners 39.8 Denton Municipal Electric 2.1
Rio Nogales Power Project 39.4 Ingleside 1.1
Tractabel Power 37.5 AES Deepwater 0.9
Brownsville Public 33.3 City of Austin 0.7
Utility Board
South Texas Electric 32 Lower Colorado River 0.4

Authority
Cooperative
Sweeny Cogeneration 26.4 Reliant Energy 0.2
General
West Texas Utilities 17.2 Extex Laporte 0.1
Tenaska Gateway Partners 17.1 TXU 0
Calpine 16.1

Table 5 Percentage of
bidding periods with only a
single DEC bid at -$1000

PGC % -$1000 DEC bid only

Bastrop Energy Partners 24.5
Brownsville Public Utility Board 23.7
Lamar Power Partners 16
Sweeny Cogeneration General 9.3

indicator variable, with yi,t = 1 if PGC i submits only dec offers in period t and
yi,t = 0 otherwise. We then estimate the limited dependent variable model:

Prob{yi,t = 1|xi,t} = F(β	
0 xi,t), (5)

where xi,t is a vector of regressors, β0 is the vector of parameters to be esti-
mated, and F(·) is a cumulative distribution function. One of our regressors,
profPGCi, is an indicator variable for whether PGC i is what we designate a
“profit-driven PGC.” These PGCs include the incumbent IOUs: TXU, Reliant,
West Texas Utilities, and Central Power and Light; as well as the large indepen-
dent power producer, Calpine. We include a regressor, %CAPi,t, the percent of
available capacity that a PGC has committed day-ahead to account for capacity
effects on bid patterns. We also include a set of regressors, %�SCHEDτ

i,t, τ =
{−2, −1, 1, 2}, giving the percent change in a PGC’s scheduled production from
bidding hour t to bidding period t + τ , which are meant to account for bind-
ing ramping constraints preventing a PGC from offering inc service. We finally
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Table 6 Estimates of LDV
model Regressor β̂MLE EN [β̂MLEf (β̂	

MLEx)]

WEEKDAY −0.070676 −0.01314
ON-PEAK 0.14715 0.027359
%CAP −1.6112 −0.29956
%�SCHED−2 0.0095387 0.0017735
%�SCHED−1 0.18526 0.034444
%�SCHED1 0.0067523 0.0012554
%�SCHED2 0.0056042 0.001042
profPGC −0.19935 −0.037063

include indicator variables ON-PEAK and WEEKDAY to account for any
difference in dec offer patterns between different time periods. We specify the
distribution function in the LDV model in Eq. 5 to be logistic, and estimate it by
maximum likelihood. Using a Wald test, we find all the estimated coefficients to
be statistically significantly non-zero at the 1% level. Our estimates, which are
summarized in Table 6, show that a profit-driven PGC is on average less likely
to submit only dec offers. We further find that changes in scheduled production
deter a PGC from offering inc offers, with the change from the previous hour
having the highest impact. This suggests ramping constraints, which are ignored
in our offer curve derivation, may play a role in explaining some bidding behav-
ior. Finally, we find that having capacity committed reduces a PGC’s probability
to offer only dec offers. While seemingly counterintuitive, this suggests that a
PGC with a higher proportion of its capacity scheduled to generate, has greater
flexibility in ramping generation among a wider portfolio of operating units.

4.4 Learning effects

A question to ask in a complicated market such as the BES is whether par-
ticipants can gradually learn to better bid against their opponents through
their repeated interactions in the market. In many empirical and experimental
settings, players have demonstrated the ability to ‘converge’ towards playing
equilibrium strategies even when equilibria are rarely seen in a one-shot vari-
ant of the game. Similarly, one may expect that over time PGCs may learn to
better conjecture their rivals’ behavior and react to those beliefs. Indeed, this
result bears itself out quite strikingly with the behavior of Calpine, which our
estimates showed to be submitting offers with markups and markdowns up to
37-times its ex post-optimal response. The data shows that this is due in large
part to exorbitantly high markups in the first quarter of 2002. Since by that
point the BES market had only been in operation for a few months, this could
indicate a period of learning on the part of Calpine. It has alternately been
suggested that Calpine may have initially been reluctant to participate in the
BES and was only willing to ‘test the waters’ in a limited fashion, and only after
observing the market for a few months was willing to earnestly ‘jump in.’

