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Abstract Currently, there is a need to plan and analyze the electric power transmission
system in greater detail and over larger geographic areas. Existing models approach
the problem from different perspectives. Each model addresses different aspects of
and has different approximations to the optimal planning process. In order to scope
out the huge challenge of optimal transmission planning, this paper presents a new
modeling approach for inter-regional planning and investment in a competitive envi-
ronment. This modeling approach incorporates the detailed generator, topology and
operational aspects found in production cost planning models into a larger framework
that can find optimal sets of transmission expansion projects. The framework pro-
posed here can be used in an auction to award investment contracts or as a part of a
more general policy analysis. The solution yields the set of transmission projects that
have the highest expected benefits, while also representing generic generation expan-
sions under the same objective. The model is a two-stage, mixed-integer, multi-period,
N-1-reliable model with investment, unit commitment, and transmission switching.
The combination of combinatorial, stochastic and operational elements means this
model may be computationally intractable without judicious modelling aggregations
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or approximations to reduce its size and complexity. Nevertheless we show via a dual
problem that analysing the economics and sensitivity of the solution is computationally
more straightforward.

Keywords Duality · Integer programming · Stochastic programming ·
Generation unit commitment · Investment · Power system economics

Mathematics Subject Classification 90B15 Network models, stochastic · 90C11
Mixed integer programming · 90C90 Applications of mathematical programming ·
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1 Introduction

Today the investment in the US electric power system is about $800 billion with annual
revenues of about $250 billion. Worldwide, these numbers increase by a factor of four
or five. Because investment decisions related to the electric power system are large,
even modest improvements in investment modeling can result in billions of dollars
of cost savings. Such potential indicates the need for improvements to modeling the
electric power planning and investment processes.

Historically, planning has evolved from a process in which investment decisions
were made centrally by a vertically integrated utility in consultation with its neighbors,
to a process in which investment decisions are more decentralized and potentially more
competitive. High voltage transmission proposals often impact a large geographic area
spanning more than a single utility or state. Existing approaches to transmission plan-
ning and investment have implicit and explicit assumptions and approximations that
need to be re-examined in the context of a smarter grid and increased amounts of
energy from wind and solar generators, batteries, and demand-side market partic-
ipants. Some approximations and assumptions in current models were necessary to
make the problem computationally practical for the technology that was available when
computer-assisted planning started decades ago. Other assumptions and approxima-
tions were made to simplify uncertainty, including failure modes and demand growth.
Still other assumptions and approximations were made in order to harmonize planning
and investment approaches with the market design de jour. Many of these assumptions
and approximations limit advancements in optimal inter-regional planning of the grid.

Reliability is a process of creating rules and penalties for non-compliance to reduce
the probability of cascading blackouts (blackouts caused by disturbances in other
areas) and serious equipment damage. Cascading blackouts affect large geographic
areas and their prevention is a public good for that area. Historically, reliability stan-
dards were guidelines and compliance was voluntary. Steps to formalize, standardize
and computerize reliability started after the 1965 Northeast Blackout. Generally, reli-
ability was confined to a vertically integrated utility and was a weakly defined concept
that often included considerable judgment. Many planning models were developed as
reliability models and still reflect a reliability approach. As a result of 2003 Northeast
Blackout and the subsequent legislation (EPACT 2005), the Federal Energy Regu-
latory Commission now has the formal authority to regulate and enforce reliability
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standards. For N-1 reliability, the system must be stable and able to survive the failure
of any one asset with a high probability. Reliability includes numerous other rules
including situational awareness, vegetation management, and operator training that
are not considered here. Production cost models, which simulate unit commitment
and economic dispatch operations, are often used in economic studies of proposed
transmission expansion projects.

With the advent of large amounts of wind and solar, along with storage and more
price-responsive demand, the current approaches need to be modified. Today, for
computational and management reasons, models are decomposed, compartmentalized
and reduced in size using a mixture of engineering judgment, experience and off-line
modeling. Planning results are tested for adequate voltage stability, inertia and various
other aspects of reliability. Over time as the data, hardware and software for solving the
problem improve, more constraints can be modeled explicitly over larger regions. With
experience, the solution times can be reduced and better modeling can be introduced.

The approach presented here integrates aspects from production cost models and
investment models. Our primary objective is twofold. First, we use a model to scope
out the challenge that is faced in optimizing transmission expansions over alternatives
specified by the analyst or planner. Second, we use the model to present the enor-
mous complexity of the problem to the optimization community because electricity
stakeholders need a new generation of much more ambitious and higher performing
numerical software to sensibly discuss optimal expansion in transmission capacity.

Our approach chooses the transmission investments that give the highest expected
net benefits to society while recognizing N-1 reliability constraints and environmental
goals. The model also recognizes generic generation investment alternatives, and co-
optimizes these expansion costs with transmission expansions. If demand is inelastic,
the overall objective is to achieve the expected lowest cost of transmission and gen-
eration investments that achieve specified reliability levels and environmental goals.
The analyst or planner can modify constraints to represent different policy scenarios.
For example, different renewable portfolio standards can be specified and the resulting
optimal transmission expansion (from among prespecified alternative projects) is pro-
duced as an output. The expected long term effect on the mix of generation can also be
analyzed via the inclusion of generic generator expansion options. To the extent pos-
sible, the generation and transmission options presented to the model should consider
regulatory difficulties by either excluding certain technologies, or by reflecting the
difficulties in the costs of construction. Multiple objectives can be included via con-
straints, additional costs or explicit tradeoffs. For example, environmental objectives
can limit the amount of emissions, such as CO2,SO2, or Hg, using model constraints.
The model satisfies the modeling criteria of many environmental groups.1 The model
is policy flexible in that the geographic scope, demand responsiveness and energy
efficiency capabilities can be defined exogenously, but optimized endogenously.

