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Abstract

Ž .In a competitive electricity market traditional demand-side management DSM options offering customers curtailable
service at reduced rates are replaced by voluntary customer responses to electricity spot prices. In this new environment,
customers wishing to ensure a fixed electricity price while taking advantage of their flexibility to curtail loads can do so by
purchasing a forward electricity contract bundled with a financial option that provides a hedge against price risk and reflects
the Areal optionsB available to the customer. This paper describes a particular financial instrument referred to as a
Adouble-callB option and derives the value of that option under the assumption that forward electricity prices behave as a
geometric Brownian motion process. It is shown that a forward contract bundled with an appropriate double-call option
provides a APerfect hedgeB for customers, which can curtail loads in response to high spot prices and can mitigate their
curtailment losses when the curtailment decision is made with sufficient lead time. q 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Interruptiblercurtailable service contracts at re-
duced rates have been introduced by many electric
utilities in the 1980s as part of numerous demand-side

Ž .management programs DSM aimed at reducing the
cost of electricity by taking advantage of customers’
flexibility to manage their load. These programs
were designed to incent customers to reduce their
load during shortages or system peaks as an alterna-
tive to costly spinning reserves and expansion of the
generation capacity that would have been needed to
serve the growing demand for electricity. Most inter-
ruptible service contracts offered alternative warning

) Tel.: q1-510-642-1836; fax: q1-510-642-1403.
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times. Tariff T-3 of Southern California Edison and
Tariff E-20 of PG&E, for instance, offer higher
discounts for shorter notification of an impending
curtailment. A shorter warning requirement enables
the utility to substitute interruptible load for spinning
reserves and reduces its unit commitment cost. Con-
sequently, a shorter warning time entitles the cus-
tomer to a lower rate. From the customers’ point of
view, earlier notification of an impending curtail-

Žment may mitigate the shortage costs e.g., by clos-
.ing operation . A similar situation may exist with

respect to long-term supply contracts. In countries
that heavily depend on hydro, such as New Zealand,
there have been initiatives to develop approaches for

Ž .early long-term notification say several months of
projected shortages due to low hydro reserves. With
proper price incentives such early notification could
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motivate an aluminum smelter, for instance, to plan a
seasonal shutdown.

A methodology for the design of priority service
price schedules with an early notification option was

w xdescribed by Strauss and Oren 7 as an extension to
the seminal work on priority service by Chao and

w xWilson 1 . With the advent of deregulation of the
electric power industry in the US and around the
world, quantity controls, such as curtailments, are
being replaced by price signals provided by daily
and hourly spot markets for electricity that have been
established as part of the industry restructuring. In
such markets, a customer can benefit from its flexi-
bility by responding to the price signal and exercise
its Areal optionB to reduce consumption when the
price is high. Such an approach requires the cus-
tomer to actively participate in the spot market.
Customers that prefer to avoid the risk of price
fluctuation can AhedgeB the price risk and secure a
fixed price through forward purchases of power or

Ž .bilateral contracts for differences CFD . The CFD
are contracts that entitlerobligate the parties to re-
ceiverpay the difference between the spot price and
an agreed upon fixed price with the net effect that
the parties experience a fixed price of electricity

Žwhile trading power at the spot prices for a detailed
explanation of CFDs and their use in the UK, see

w x.ENRON 3 . Simple hedges that ensure a fixed price
do not account for a customer’s flexibility and will-
ingness to curtail its load when the spot price is high
due to shortages or high demand. In the presence of
a spot market, customers willing to exercise their
curtailment option can sell their acquired power at
the spot prices. However, if a customer wants to
secure a fixed rebate for willingness to exercise
voluntary curtailment, hershe can do so by selling
back a call option on the power secured by the
forward contract. The equivalence between interrupt-
ible service contracts and forward contracts bundled
with a call option has been first described by Gedra
w x w x4 and in Gedra and Varaiya 5 . They show that a
rational customer whose valuation of a MW h is V
will self-select to sell a call option with strike price
V and will curtail its load whenever the option is
exercised, i.e, when the spot price exceeds the strike
price V. Furthermore, the actuarial value of the call
option equals to the corresponding interruptible rate
discount.