We demonstrate this learning phenomenon by estimating a partial-linear
semiparametric variant of the behavioral model in Eq. 4:
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Fig. 5 Semiparametric estimates of Calpine’s conduct function

MUi,t(q)

MU∗
i,t(q)

= β	
i Zi,t + φi(q) + ηi,t(q), (6)

where Zi,t consists of indicator variables for the different time periods we com-
pare bidding patterns across. As usual, we assume E[ηi,t|Z, q] = 0.

In analyzing Calpine’s learning effects, the matrix of linear regressors, Z,
consists of an indicator variable, Q1-Y2002, for bids submitted in quarter 1 of
2002, and another indicator variable, Q1, for bids submitted in quarter 1 of 2002
or 2003. The inclusion of an indicator for quarter 1 of either year is meant to
control for any seasonal variation in bidding behavior. We estimate the model
using the Speckman (1998) conditional moment method. Figure 5 shows the
semiparametric estimates and gives the estimated values of β̂SP, both of which
are shown to be statistically significantly non-zero at the 1% level by a standard
Wald test. As can be seen, the first quarter of 2002 showed exceedingly high
markups, followed by bidding patterns which more closely match our theoretical
model thereafter. It is also evident that once controlling for high markups and
markdowns during the first quarter of 2002, Calpine’s offers exhibit a pattern
somewhat similar to that of Reliant with excessively marked-down dec offers
and more reasonably priced inc offers.

5 Comparison of actual offers to Nash equilibrium supply functions

Finally, we wish to address the question of whether bids into the BES conform
to a Nash equilibrium set of supply functions. While related to the analysis of
the EOSFs, this allows us to compare bids to a full equilibrium as opposed to
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the partial equilibrium analysis we have conducted thus far. Assuming that an
SFE model truly describes the behavior of the generating firms, PGCs should
submit supply functions with the Nash property that no generator can profitably
unilaterally deviate.

Besides the computational complexity of the problem, one of the difficulties
in finding Nash equilibrium supply functions is the multiplicity of equilibria. This
multiplicity arises because if firm i’s rivals are submitting elastic supply functions
then firm i should also submit a more elastic supply function, otherwise it would
price itself out of the market. Similarly, if firm i’s rivals are submitting inelastic
supply functions then firm i should submit a more inelastic supply function. As
such, there has been an extensive theoretical literature trying to overcome the
non-uniqueness of supply function equilibria by imposing further assumptions
and structure on the model.