1 Proposed Framework for Electricity Grid Planning, Discussion Draft, October 9, 2009, issued by rep-
resentatives from the National Audubon Society, Conservation Law Foundation, Energy Future Coalition,
ENE-Environment Northeast, Environmental Defense Fund, Natural Resources Defense Council, Piedmont
Environmental Council, Sierra Club, Sustainable FERC Project and Union of Concerned Scientists.
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The model allows as input potential transmission investment. Generic generation
construction, installation and operation costs are estimated for different facility types,
sizes and locations. Generic generators are chosen by the model to ensure optimality
and analyze the effect of future transmission investment. The approach is used to
better inform the decision making process, and select optimal transmission investments
from among the possible combinations. Over time the market is assumed to fill in the
generation needs optimally.

The modeling approach presented is an extension of the model for a day-ahead
market with transmission switching (see Hedman et al. [1–3] and [4]; also O’Neill
et al. [5,6] and Fisher et al. [7]). New investments are modeled by extending the
unit commitment formulation to include investment decisions, and by incorporating
transmission switching decision variables to include investment decisions. The main
differences are the inclusion of investment decision options, additional uncertainties
and a longer time horizon. The process also considers changes to existing resources and
infrastructure, to the extent that such changes increase system efficiency. The solution
of a large scale version of the problem would benefit from advancements in hardware
and optimization software. The model can be made more (or less) granular with an
increase (or decrease) in the computational burden. A consolation is that solution time
window is measured in days not hours and computer hardware and software continue
to improve at a rapid pace.

In Sect. 2, we present an overview of models and approaches for transmission
planning analysis. In Sect. 3, we present an overview of the proposed approach and
model. Input data and sensitivity analysis are discussed, as well issues surrounding
transmission investment and transmission costs and rights allocation. In Sect. 4, we
present the stochastic multi-period N-1-reliable forward market model with unit com-
mitment, transmission switching and investment. The mathematical formulation is
presented, along with economic analysis of the dual problem. Finally, we conclude
and summarize in Sect. 5.

2 Literature and model review

In academic literature, a number of optimization based approaches have been presented
for transmission expansion planning. Many of these approaches do not guarantee opti-
mal solutions but instead use approximations necessary to handle the magnitude of
the problem, and the computational difficulty presented by binary investment deci-
sions. Garver [8] and Villasana et al. [9] presented linear programming approaches for
finding feasible transmission network expansions given future loads and generation.
Dusonchet and El-Abiad [10] discussed the use of dynamic programming to deal with
the size and complexity of a transmission planning optimization problem.

Romero and Monticelli [11] proposed a method for solving network expansion
planning problems with linear and mixed integer programming techniques, by relax-
ing the problem to a transportation model without integrality constraints and then
successively introducing the complicating constraints to move towards a final solu-
tion. Baughman et al. [12] discussed models for the inclusion of transmission expan-
sion decisions in integrated resource planning (IRP). Gallego et al. [13] presented a
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genetic algorithm approach for solving the transmission system expansion problem.
Binato et al. [14] explored a Benders decomposition approach to solving mixed integer
programming problems for the transmission expansion problem. Alguacil et al. [15]
proposed a mixed integer programming formulation of the long term transmission
expansion problem with binary transmission investment decisions were represented
by variables and applied it to a 46 node single period model of the Brazilian power
system. DeOliveira et al. [16] presented a sigmoid function approach for binary invest-
ment variables in the optimal transmission expansion problem, and tested it on a model
of the southeastern Brazilian system. De la Torre et al. [17] presented a mixed integer
program for long term transmission investment planning in a competitive pool based
electricity market.

Moulin et al. [18] discuss an integer programming formulation for transmission
expansion planning which allows for re-design of the existing network in addition
to investment decisions for new assets, since the properties of electric transmission
networks can allow for lower cost solutions when some combination of transmission
elements are removed when others are added. Kazerooni and Mutale [19] solve the N-1
security constrained transmission expansion optimization problem while incorporating
environmental constraints. van der Weijde and Hobbs [20] formulate a two-stage sto-
chastic program in which generation investment is a stage two variable, and is allowed
to react to the actions of transmission planners. They use the model to find minimal
investment costs, as well as to evaluate the value of information and flexibility in plan-
ning for renewables through simulations involving the power system in Great Britain.