In this paper, we extend the above results to
account for the effect of early notification and intro-
duce a new type of financial instruments that allows
a customer to secure the benefit of its real option to
curtail load and to commit to such curtailment early
or late if properly incented.

2. Hedging price uncertainty with early and late
curtailment options

Suppose that a customer has a shortage loss $V0

per MW h if curtailed close to delivery time, but a
lower shortage cost of $V per MW h if a shut downT

is planned at an early date T prior to the physical
delivery date. Hershe could purchase a forward
electricity supply contract and sell back an exotic
call option, which can be executed at delivery time at
strike price V or at time T before delivery at strike0

price V . The premium received by the customer forT

that call lowers hisrher cost of doing business while
the exercise of the option will nullify the forward
contract, forcing the customer to face spot prices
when theses prices exceed the strike prices of the
option. In these circumstances, however, since the
spot price of electricity exceeds the customer’s will-
ingness to pay for it, the customer will choose to
curtail its load. Such a AperfectB hedging instrument
could reduce a customer’s transaction costs and en-
ables customers to divest their unwanted risk.

Fig. 1 below illustrates a contractual arrangement
that can provide a perfect hedge for a customer who
can mitigate shortage cost through early notification.
In this arrangement, the customer purchases a for-
ward contract and sells back a Adouble-callB option
that can be exercised either at an early date T prior
to delivery or at delivery time at two different strike
prices. The customer can select the two strike prices,
while the holder of the option decides if and when to
exercise the call. An early exercise cancels the for-
ward at time T prior to delivery and pays the early
strike price, while exercise at delivery time cancels
the forward and pays the late strike price. If the call
is not exercised, the forward is settled through physi-
cal delivery.

The efficacy of a financial instrument in achiev-
ing allocated efficiency depends on its ability to
induce customer and supplier choices that are consis-
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Fig. 1. Contractual obligations, payments and choices in a forward contract bundled with a double-call option.

tent with the decisions that would have been taken
by a benevolent central planner with perfect informa-
tion. Fig. 2 illustrates the decision tree for a central
planner with perfect information about customers’
shortage costs and forward electricity contracts.

At time T , the planner knows the early and late
shortage costs V and V , the forward price f and0 T T

� < 4the probability distribution Pr f f over the for-0 T
Ž .ward price at delivery same as spot . The immediate

decision is whether to curtail at the early date or
wait. Ignoring sunk costs, early curtailment yields
the value of the forward at delivery less the early
shortage cost. Foregoing early curtailment presents a
second decision whether to curtail at delivery or
deliver. Economic efficiency dictates curtailment at
delivery if and only if the spot price exceeds the

Žshortage cost. Hence, the net value net of sunk costs
.or sure gains of the second decision is the expected
w xvalue of max 0, f yV , which is the value at time0 0

T prior to delivery of a simple call option with strike
Ž < .price V , given the forward price f , i.e., C V f .0 T T 0 T

Fig. 2. Decision tree at early date for central planner with perfect
information.

Subsequently, the optimal decision at time T prior to
delivery is to curtail if f )k, where kyV sT T

Ž < .C V f sk . This result follows from an assump-T 0 T

tion that the forward price at any point in time equals
the risk neutral expectation of the spot price at

Ž .delivery this ignores interest and the spot and
forward prices reflect a competitive market equilib-
rium. Thus, the threshold forward price for socially
efficient early curtailment is the sum of the immedi-
ate shortage cost plus the value of the forgone late
call option. If the forward price at time T exceeds
that threshold level, it is socially optimal to curtail
service at that time. Fig. 3 illustrates the efficient
rationing policy as a function of the foreword prices
at the early and late dates and the combination of
early and late shortage costs. Under optimal ra-
tioning, loads in the shaded area should be curtailed
early, while those in the lined area should be cur-
tailed at delivery time. As the early forward price
increase, more load will be interrupted early in antic-
ipation of a shortage reflected by these prices. Simi-
larly, if the spot price at delivery is higher than more

Ž .load with shortage cost below that price , it will be
curtailed.