5.1 Methods of finding unique supply function equilibria

Rudkevich (1999) and Baldick, Grant and Kahn (2000, 2004) study linear supply
functions. Rudkevich derives optimality conditions giving a Nash equilibrium
for a supply function when marginal costs and market demand are linear, firms
are restricted to bidding linear supply functions, and the support of the demand
shock has at least two distinct points. He shows these conditions to yield a
unique solution and proposes using an iterative myopic best response algorithm
to solve for the equilibrium. Baldick et al. give conditions under which this myo-
pic best response algorithm is a contraction mapping—implying the technique
will converge from any starting point and that the unique equilibrium is stable.
They also show that while there do exist a multitude of non-linear equilibria
(which could arise if firms are not restricted to submitting linear supply func-
tions), if a firm’s rivals all bid linear supply functions it is then optimal for the
firm to bid a linear supply function. Although the linear SFE model has these
attractive properties, we find that in our case it falls short of capturing some
complexities of the market. For one, most of our marginal cost estimates exhibit
non-linearities, which we would like to be able to account for in our derivation.
Second, the linear supply function model assumes that the generating firms
have no capacity constraints, meaning that the model cannot take account of
the relative ‘size’ of the PGCs. From running some sample instances we found
the linear SFE to be very close to competitive marginal-cost bidding—often
with markups of less than $1 over marginal cost. The reason the linear model
yields such competitive outcomes is exactly due to the lack of capacity con-
straints; because the model treats the multitude of smaller generators as having
unbounded capacity, the equilibrium solution turns out to be very competitive.
Niu overcomes this shortcoming of the linear model by only considering the
four largest PGCs and ‘lumping’ the remaining the PGCs into a fifth ‘fringe’
bidder. Thus the linear model she uses sees only five capacity-unconstrained
PGCs and yields bids with more sensible markups. The final shortcoming of
the linear model is that it does not allow PGCs to ‘hockey-stick’ their bids. We
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mentioned that this behavior is prevalent in the offer curves of most all the
PGCs, and we would like to capture such non-linear supply functions in our
model.

In their original paper, Klemperer and Meyer show that if the demand shock,
ε, has an unbounded support, then there will be a unique set of supply functions
solving the governing differential equations and satisfying the second-order
optimality conditions. Although this assumption has the attractive advantage
of allowing for a unique equilibrium with general-form supply functions, the
unbounded support assumption is rather tenuous in a balancing market which
normally dispatches less than 5% of total electricity traded in ERCOT.

A more recent line of theoretical research in SFE has explored the use of
capacity constraints and price caps, which give an additional set of boundary
conditions and yield unique equilibria. In a series of papers, Holmberg (2004,
2005a,b) explores this technique with symmetric and asymmetric firms. His
method essentially amounts to assuming that the capacity constraints of the
generators will be binding at the price cap and solves for an equilibrium by
integrating an expanding set of coupled differential equations backwards. This
requires an assumption that the support of the demand shock is sufficiently
high so as to exhaust the generating capacities of the bidders with some positive
probability. It also implicitly assumes that the bidders will want to ‘hockey-stick’
their bids so as to reach the price cap when their capacity constraints are bind-
ing. Although we find the assumptions of this model to fit the realities of the
BES market well, the solution technique of solving a series of stiff differential
equations backwards is too computationally complex for us to feasibly run the
model on our sample of 8,160 bidding periods. Anderson and Hu (2005) develop
a unique SFE along the same lines, in which all but one firm reaches its capacity
limit prior to the price cap. Moreover, their model allows for general marginal
cost and demand functions, and they provide a tractable means of finding this
equilibrium by formulating the problem as a complementarity problem. Due
to the soundness of their model’s assumptions and the relative simplicity of
finding equilibria, we use Anderson and Hu’s technique.

Although these supply function models can be applied to derive both Nash
equilibrium inc and dec offers, we opt to analyze only the inc part. The reason
we make this restriction is because of our earlier finding in analyzing the EOS-
Fs that most PGCs (including Reliant and Calpine) bid their dec service with
markdowns which are excessively high and cannot be explained by our opti-
mal response model. Furthermore, we restrict our equilibrium analysis to the
three largest PGCs: TXU, Reliant, and Calpine. We make this restriction both
to make the problem tractable and because of our earlier evidence suggesting
that the smaller PGCs are not rational strategic players in the BES market. The
comparison of actual bids to EOSFs showed the smaller PGCs to be submitting
bids far in excess of what our model predicts, which acts to price their generation
out of the BES market. If we include these firms as strategic players, our model
would essentially conjecture that these firms are making rational offers which
would make each firm’s residual demand more elastic, thereby making the the-
oretical equilibria more competitive. Because our analysis shows these smaller
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firms not to be acting in accordance with rational profit-maximizing behavior,
we opt to hold their bids as fixed at their actual offer curves in constructing the
market demand function, D(p), and the residual demand functions for the three
strategic PGCs. In making these assumptions, we are essentially conjecturing
that the strategic PGCs account for the non-strategic behavior of the smaller
PGCs in estimating their residual demand function and calculating their supply
function response to their strategic and non-strategic counterparts.