For several reasons, the approach presented here does not contain an explicit game
theoretic aspect such as those found in Sauma and Oren [21,22] and Murphy and
Smeers [23,24]. First is that game theoretic analysis adds an additional computational
burden to an already difficult problem. Second, almost all show inefficiencies that,
in theory, call for intervention if intervention is cost justified. In the US, commodity
markets are mitigated and transmission markets are predominately cost-of-service
with free rider problems. The approaches to date have been too abstract. Third, game
theoretic approaches are often very complex and require many assumptions that move
them away from the actual markets. Here, we are trading off the incentive problems of
IRP with market mechanisms such as auctions with better incentives. Also, we present
a simplified cost allocation for the optimal transmission expansion plan.

Currently, there is also a range of commercial modeling tools that fall under the
category of planning models. These include production cost planning models that
simulate unit commitment and economic dispatch, which are widely used in Regional
Transmission Organization (RTO) and Independent System Operator (ISO) planning
and are available from a number of vendors. Production cost modeling is one of the
predominant methods for evaluating the economic benefits of transmission expansions
on the power system. Examples of commercial production cost models are Gridview
[25], Multi Area Production Simulation (MAPS) [26] and PROMOD [27].

RTOs and ISOs use commercial productgion cost models, along with internal
software, for planning analysis. The current framework for production cost model-
ing involves simulations of the unit commitment and economic dispatch process for
a chosen footprint (single area to interconnect) and time frame (weeks to years).
The modern commercial grade production cost software for economic evaluation of
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transmission investments is often limited to a linear approximation of the alternat-
ing current optimal power flow (ACOPF) problem, which represents the network
flow model for the electric transmission grid, called the direct current optimal power
flow (DCOPF) problem. The ACOPF is a non-linear, non-convex problem involving
trigonometric functions whereas the DCOPF is a linear program if the costs are rep-
resented through piecewise linear functions. While it is acceptable to make such an
approximation, in regards to the ACOPF, for long-term planning models based on
todays technology, such software have many other coarse approximations as well.
For instance, such packages are often merely able to solve linear programs. Modeling
requirements that require binary variables may be handled by heuristics and gross
approximations.

Binary decision modeling should involve a mixed integer programming frame-
work, which is often lacking in key areas. As an example, a set of new transmission
and generation projects can be analyzed as specified (exogenously) by the user, but
the software would not be able to identify the optimal set of projects, and the optimal
timing of the investment, from a specified set of alternatives. Such abilities may be
useful, for example, in the context of analysis to support interconnect wide planning
for the integration of renewable resources. This is not just the case for transmission
planning but it is also the case for transmission maintenance scheduling. Maintenance
scheduling for transmission and generation is important to take into consideration
within long-term investment planning models. Even though these problems require
a mixed integer programming framework, gross approximations are made by imple-
menting rule-of-thumb policies. ISONE released a report stating that they are saving
tens of millions of dollars a year by considering the economic impacts of transmission
outage planning instead of only considering the reliability aspects [28]. However, the
methods that they are using rely on taking into consideration the prices in the market
to estimate the economic impacts of transmission maintenance schedule, which then
asks the question regarding how much more could be saved if a more direct approach
is taken in the future.

Another limitation of modern commercial grade packages is their ability to prop-
erly model energy storage capabilities and their participation in buying and selling
energy. Techniques used by these packages to determine pumped-storage facility pro-
duction and consumption (such as peak-shaving techniques) can produce anomalous
and inaccurate results, for instance facilities consuming at high prices and producing
at low prices.

Overall, todays commercial grade technology for this complex combinatorial prob-
lem is not even at the level of our capabilities to date. With the advent of intermittent
renewable resources and new smart grid technologies, the need for new modeling and
algorithmic approaches for this problem is even more pressing.

3 Overview of proposed approach and model

Optimal transmission planning modeling decides the expected best set of transmission
investments based on possible future scenarios and the probabilities of their realization.
The model and process in a nutshell is:
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1. Develop, standardize and refine data needs for planning
2. Decide on a set of possible future scenarios and their associated probabilities.
3. Take transmission proposals
4. Solve a stochastic mixed integer program to find the investments with the highest

expected net benefits
5. Perform sensitivity analysis on scenarios, analyze the optimal set of transmission

investments in each scenario
6. Determine the beneficiaries
7. Allocate transmission costs and rights
8. If satisfied with the results, stop; otherwise, go to 1.

Unless each step is accomplished at a certain level of quality, the overall process
will likely fail. In the following sections, we discuss the steps in more detail.

3.1 Input data, assumptions and scenarios

Good data is necessary to achieve good modeling results. It goes almost without saying
that a high fidelity database is a necessary prerequisite for good results. For large areas
crossing state lines and company boundaries, coordination and standards development
are important.

The paradox or irony of risk managed forecasting or planning under uncertainty is
that the ex ante optimal solution is almost always wrong ex post. The simple reason is
that risk managed approaches consider and respond to scenarios that ex-post did not
happen and did not need to be considered.

Nevertheless, there is no good substitute for good scenario planning. Good sce-
narios are the result of vigorous transparent public debate. Scenarios need to focus
on assumptions about technological innovation, environmental issues, input prices
and the probability of each scenario. Technological innovation and scientific discov-
eries have perplexed forecasters for centuries. The assumptions about technological
innovation can radically change the model outcomes.