Let us now consider the exercise decision by the
holder of a double-call option with strike price k atT

time T and k at time of delivery. The decision tree0

for such a decision is identical to that shown in Fig.
2 with V and V replaced by k and k . TheT 0 T 0

corresponding optimal exercise decisions are, there-
fore, to exercise at delivery if f )k and exercise at0 0

T prior to delivery if f )k, where kyk sT T
Ž < .C k f sk .T 0 T

The optimal exercise policy is illustrated in Fig.
4, showing the early and late exercise regions as a
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ŽFig. 3. Efficient rationing with perfect shortage cost information for geometric Brownian motion with notification interÕal Õolatility
' .s T s1 .

function of the strike prices of the option and the
forward prices at the early exercise date and at
delivery. Note that while the spot price threshold

level for late exercise of a double-call option equals
the late strike price, the forward threshold value for
early exercise depends on both strike prices and will

'Ž .Fig. 4. Optimal exercise policy for a double-call option for geometric Brownian motion with notification interÕal Õolatility s T s1 .
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Fig. 5. Customer self-selection of strike prices for double-call option.

Žalways exceed the value of the early strike price this
accounts for the value of the remaining option if the

.option is not exercised early .

3. Self-selection of the strike prices for a double-
call option

It is evident from the above analysis that the
optimal exercise of a double-call option with strike
prices k sV and k sV produces the same out-T T 0 0

come as socially efficient curtailment of a load with
early and late shortage costs V and V . In a compet-T 0

itive environment, however, shortage costs are cus-
tomers’ private information. Thus, to achieve effi-
cient curtailment through the exercise of double-call
options, it is necessary that customers will find it
advantageous to select strike prices that equal their
privately known shortage costs. Fig. 5 illustrates the
decision tree for a hedging customer with shortage
costs V and V having to select strike prices for aT 0

double-call option. The customer takes into consider-
ation the market valuation of such options and the
optimal exercise strategy. A speculator who can only
sell the forward contract at the prevailing market
prices but has no private value for the commodity
will face the same decision tree as a hedger with the
exception that V and V are replaced with theT 0

foreword prices f and f , respectively. MarketT 0

efficiency, which precludes arbitrage gains, dictates
that the expected gains of a speculator are zero for
any selection of strike prices. This condition and the

ˆ Žoptimal exercise policy determine the value C k ,t T
< .k f of the double-call option.0 t

In the following analysis, we use the no-arbitrage
condition and the optimal exercise policy to prove

Ž .that indeed it is optimal maximizes expected gain
for a hedging customer to select strike prices that
equal the corresponding curtailment costs and, hence,
the optimal exercise of the call option will result in
efficient curtailment.

The decision tree in Fig. 5 illustrates the strike-
price-selection decision faced by a hedger with early
and late interruption losses of V and V . TheT 0

expected hedging gains are, thus, given by:

< <B k ,k ;V ,V f s k yV Pr f )k fŽ . � 4Ž .t T 0 T 0 t T T T t

<q k yV Pr f Fk fŽ . � 40 0 T t

= <Pr f )k f , f Fk� 40 0 t T

ˆ <qC k ,k f ,Ž .T 0 t

where k is defined in terms of the strike prices and
the value of a simple call option by the equation:

Ž < .kyk yC k k s0.T T 0

The same tree will represent the decision of a
speculator who has no private use for the commodity
and, hence, values it at the respective spot prices fT

Žand f However, market efficiency no-arbitrage0.
.gains dictates that the expected gains of the specula-

tor are zero for any strike prices, which implies:

`

<0s k y f dPr f f� 4Ž .H T T T t
k

`k
< <q k y f dPr f f dPr f f� 4 � 4Ž .H H 0 0 0 T T t

0 k0

ˆ <qC k ,k f .Ž .T 0 t
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We can use the above equation to substitute for
the value of the double call in the expression for
hedging gains, resulting in:

<B k ,k ;V ,V fŽ .t T 0 T 0 t

`

<s f yV dPr f f� 4Ž .H T T T t
k

`k
< <q f yV dPr f f dPr f f .� 4 � 4Ž .H H 0 0 0 T T t

0 k0

The inner integral above can be expressed as:

`

<f yV dPr f f� 4Ž .H 0 0 0 T
k0

V0< <sC V f q f yV dPr f f .� 4Ž .Ž . HT 0 T 0 0 0 T
k0

For the special case where the strike prices match
the interruption losses, we have:

`

< <B V ,V ;V ,V f s f yV dPr f f� 4Ž .Ž . Ht T 0 T 0 t T T T t
k̂

k̂ < <q C V f dPr f f ,� 4Ž .H T 0 T T t
0

ˆwhere k is defined by the equation:

ˆ ˆ<kyV yC V k s0.Ž .T T 0

Using the above expressions, we can now rewrite
the hedging gains as:

<B k ,k ;V ,V fŽ .t T 0 T 0 t

k̂ ˆ<sB V ,V ;V ,V f y ky fŽ . Ž .Ht T 0 T 0 t T
k

ˆ< < <y C V k yC V f dPr f f� 4Ž .Ž .ž /T 0 T 0 T T t

Vk 0 < <q f yV dPr f f dPr f f� 4 � 4Ž .H H 0 0 0 T T t
0 k0

By mean value theorem:

ˆ ˆ< <ky f y C V k yC V fŽ .Ž . Ž .ž /T T 0 T 0 T

<EC V fŽ .T 0ˆs ky f 1yŽ .T
E f

ˆfor some fg f ,k .T

But the term in the square bracket is nonnegative
since the slope of a simple call price with respect to
the spot price is never greater than AoneB . Hence,

ˆfor kGk, the integrand in the first integral of the
Žhedging benefit equation above is nonnegative since

ˆ ˆ.ky f G0 . For k-k, the integrand is negative butT

the sign of the integral is still positive due to the
switched integration limits. Similarly, the second
integral is negative since either the integrand is
negative or the integration limits of the inner integral
are switched. It follows that:

< <B k ,k ;V ,V f FB V ,V ;V ,V fŽ . Ž .t T 0 T 0 t t T 0 T 0 t

so the hedger’s gains are maximized by selecting
early and late strike prices that match the early and
late interruption costs, respectively.

4. Pricing of double-call options

Based on the optimal exercise policy and the
no-arbitrage condition described above, we deter-
mine the value of the double-call option at any time
t, as follows:

ˆ <C k ,k fŽ .t T 0 t

<C k f for t-TŽ .t 0 t

<max f yk ,C k f for tsTŽ .s T T T 0 T− < <E max f yk ,C k f f for t)T� 4Ž .T T T 0 T t

where the expectation is taken with respect to the
risk neutral probabilities.

The value of the call option after the early exer-
Ž .cise assuming it is still alive can be determined in a

straight forward manner using the Black–Scholes
Žformula assuming that the forward price follows a

.geometric Brownian motion process . In the absence
Žof dividends this formula has the form see Cex and

w x w x.Rubenstein 2 and Hull 6 :

y1 '<C k f s f N x yk r N xys t ,Ž .Ž . Ž .t 0 t t 0

where:

y1log f rk r 1Ž .t 0 'xs q s t .' 2s t
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'Ž .Fig. 6. Value of late call option for geometric Brownian motion with notification interÕal Õolatility s T s1 .

In the above formula, r represents the interest
Ž .rate and N is the cumulative of the standardized

Žnormal distribution zero mean and unit standard
.deviation . For simplicity we will ignore the interest

rate, i.e., assume is1 in the subsequent discussion.
Fig. 6 illustrates the value of the late option at
various times expressed as multiples of the early

Ž .exercise time T .

'Ž .Fig. 7. Value of double-call option at the two exercise times for geometric Brownian motion with notification interÕal Õolatility s T s1 .
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ŽFig. 8. Effective early strike price as function of double-call strike prices and notification interval for geometric Brownian motion with
.Õolatility ss1 .

Because of the early exercise option, we are only
interested in the value of the late option if the early
option is not exercised, i.e., for tFT. The payoff
function of the early option at tsT is the largest of
the early option payoff or the late option value at
that time. Fig. 7 below illustrates the payoffs of a
double-call option at delivery time and at the early
exercise time. At ts0, it is the payoff function

w xmax 0, f yk , whereas at the early exercise date, it0 0
w Ž < .x Žis given by max f yk , C k f . The curvedT T T 0 T

line in Fig. 7 represents the value of the late call
.option at the early exercise time.