5.2 Derivation of capacity-constrained Nash equilibrium supply functions8

The basic model has n capacity-constrained firms. Let ci(qi) be firm i’s total cost
function, which we assume to be convex, differentiable, and non-negative, and
let qi be firm i’s generating capacity. We will assume that each firm has a differ-
ent initial marginal cost (which is true in our data set) and that they have been
numbered such that c′

1(0) < c′
2(0) < · · · < c′

n(0). Again, we assume that demand
is given by the function D(p, ε) = D(p) + ε, in which D(p) is a deterministic
function which is strictly decreasing, differentiable, and concave. The stochastic
portion of the demand, ε, is again assumed to have support ε ∈ [εmin, εmax],
and we suppose that ε is distributed according to density function, f (ε), which
is strictly positive everywhere on this support. Finally, we assume that there is a
price cap on the market, p, and that prices are always non-negative (which they
will be for inc energy). Although Anderson and Hu’s model does not directly
account for scheduled sales, we can incorporate them into the model by defining
each firm’s generation quantity, qi, to be qi = qtot

i − QDA
i , where qtot

i is firm i’s
total generation. Thus, qi simply measures the amount of incremental energy
sold above any sales contracted outside the BES, and the contracted quantity,
QDA

I , simply shifts the ‘zero point’ of the marginal cost and supply functions.
We now state Anderson and Hu’s main uniqueness result, the details and

proof of which are in their paper.

Theorem 5.1 If

−D(c′
1(0)) < εmin < −D(c′

2(0)),

then any supply function equilibrium is part of an ordered family, and only the
lowest (smallest offered quantity at any given price) can have the property that
all but one of the firms reach their capacity limits prior to the maximum price.

The condition of the theorem simply means that at price c′
1(0) there is always

some demand even when ε = εmin, but when the price reaches c′
2(0) there

may not be. Another interpretation of the assumption is that at the minimum
shock there is a single economic supplier (i.e. the supplier with the lowest initial
marginal cost).

8 Because Anderson and Hu’s paper details their model, we only mention the underlying assump-
tions, state their main uniqueness result, and discuss the technique used to solve for the equilibrium.
Interested readers should consult their paper for complete details.
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Anderson and Hu’s technique to solve for an equilibrium is based on dis-
cretizing the demand shock and approximating each firm’s supply function
as being piecewise linear. Given a fixed positive integer, K, they assume the
demand shock can now take one of K discrete values ε ∈ {ε1, ε2, · · · , εK}, with
εmin ≤ ε1 ≤ ε2 ≤ · · · ≤ εK ≤ εmax. They assume that when ε = εk the MCPE will
be pk, where

∑
i si(pk) = D(pk)+εk, each firm’s generation will be qi,k = si(pk),

and its supply function will have slope βi,k = s′
i(pk) ≥ 0. Next, they define for

each firm a set of points p̃i,1, p̃i,2, · · · , p̃i,K−1 at which its piecewise linear supply
function kinks. Thus, we can write each firm’s supply function as:

si(p) =



qi,1 + βi,1(p − pi,1), 0 ≤ p ≤ p̃i,1
qi,k + βi,k(p − pi,k), p̃i,k−1 ≤ p ≤ p̃i,k, k = 2, · · · , K − 1
qi,K + βi,K(p − pi,K), p̃i,K−1 ≤ p ≤ p;

where the pi,k is the price that firm i conjectures for when ε = εk. With this
piecewise linear form, we can now write firm i’s profit maximization problem
as:

max
pi,k

[
D(pi,k) + εk −

∑
j �=i

sj(pi,k)
]
pi,k − ci(D(pi,k) + εk −

∑
j �=i

sj(pi,k))