Controversial but important scenario parameters are the future prices of carbon
emissions (or amount of carbon emissions permitted), coal, oil, and natural gas. The
Energy Information Administration (EIA) produces annual long term forecasts. They
are generally considered the default assumptions in analysis. This is not because EIA
necessarily gets it right, but because they are considered the least biased and have the
best information base. Some policy objectives are exogenously determined and can be
incorporated with constraints. Each environment pollutant (for example, CO2,SO2,
or NOx ) can be constrained in any geographic region. Each resource (for example,
wind, solar or geothermal) can be required for any geographic region.

Scenarios and their probabilities must be developed using forecasts and input from
industry experts. Developing the probability of some scenarios can be a difficult task.
For example, it is very hard to estimate the likelihood that renewable portfolio stan-
dards or environmental policies will impose new requirements at a later date, or the
possibility of a future spike in fuel prices. All scenarios involve forecasting that is
inherently incorrect. Sensitivity analysis that examines outputs under a range of dif-
ferent scenarios will always be a critical part of the process.
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The smarter grid is more controllable and flexible, and makes more efficient use of
existing and new assets. Today, only limited control and flexibility of electric assets are
built into electric network optimization models. In our model, we include smart grid
assumptions as granularity allows. Topology optimization and corrective switching
are examples. Assumptions about the smart grid can change the outcomes and even
the modeling approach. Also, the significant penetration of wind and solar introduces
new stochastic variation that could cause both operational and market design problems
without the smart grid. For example, wind power and electric cars present interesting
peak/off-peak issues.

3.2 The stochastic mixed integer programming planning model

The planning model in this framework is a stochastic two-stage mixed integer pro-
gram. The objective of the model is to maximize the expected market surplus (benefits
to society) from new and existing investment. The investment decisions are binary
variables. A new generator or transmission asset cannot be in the network unless the
investment has been made to construct. For each state or contingency, the operating
variables and associated constraints assure the feasibility given the investment deci-
sion. Transmission switching is relevant because if a valuable line could be blocked by
a low capacity line in a circuit then the low capacity line can be removed to improve
the market performance.

Each generator has operating costs, startup, minimum up time, shutdown and min-
imum downtime constraints and operates with upper and lower bounds within ramp
rate constraints. Transmission assets can be switched in and out of the network and can
operate continuously within upper and lower bounds. Reliability is met with N-1 DC
reliability constraints for both transmission and generation. Transmission switching
is assumed to be available in contingency scenarios. This is a realistic assumption
in cases where Special Protection Schemes (SPS) are in place for certain scenarios.
The probability of two or more simultaneous contingencies is not explicitly modeled;
that is, the market will not clear with specified probability. The probability of two or
more simultaneous outages are calculated by treating outages of system elements as
independent events.

Load is modeled comparably to generators. If the load chooses to be explicitly price-
responsive (bid into the market), it has comparable bidding parameters to generation.
For example, load can bid the value of consumption in a single period or can bid a single
value for an entire eight hour shift using minimum run parameters. Price-responsive
demand is not included in reliability calculations since demand will voluntarily curtail
itself when the price is too high.

System constraints include Kirchhoffs first law, power balance equations at each
bus, Kirchhoffs second law, flows around a circuit, and phase angle differences. In a
state when the transmission element is not in the network the constraints are adjusted.
If the transmission element is in the network then the second law is enforced. Both AC
and DC lines are modeled. For renewable portfolio requirements, we add the necessary
parameters, variables and constraints for either production or capacity requirements.

Due to the length of the horizon, cost and values are discounted. This allows the
model to optimize the expected discounted present value of the investments. Fortu-
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nately, discounting makes errors in later years, where input assumptions are more
vulnerable to error and uncertainty, have lesser impact than assumptions in earlier
years. We also assume risk neutral market participants because the cost of transmis-
sion investment is paid for, in part, under a cost-of-service regime that reduces the
investment risk.

3.3 Sensitivity analysis

Different approximations can be used for different purposes. For example, smaller
weaker-fidelity models can be used to solve many rough cut scenarios quickly in pre-
liminary or high-level sensitivity analysis. Larger, higher-fidelity models can be used
to ensure the detailed or final decisions on investments, contracts and cost-allocation
approach are consistent with smaller models. The results can be fed back and forth to
refine the models.

Sensitivity analysis can address many issues including sensitivity to data inputs,
assumptions, and approximations. The list of possible sensitivities is large and can be
computationally intense. For the purpose of economic analysis, sensitivity analysis is
conducted on two levels. Marginal economic information is a model output. The first is
a marginal analysis of continuous variables and parameters. For example, the marginal
cost of a renewable portfolio constraint is a model output, that is, the level of subsidy
needed to achieve an equivalent result. The second is the incremental analysis of binary
decision variables. A set of binary variables can be changed, the model is then resolved,
and the change in the objective function then gives the expected incremental value for
the change in that set of binary variables. For complete sensitivity analysis, many
combinations of binary variables may need to be considered, but this is practically
impossible for all but small models. For practical reasons we need to find analysis that
is cost beneficial and present an approach later in this section.

We recommend three to five working scenarios: for three scenarios a most likely
scenario (70–80 %) and a bounding scenario (10–15 %) on each side. The five working
scenarios consist of a most likely scenario and two bounding scenarios on each side. In
general, the entire process is iterative. That is, the model is fined tuned as experience
with the model grows.