Note that the exercise price of the early option k,
which was defined earlier, is higher than the early
strike price due to the residual value of the late
option. We refer to this early exercise price as the

Fig. 9. Decomposition of a double-call option prior to the early exercise.
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Ž .Fig. 10. Value of double call prior to early exercise time for geometric Brownian motion with Õolatility ss1 .

effective early strike. Under the Black–Scholes
Ž .model, k k , k can be calculated from the implicit0 T

equation:

'krk 1yN x qN xys T s k rk ,Ž . Ž .Ž . Ž .Ž .0 T 0

where:

log krk 1Ž .0 'xs q s T .' 2s T

Fig. 8 illustrates the above relationship between
the effective early strike price and the two strike
prices of the double-call option.

The valuation of the double-call option at times
prior to the early exercise time is more involved and
requires numerical integration or use of binomial
trees. The calculation can be simplified by decom-
posing the double-call option into a regular call with

Ž .strike price of k the effective early strike and an
option on the late call option whose payoff function

w Ž < . xat time T is min c k f ,kyk , The decomposi-t 0 T 0

tion is illustrated in Fig. 9 below.
The value of the double-call option for t)T can

Žthen be computed under the geometric Brownian
.motion assumption as:

ˆ <C k ,k fŽ .t T 0 t

< <sC k f qC k kŽ . Ž .tyT t T 0

k
< < <y C k k yC k f dPr f f .� 4Ž .Ž .H T 0 T 0 T T t

0

Integrating by parts yields:

ˆ < < <C k ,k f sC k f qC k kŽ . Ž . Ž .t T 0 t tyT t T 0

<EC k fŽ .T 0 Tk
<y Pr f f d f� 4H T t T

E f0 T

Assuming again that the forward price follows a
geometric Brownian motion with expected return of
1, we have:

log f rfŽ .T t
<Pr f f sN and� 4T t ž /'s tyT

<EC k f log f rk 1Ž .Ž .T 0 T T 0 'sN q s T .ž /'E f 2s TT

Ž .Let ys log f rk We then obtain:T 0

ˆ < < <C k ,k f sC k f qC k kŽ . Ž . Ž .t T 0 t tyT t T 0

yy log f rkŽ .Ž . t 0log krk0yk NH0 ž /'s tyTy`

=
yq 1r2 s 2TŽ .

yN e d yž /'s T

Ž < . Ž < .where kyk sC k k and C k f is the value ofT T 0 t
Ž .a standard call without dividend or interest given

by the Black Scholes formula:

'<C k f s fN x ykN xys t ,Ž .Ž . Ž .t
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where:

log f rk 1Ž .t 0 'xs q s t .' 2s t

In Fig. 10, we illustrate the price evolution of a
double-call option for various values of t prior to the
early exercise time when the forward price follows
geometric Brownian motion. For illustrative pur-
poses, we again assume notification interval volatil-

'ity s T s1 and early to late price strike ratio of
k rk s0.5.T 0

5. Conclusion

In a competitive electricity market, financial in-
struments and derivatives based on underlying com-
modity futures will play an important role as means
for risk management speculative investments and
capital formation. Such instruments can also emulate
traditional contracts between customers, utilities and
independent power producers aimed at improving the
efficiency of resource utilization. Custom design of
financial instruments can be specifically targeted at
implementing such contracts in a decentralized envi-
ronment with independent decisions by buyers and
sellers. Such targeted instruments reduce transaction
costs and provide perfect hedging tools for buyers
and sellers of electricity. However, while one could
conceive of many exotic forms of options that would
meet specific needs for hedging and speculation we
should also emphasize the importance of standardiza-
tion. No financial instrument can be viable without
sufficient liquidity and proliferation of customized
instruments may result in Athin marketsB with insuf-
ficient liquidity. It is not surprising, that only a small
fraction of new futures and derivatives in stock and
commodity markets develop sufficient liquidity to
become viable. Finally, we like to emphasize that the
pricing formulae derived in this paper are based on a
geometric Brownian motion price model. Empirical
evidence suggests that that model is inadequate as a
representation of electricity spot price behavior. Our

follow-up work on this topic will attempt to derive
pricing formulas for the double-call option under
more realistic price models that include mean rever-
sion with stochastic jumps and regime switching.
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