s.t. 0 ≤ pi,k ≤ p

0 ≤ D(pi,k) + εk −
∑
j �=i

sj(pi,k) ≤ qi,

which gives a set of FONC for an optimum. When the FONC from all the firms’
profit-maximization problems are assembled, and we impose the equilibrium
condition, p1,k = p2,k = · · · = pn,k = pk ∀ k, that the firms all conjecture the
same price under each demand shock realization, we arrive at the following set
of equilibrium conditions:

qi,k − (pk − c′
i(qi,k))(

∑
j �=i βj,k − D′(pk)) + λi,k − µi,k = 0 ∀i, k∑

i
qi,k = D(pk) + εk ∀k

0 ≤ pk ≤ p ∀k
qi,k+1 − qi,k + βi,k+1(p̃i,k − pk+1) + βi,k(pk − p̃i,k) = 0 ∀i, k=1, · · · , K−1
pk < p̃i,k < pk+1 ∀i, k
βi,k ≥ 0 ∀i, k
0 ≤ qi,k ⊥ µi,k ≥ 0 ∀i, k
qi,k ≤ qi ⊥ λi,k ≥ 0 ∀i, k,

(7)
where µi,k and λi,k are Lagrange multipliers on the lower- and upper-bound
capacity constraints, respectively. Anderson and Hu then prove the following
theorem, which we restate, showing that for K sufficiently large the piecewise
linear functions will well approximate the actual equilibrium.

Theorem 5.2 Let {s∗
i (p)}n

i=1 be a supply function equilibrium on [0, p]. Then, for
K large enough, there exists a solution εk, pk, qi,k, p̃i,k, λi,k, µi,k to the equilibrium
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conditions (7), such that D(pk) + εk = ∑
i s∗

i (pk), and qi,k = si(pk). Moreover
βi,k = s∗

i
′(pk) for all but a finite number of k.

In order to solve for an equilibrium, Anderson and Hu formulate a math-
ematical program with equilibrium constraints (MPEC) with the equilibrium
conditions (7) as constraints. The difficulty in solving such an MPEC is that the
complementarity conditions between the capacity constraints and their Lag-
range multipliers do not satisfy constraint qualification conditions, making the
problem difficult for standard solvers. They suggest overcoming this issue by
choosing ρ ≥ 0 and relaxing the complementarity conditions so that:

qi,kµi,k ≤ ρ

(qi − qi,k)λi,k ≤ ρ.

One could then solve the MPEC by first solving the problem with a large start-
ing value for ρ, and iterating by reducing ρ and resolving the relaxed MPEC at
each step until reaching a sufficiently small final ρ.

Our implementation follows the Anderson and Hu method. For each bid-
ding period we fit quadratic marginal cost and demand functions to the actual
data by method of least-squares. The capacity constraints, qi, are set based on
the actual quantity each PGC offers into the BES in that bidding period, as
opposed to using the total nameplate capacity of the generating units available
to that PGC. We determine generating capacities from the actual bids because
our nameplate estimates do not account for resources being held for self-sched-
uled reserves, ramping constraints on the amount of energy available, and other
physical limitations. Moreover, if a PGC has excess capacity available there is
no rationale for physically withholding those resources from the BES, since it
can easily economically withhold the generation by submitting it with an exces-
sively high offer. We set the lower-bound of the support of the demand shock,
εmin, so as to satisfy the assumptions of Theorem 5.1. Although Anderson and
Hu’s simulations worked well using the CONOPT optimization package, the
parameters of our fitted functions were very poorly scaled and CONOPT could
almost never find an initial feasible solution, even with our large starting value
of ρ. As such, we opted to use the filterSQP solver [details of the algorithm
are available in Filters and Leyffer (1999)] on the NEOS optimization server
[details of which are available in Czyzy, Mesnier and More (1998)], which per-
formed much better, and attempted to solve the MPEC with a final ρ less than
10−9. Though the equilibrium problem for each bidding period is feasible, the
solver had difficulty with some instances in which the function parameters and
capacity constraints were particularly poorly scaled. Out of a total of 8,160
bidding periods, 4,297 converged with K = 10, another 1,781 with K = 5, and
1,518 with K = 3, leaving 564 instances which could not converge. In all, 7,596
instances or 93% of the total sample solved. Our econometric analysis includes
only those 7,596 instances which converged. Qualitative inspection of the cases
we could not solve do not reveal any pattern that is likely to bias our results.
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(a) (b)