We suggest starting with a weak approximation of five year increments, four sea-
sons, and sample days (peak, off-peak and two shoulder periods). For fossil generators,
we suggest steady-state operating conditions—startup only for peaking generators,
minimum and maximum operating levels, and average variable operating costs. For
variable generators, we suggest variable costs and 3-part partitions of event space for
generator output. For transmission, we suggest maximum steady-state capacity.

3.4 Transmission investment decisions

In this model, investments are not made unless they are a part of the optimal solution.
The model can be used in several modes varying from advisory/insight status to an
auction mode. In the advisory mode the model is used to guide the planning process.
In the auction mode it is used to decide what to build and what to pay.

123



248 R. P. O’Neill et al.

In the auction approach, the generic contract details and bidder qualifications are
specified prior to the auction. Market participants submit offers to build with costs
and technical specifications of the proposed investment. The model finds the expected
optimal (or near optimal) transmission plan. Conceptually, this is similar to the energy
capacity market, but more complex. The winning transmission projects are awarded
contracts to build the assets at their offer costs. We recommend that the auction be
a first-price or pay-as-bid auction with ex-ante market power mitigation because a
second price auction presents issues that are computationally intense and may be
unnecessary if entry is competitive. Also, with market power mitigation, the value of
the second price auction diminishes. The winning generic generation is not awarded a
contract. Competition should determine who builds the generation although the new
transmission will in part determine where new generation is located and what is built.

In either mode, transmission projects compete with each other and drive down
offer costs. Transmission projects can compete with other projects to build the same
asset. Competition also comes from combinations of other proposals including local
generation. Sensitivity analysis can help determine if there is market power. We now
proceed to address the allocation of transmission investment costs and transmission
rights.

3.5 Transmission costs and rights allocation

Cost allocation is a part of setting just and reasonable rates as the law requires. The
reality of planning causes the benefits to be uncertain due to uncertainty surrounding
the data, model approximations and scenario specifications. The uncertainty in the
data and model approximations can usually be improved from research, but scenario
specification has inherent uncertainties.

An important question is not whether it is possible to do an analysis of benefits
and beneficiaries, but whether the process can be improved upon. Additional sensi-
tivity analysis may be helpful in resolving allocations. There are general approaches
for cost allocation: beneficiaries pay, winners compensate the losers, postage stamp,
highway/byway, voltage level and the Argentina method [29].

Some argue that transmission expansion is a public good. Since each transmission
asset has a finite capacity and can become congested, it should not be characterized as
public good.2 Because the transmission assets can cause significant network external-
ities, they also should not be characterized as private goods. They should instead be
characterized as club goods.3 We propose multi-part pricing including capacity and
usage. One part is a capacity right or option call on capacity with a low or zero strike

2 A public good has the properties that it is not possible to prevent others from consuming the good and
the consumption by one does not prevent consumption by others. A private good has the properties that it
is possible to prevent others from consuming the good and the consumption by one prevents consumption
by others.
3 A club good has the properties that it is possible to prevent others from consuming the good and the
consumption by one does not prevent consumption by others.
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price. The second part is a usage charge or opportunity cost.4 Transmission rights are
tradable. Transmission rights allocations are difficult, even in a simple model. Here
we auction the created transmission rights, that is, flowgate rights. Flowgate rights can
also be allocated to help compensate the losers. Flowgate rights can be implemented in
both the Financial Transmission Rights (FTR) and point-to-point environments. FTRs
and point-to-point rights can be defined as portfolios of flowgate rights. The principal
difference between point-to-point tariffs and FTR tariffs is that the point-to-point tar-
iffs allow the capacity to be withheld at offers less than the maximum rate. This is not
allowed with FTR tariffs. Point-to-point rights are similar to FTR options.

We could also use an auction for allocating and reallocating transmission rights. In
the first round, the bid currency could be the cost allocated to the market participant.
This approach to transmission rights allocation could be similar to the process for
allocating transmission rights currently in RTO and ISO markets.

When cost allocation disagreements occur, usually the strongest disagreements are
in allocating costs to market participants not expected to benefit or not allocating
cost to those who benefit (free riders). Since the true information on benefits to any
market participant may be unknown even to the market participant, and because costs
are allocated in proportion to benefits, market participants if asked may attempt to
understate the benefits. Here we simply assess benefits as the change in costs of
energy at a specific bus or node in the model with and without the new investments.

Conceptually, there is a general agreement and a circuit court decision5 that ben-
eficiaries of transmission should pay for the transmission and receive the associated
transmission rights. There are significant disagreements on what this means, how much
each market participant should pay, how the rights are allocated and the resulting
externalities. Cost allocation occurs after uncertainties and disagreements on scenar-
ios, assumptions and approximations have arisen in getting to the optimal transmis-
sion plan. This uncertainty combined with siting issues presents significant potential
political problems for both choosing projects and cost allocation. When the market
participants are not able to agree on allocation rules, a higher authority must impose
them.

Cost allocation is a part of cooperative game theory that allows the participants to
form into groups to cooperate and negotiate the benefits or costs [30].6 Cost alloca-
tion can be highly mathematical (for example, using the Shapley value, Nucleolus,
core, kernel, etc) or highly intuitive or behavioral (for example, consider traditional
approaches, focal points and notions of fairness). Here we will focus on the sim-
pler more transparent approaches and reject the more mathematically complex and
computationally intensive approaches.

4 Firm and interruptible service can be created under these tariffs, similar to point-to-point service under
the Order 888/890 tariffs with a fix of the contract path approach using flowgate rights portfolios.
5 For example, see Illinois Commerce Commission, v. Federal Energy Regulatory Commission, United
States Court of Appeals for the Seventh Circuit, August 6, 2009.
6 Cooperative game theory contrasts with noncooperative game theory where market participants are not
allowed to communicate explicitly with each other. Most competitive markets are analyzed under the
noncooperative game theory paradigm, for example, a Nash or perfect equilibrium is a common model for
deciding the optimal expansion.
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An important caution in cost allocation in a multi-project environment is that the
value is for all projects to be taken as a whole. The value for all projects to be taken as a
whole is not the sum of the individual value of each individual project. The benefits of
an individual project can be examined by solving the model without a specific asset. At
the individual project level, there is a greater chance that a project must be considered
in concert with other project or projects in order to achieve its optimal value.

We present a simple model of cost allocation. First, we calculate the difference in
the expected costs of energy at each bus with and without the new investments. This
is a relatively easy problem to solve since the investment decisions are fixed from a
planning optimum.

Let DTR be the new transmission rights created by the expansion and TEC be the
total expected cost of the optimal transmission investment. Auction the DTR, receiving
RTR. If RTR–TEC >= 0, no cost allocation is necessary.

Let SB be the incremental efficiency gains or system benefits from the set of trans-
mission projects. By the result of the optimization, since one option is not to build,
SB > TEC > 0; otherwise, the set of projects would not be selected for investment.
Let Bi be the difference between the expected costs of energy under no investment for
market participant or defined group of market participants i. Groups would normally
be defined regionally. Bi > 0 corresponds to lower costs of energy for a grouop of
buyers i or to higher costs of energy for a group of sellers i under the optimal investment
as compared to no investment. We present two allocations schemes: one where the
winners compensate the losers and one where winners do not compensate the losers.

A scheme where the winners compensate the losers. Let {1, . . . , I } partition the
market participants into groups.7 Let TB = ∑

i Bi . We define si = Bi/B,
∑

i si = 1.
Let NCi = siTEC. NCi for i ∈ {1, . . . , I } is a cost allocation scheme. In this scheme,
the costs are allocated in proportion to the net benefits from the investments. Winners
compensate the losers, that is, if si < 0 (which implies Bi < 0), market participant i
receives a payment from the allocation process or perhaps a reallocation of existing
costs.8

A scheme where winners do not compensate the losers. Let BW = ∑
Bi>0 Bi , si =

max(Bi/B, 0),
∑

i si = 1 and TECi = siTEC. TECi for i ∈ {1, . . . , I } is a cost
allocation scheme where winners do not compensate the losers (that is, losers receive
no compensation, and winners are allocated a proportionate amount of costs).

In Fig. 1, we present a simple example similar to one presented by Hogan [31]. All
costs and benefits are expected values. To keep a simple example, we assume that all
market participants buy and sell at the nodal price and transmission rights (TR) are
paid at the flowgate marginal price. In general we allow hedge contracts, but not in this
simple example since it renders the example more complicated. The pre-expansion
transmission capacity of qmax provides benefits to the import region represented by
area A. The existing transmission benefits are area D + B + G and the benefits to the
export region are area J . q ′max is the post-expansion capacity with total transmission

7 A defined group of market participants could be a former vertically integrated utility, an entire state or an
individual market participant. If this grouping does not cross state boundaries, states could allocate costs
within the group.
8 For example, see SPP Balanced Portfolio approach. http://www.spp.org/section.asp?pageID=120.
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Fig. 1 Impact of adding a line to increase capacity

expansion costs TEC. The incremental benefits to the import region are area B+C due
to a reduction in price. The expected incremental transmission right benefits are area
E if the result of the expansion is little or no congestion, but since this is an optimal
expansion the additional incremental costs of decongesting the system are greater
than F .

The efficiency criterion to build is when the change in market surplus and net system
benefits C + E + H > TEC. The incremental benefits to the export region are area
G + H due to an increase in price. B and G are pecuniary post-expansion benefits, that
is, they are transfers from existing TR holders not efficiency gains from the expansion.

If E � TEC, the auction of transmission rights cover costs or merchant trans-
mission will build for the expected incremental TR revenues. The existing flowgate
rights holders lose value B + G or on a unit basis the value shrinks from p2 − p1 to
p′

2 − p′
1. If the flowgate rights holders are hedging spot transactions against charges

for transmission congestion associated with a generation contract from 1 to 2, the
losses in flowgate rights revenues will offset the nodal price change. If we auction
transmission rights and auction revenues as RTR, we need to collect TEC–RTR from
regions 1 and 2.