Fig. 6 Actual and Nash equilibrium offers example

5.3 Comparison of actual offers to nash equilibrium supply functions

In order to compare the actual offers to the Nash equilibrium supply functions,
we will again estimate the same behavioral model used in analyzing the EOSFs,
with specific reference to Eq. 4. Because we now wish to test the extent to which
the offers of the three strategic PGCs match our derived theoretical optima, we
will estimate our behavioral model both using the entire cross-section of offers
from the three PGCs and for each PGC individually. Figure. 6 shows two sample
actual and Nash equilibrium offer curves for TXU from two different bidding
periods. In the left pane, we see that TXU’s actual offers are relatively close
to its marginal generating costs, whereas its Nash equilibrium supply function
requires higher offer prices. The derived equilibrium also shows the non-linear
shape of the Nash equilibrium supply function, which we would not be able to
capture in a linear SFE model. In the right pane, the actual and equilibrium
offers match closely for imbalance quantities less than 600MW, but TXU prices
its inc offers above 600 MW at higher than the equilibrium calls for. Figures
7–10 show our estimated φ̂NP(q) and the 95% confidence interval. The second
pane in the figures shows the same plot with the axes truncated to show the
estimates with greater granularity. Moreover, Table 7 summarizes the estimate
and gives upper- and lower-confidence interval bounds. Again, the φ̂NP(q) esti-
mator spikes at q ≈ 0 because of the extreme sensitivity of the φ multiplier to
errors when the imbalance quantity is close to zero.

As the figures show, while the φ̂NP(q) estimator varies considerably across
the supply stack, the φ = 1 line lies within the confidence interval bounds in
all four estimates. As such, we are unable to reject the null hypothesis that
φ̂NP(q) = 1. In fact the plots with the truncated axes show that while the φ̂NP(q)

estimator is not identically one, it is nonetheless within a close neighborhood
of one. Moreover, in comparison to the estimates of φ̂NP(q) from the analysis
of the EOSFs of the smaller PGCs, we see that the behavior of the three major
PGCs are better predicted by a Nash supply function equilibrium than by a
EOSF. Given the large magnitude of the φ̂NP(q) estimator for low values of
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(a) (b)

Fig. 7 Estimated industry conduct function

(a) (b)

Fig. 8 TXU’s estimated conduct function

(a) (b)

Fig. 9 Reliant’s estimated conduct function
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(a) (b)

Fig. 10 Calpine’s estimated conduct function

Table 7 Summary statistics of conduct functions

q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overall
φ̂NP(q) 1775.9 23.858 0.402 0.525 1.155 0.389 0.000 0.146 0.324 1.594 2.166
ÛNP(q) 6333.9 499.4 5.228 2.691 8.129 4.630 1.962 2.441 1.370 7.49 9.034
L̂NP(q) −2782.1 −451.68 −4.425 −1.640 −5.819 −3.851 −1.961 −2.149 −0.722 −4.302 −4.702

TXU
φ̂NP(q) 315.58 163.95 57.755 12.313 2.178 0.871 0.549 0.524 0.859 1.216 1.352
ÛNP(q) 1870.8 1120.2 661.96 287.19 91.994 23.956 5.981 2.971 4.279 5.374 4.014
L̂NP(q) −1239.6 −792.32 −546.45 −262.56 −87.638 −22.214 −4.882 −1.924 −2.562 −2.943 −1.310