In non-price regulated markets, the winners do not generally compensate the losers.
If the change in market surplus due to the expansion is C + E + H > TEC >

E , merchant transmission will not build, but the expected benefits (efficiency gains)
exceed the expected costs. The import region benefits are B+C , the transmission rights
benefits are E , and the export region benefits are G + H . Since B +C + E + H +G �
TEC and there are expected benefits to all participants, there are numerous possible cost
allocations. If the market participants have accepted the model assumptions and are
risk averse, an acceptable cost allocation is possible without regulatory intervention;
however, this will not keep market participants from arguing for smaller allocations of
cost. It is well known that identifying the beneficiaries and agreeing upon the resulting
benefits are considered to be major challenges with respect to transmission investments
today.
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In price regulated markets, winners can be forced to compensate the losers. The
losers can include the original transmission rights holders. Currently transmission
rights in ISOs are for 10 years or less. Hedgers may be indifferent to the lost value
in transmission rights if they are gained back in price reductions for buyers and price
increases for sellers.

4 The mathematical model

In this section we present the detailed mathematical model description. The planning
model is a stochastic two-stage mixed-integer program. The objective of the model is
to maximize the expected market surplus (benefits to society) from investment. The
stage 1 binary variables are investment decisions and other decisions that must be made
before the uncertainty is resolved. For each state, the stage 2 variables and associated
constraints assure the market feasibility (reliability) of the investment decisions and
the stages contribution to the expected market surplus. The market solution is reliable if
the solution feasible. The market solution is economic if the solution is optimal. Here,
we will use the terms, bid and cost or value, interchangeably. Value is the negative of
cost.

A DC representation of the transmission system is used. Transmission assets can
be switched in and out of the network inside the time step of the model and can oper-
ate continuously within upper and lower bounds. Transmission switching is relevant
because a new line could be blocked by a low capacity line in a circuit formed by the
new line, where removing the line improves the market performance.

This formulation quickly can balloon in size and computational complexity making
it important to reduce its size without over-comprising fidelity. The model can be sim-
plified in various ways. Simplifications include changing the granularity in topology,
time step and probability event space partitions. Also, some binary variables can be
converted to continuous variables. By not endogenously modeling subsets of the event
space, for example, two or more simultaneous outages, the market will not clear with
a specified probability.

Each state is a realization from a convolution of probability distributions includ-
ing demand and variable energy resources, generation and transmission outages, and
exogenous input parameters, for example, fuel prices. Some events can be excluded
from the model and approached via sensitivity analysis. For example, the probabili-
ties for completion of facilities such as transmission facilities, coal and nuclear plants
that have a more difficult time clearing environmental hurdles, are not endogenously
modeled, but can be approached in sensitivity analysis. Also, specific fuel prices and
environmental scenarios can be modeled as exogenous scenarios. Other analyses such
as voltage and transient stability are performed subsequent to the investment model
decisions. This process embeds the model in a larger process. Next, we focus on the
formulation of the model.

4.1 The model

We start by defining the sets, variables, and parameters used in the model. Next, we
formulate the model. The model shares the formulation of transmission switching
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and unit commitment problem presented (see for example, Hedman et al. [1,2] and
O’Neill et al. [6]). In addition we add a stochastic parameter, ρc (state probability)
to the objective function, forming a two-stage stochastic program for N-1 reliability.
Another principal modification of the day-ahead market model is how the scenarios
are chosen and the probabilities assigned to each scenario. We include the costs of
adjusting generation in a transmission outage, but since a transmission outage is 10–
100 times less likely than a generator outage it may have little affect the optimal
solution and could be omitted. Prices for fuel and environmental pollutants become
input to cost functions.

Different reserve services for both transmission and generation have been pre-
sented, which are based on the deterministic market clearing. Traditionally, security-
constrained models include the line flow constraints with pre-specified areas for
reserves. We present a model where these constraints can be explicit and decisions are
made endogenously.

4.2 Nomenclature

Indices

AC : AC transmission elements
DC : DC transmission elements

k: transmission element (line or transformer), DC or AC, k = AC∪DC
n,m: nodes; k(n, .) is the set of elements with n as the ‘from’ node; k(.,m) is the

set of elements with m as the ‘to’ node; g(n) is the set of generators or load at
node n.

t : time period; t ∈ {1, . . . , T }.
c: contingency or state index for scenarios

Primal Variables

θ+
kct , θ

−
kct : non-negative voltage angle difference in the n to m or m to n direction.

θmct , θnct : voltage phase angle at from bus m and to bus n for transmission element
θkct : voltage angle difference. θkct = θ+

kct − θ−
kct = θmct − θnct from n to m.

P+
kct , P−

kct : non-negative real power flow from node n to m or node m to n on element
k.

Pkct : real power flow from node n to m on element k Pkct = P+
kct − P−

kct
Pgct : real power supply from generator (>0) or demand from load (<0) g at

node n.
r+

gct , r
−
gct : ramp rate in the up or down direction for generator (or load).
xgt : binary investment decision for generator (or load) (1 for investment, 0

otherwise).
ugt : binary unit commitment for generator (or load) (0 down, 1 operational).
vgt : startup decision for generator (or load) (1 for startup, 0 otherwise).
wgt : shutdown decision for generator (or load) (1 for shutdown, 0 otherwise).
zkct : binary switching decision for transmission element k’s inclusion in the

topology (1 for in, 0 out).
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swkct : variable to capture the change in the status of a transmission element (open-
closed or closed-open) from the previous period.

ykt : investment decision for transmission element (1 for investment in t, 0
otherwise).