Reliant
φ̂NP(q) 2.714 2.167 1.623 1.164 0.869 0.833 1.259 2.435 4.400 6.728 8.885
ÛNP(q) 31.757 18.738 15.465 13.375 11.102 9.442 11.273 17.796 26.321 32.48 34.647
L̂NP(q) −26.329 −14.404 −12.219 −11.047 −9.363 −7.776 −8.756 −12.927 −17.521 −19.024 −16.877

Calpine
φ̂NP(q) 2531.7 1908.4 1122.3 455.01 121.47 21.997 2.696 0.180 0.084 0.204 0.277
ÛNP(q) 7086.9 6840.5 5498.8 3032.9 1377.7 516.3 171.41 49.213 12.85 2.931 1.429
L̂NP(q) −2023.5 −3023.6 −3254.3 −2122.9 −1134.8 −472.3 −166.02 −48.852 −12.681 −2.522 −0.875

q and the corresponding wide variance bands, however, the predictions of the
SFE model are highly sensitive to miscalculations on the part of the PGCs or the
economist applying the theory. Nonetheless, other spot market analyses, such
as Niu’s, suggest that precisely pinpointing the bidding behavior of the firms
is not crucial in determining price outcomes of the market. Although there
are efficiency and profit consequences from irrational behavior of the smaller
PGCs, if one’s primary concern is the price of balancing energy, then the SFE
model performs admirably with regard to incremental energy—with Niu’s esti-
mates showing actual inc prices to on average be within 3.9% of linear SFE
predictions. Moreover, the fact that she restricted herself to a linear SFE model
suggests that non-linear supply functions may not even be necessary to predict
market price outcomes. The reason a linear model may be sufficient is that the



32 R. Sioshansi, S. Oren

BES will rarely exhaust the supply of the PGCs, as such the ‘hockey-sticked’
portion of the supply stacks rarely set the MCPE. Although there tends to be
a large disparity between predicted and actual dec prices, if the excessively low
dec bids are due to operating costs and constraints not captured in our data,
then this is not necessarily a failing of the model.

6 Conclusion

The results of our analysis show that most bidders participating in the ERCOT
BES do not act in accordance with what is predicted by an optimal response
model. This is characterized by them making offers with markups and mark-
downs which are far in excess of that implied by our theoretically ex post-optimal
supply functions. With smaller power producers, municipalities, cooperatives,
and cogenerators, we have explained this as a general reluctance to participate
in the BES. Amongst the large PGCs, TXU and Reliant’s behavior matched
our theoretical optima most closely. Calpine, the other large PGC, was found
to be bidding with markups far greater than our model predicted, although we
have shown this to be due to exceedingly high markups in the first quarter of
2002—when we control for the excessively high offers in this period, Calpine’s
offer behavior more closely matches that of Reliant.

When we incorporated capacity constraints into the model and restricted
attention to the three strategic PGCs, the actual offers were within a ballpark of
the Nash equilibrium supply functions. Moreover our estimates showed that we
could not reject the null hypothesis that the actual observed behavior was not
statistically significantly different from Nash. Thus our results suggest that an
SFE model can well describe offer behavior in electricity spot markets, although
it is highly dependent on judicious application to firms we believe to be bidding
strategically. Though the model does not exactly predict the behavior of bid-
ders, the fact that the three dominant players tend to set the margin and bid in
accordance with the model gives it a fair amount of power in predicting price
outcomes. However, SFE is considered an attractive model of spot electricity
markets in part because it assumes a strategy space and firm behavior which
is reminiscent of the actual price/quantity offers submitted by generators. Yet
in a sense, our analysis suggests the one attractive point of SFE—its behav-
ioral assumptions and predictions—tends to not be in tune with the individual
behavior patterns of a large segment of the market. This begs the question
whether complicated general-form SFE models, such as the one we employed,
may simply be an overly complex model of the market, which gives no bet-
ter behavioral or price predictions than simpler models. For instance, linear
SFE models have been shown to give fairly accurate price predictions even
though they cannot capture complicated hockey-stick type bidding. Even more
conventional Cournot-type models have been applied to studying markets.
Moreover, many market power studies and models for assessing the economic
impacts of transmission constraints and other nuances of power systems rely on
simpler Cournot modeling. Although Cournot models cannot incorporate the
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institutional details which SFE models can, this study suggests that at least with
respect to determining equilibrium prices, the results of Nash equilibrium mod-
els are quite robust and it may be sufficient to use Cournot models which allow
inclusion of transmission congestion and other details of power systems. Cour-
not models do have the difficulty, however, that electricity balancing markets
have little or no demand elasticity. As such, Cournot models usually require
estimating a residual demand by assuming there is a competitive fringe. Our
analysis suggests, however, that the fringe suppliers in the market behave far
from competitively, and that their behavior can be the most difficult to predict.

Our analysis also highlights some of the issues arising in the oversight of a
market by regulators and market monitors. With the behavior of the smaller
PGCs, we observed these firms submitting offers with markups and markdowns
far in excess of what our supply function model suggests would be profit-max-
imizing in a non-cooperative equilibrium. Observation of such behavior may
lead us to conclude these firms are exercising market and acting to raise the
MCPE, however a more thorough analysis shows these firms’ residual demand
is far too elastic and as such these bids merely price the firms out of the market.
This demonstrates that in undertaking market mitigation, regulators and mar-
ket monitors should not be focused solely on behavior (for example, observing
high markups), but also on outcomes (for example, whether high markups drive
up the MCPE). This type of restraint applies not only to simple ‘eyeballing’ of
market data for high offers, but also to use of sophisticated equilibrium models
such as the one we studied. We can also this type of analysis to draw conclu-
sions about how market mitigation measures should be targeted. A ‘shame cap’
which is meant to punish any firm with an offer above a certain threshold may
be targeting the wrong culprit if the high offer is being used by the firm to
ensure it does not have to deviate from its schedule. As such, it may be more
sensible to only target high bids which set (or are close to setting) the margin.
However, depending on the impact the observed economic withholding has on
efficiency of the market, regulators may wish to take steps to facilitate entry
into the market by these firms, which may be acting to exclude themselves.
Hortaçsu and Puller’s analysis of the BES shows these efficiency losses to be
sizeable, suggesting a need by the regulator to adjust the market design. By
contrast, the restraint showed by TXU in its BES offers suggests that giving
PGCs native load obligations with a fixed or capped retail rate may help keep
their behavior in the balancing market in check. We may even go further, con-
cluding that LSEs should be encouraged to retain at least a portion of their
generating assets, and that excessive forced divestitures may increase PGCs’
incentives to exercise market power. On the flip side, we were able to show
the model’s predictions are fairly in line with the behavior of the larger PGCs,
suggesting the type of equilibrium analysis we’ve undertaken has some value
in analyzing policy decisions. For example, in a market with a handful of large
strategic firms and a small fringe, these types of models may prove to be one
useful tool in analysis of mergers, divestitures, or alternate market designs. It
is important to bear in mind, however, that these models can result in vastly
different conclusions depending on nuanced modeling assumptions.
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Finally, we draw some simple market design conclusions. We showed the
smaller PGCs submit non-optimal offers, instead relying primarily on the bilat-
eral markets, and larger PGCs submit non-optimal dec offers. If the behavior
of the smaller PGCs is due to some actual or perceived cost of transacting in
the balancing market, for instance from having to determine offer prices in
a complicated optimization problem, this suggests efficient trade may benefit
from creating voluntary liquid day-ahead and real-time markets such as those
in PJM which facilitate trading and reduce transaction costs. The data in our
study is taken from the current ERCOT market, which by design tries to rely
primarily on bilateral markets. It is hoped that the new nodal design which
includes a voluntary two-settlement market will improve liquidity and facilitate
optimal behavior by participants.
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