Dual Variables

α+
nct , α

−
nct : the marginal value of raising or lowering the maximum nodal phase angle.
λnct : the locational marginal value of generation or load.

η+
kct , η

−
kct : the marginal value of increasing the flow limit (positive direction) or

reducing the flow limit (negative direction) on a transmission element.
μ+

kct , μ
−
kct : the marginal value of the susceptance of AC transmission element with

positive or negative direction flow.
κkt : the marginal value of enforcing the relationship between investment and

switching decisions for a transmission element.
β+

gct , β
−
gct : the marginal value of an additional unit of the maximum level or reducing

the minimum level of generator (or load).
ω+

gct , ω
−
gct : the marginal value of ramping up or down for generator (or load).

χ+
gct , χ

−
gct : the marginal value of another unit of ramping capacity up and down for

generator (or load).
τgt : the marginal value of enforcing the relationship between startup, shut-

down, and unit commitment variables for generator (or load).
ξgt : the marginal value of enforcing the relationship between investment and

startup decisions for generator (or load).
ψt : the marginal cost of the renewable production portfolio standard.
τt : the marginal cost of the renewable portfolio capacity standard.
δkt : the marginal value of switching a transmission element.
πkt : the marginal value of enforcing the investment decision for a transmission

element.
σgt : the marginal value of enforcing the startup value for generator (or load).
γgt : the marginal value of enforcing the shutdown value for generator (or load).
ϕgt : the marginal value of enforcing the investment decision for generator

(or load).

Parameters (Note: all monetary values are assumed to be properly discounted, and
every cost must be indexed by t.)

Igt : total investment cost for generator (or load); generally Igt ≥ 0
Ikt : total investment cost for transmission element; generally Ikt ≥ 0

θ+, θ−: maximum and minimum voltage angle difference; for convenience we
assume θ+ = −θ−.

Pmax
gct , Pmin

gct : maximum and minimum capacity of generator (or load).

Pmax
kc , Pmin

kc : maximum and minimum rating of transmission element; for lines we
assume Pmax

kc = Pmin
kc . Pmin

kc has a positive value.
R+

gct , R−
gct : maximum ramp rate in the up and down direction for generator (or load)

except in the startup period.
Rs

g: maximum ramp rate for the start up period for generator (or load).
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cgt : variable cost of production for generator (or value of load); generally
cgt > 0.

ckt : variable cost of operating transmission element; generally ckt = 0
cr+

gt , cr−
gt : cost of ramp rate in the up and down direction for generator (or load).
ρc: probability of the state c.

SUgt : startup cost for generator (or load); generally for generators SUgt > 0.
N Lgt : no-load cost for generator or load.

Skt : cost of switching of transmission element (due to equipment stress).
Bk : electrical susceptance of transmission element.

N1ec: binary parameter that is 0 when element e (k or g) is the contingency in
state c, and is 1 otherwise.

U Tg: minimum up time for generator (or load).
DTg: minimum down time for generator (or load).

T : number of periods.

4.3 Model formulation

To save space we combine the presentation of the MIP and its derivative linear program
in one formulation. In the derived linear program, the constraints with named dual
variables are retained from the MIP and the binary variables are set to their optimal
values (see O’Neill et al. [32]). The objective is to maximize the expected market
surplus (benefits to society).

Maximize

EMS =
∑

t

∑

g

[

−Igt xgt −
∑

c

ρc(SUgtvgt +cgt Pgct +cr+
gtr

+
gct +cr−

gtr
−
gct +N Lgt ugt )

]

+
∑

t

∑

k

−
{

Ikt ykt +
∑

c

ρc[Skt swkct + ckt (P
+
kct + P−

kct )]
}

(1)

Phase angle constraints

θ+
kct ≤ θ+ α+

kct ∀k, c, t (2)

θ−
kct ≤ θ+ α−

kct ∀k, c, t (3)

θ+
kct − θ−

kct = θmct − θnct αkct ∀k, c, t (4)

θ+
kct , θ

−
kct ≥ 0 (5)

In this formulation we constrain the angle difference. An alternative formulation is to
constrain the angles. These bounds can act as a proxy for various nonlinear constraints
that are not modeled, and are included to ensure a reasonable result from the linearized
model.
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Power bus (node) balance equations (Kirchhoff’s first law)

∑

k(.,n)

(P+
kct − P−

kct )−
∑

k(n,.)

(P+
kct − P−

kct )+
∑

g(n)

Pgct = 0 λnct ∀n, t, c (6)

Transmission Asset Flow Limits

P+
kct − Pmax

kc zkct N1kc ≤ 0 η+
kct ∀k, c, t (7)

P−
kct − Pmin

kc zkct N1kc ≤ 0 η−
kct ∀k, c, t (8)

P+
kct , P−

kct ≥ 0 ∀k, c, t (9)

zkct ∈ {0, 1} ∀k, c, t (10)

A transmission element k is open when it fails in contingency, N1kc = 0, or is
opened for reliability/economic reasons zkct = 0. As a result, P+

kct = P−
kct = 0. We

assume transmission switching is immediate, therefore, it can be used in a contingency
to optimize the system. This is a realistic assumption in cases where SPS are in place
for specific scenarios. The switching satisfies all reliability constraints since feasibility
satisfies reliability.

Kirchhoff’s Second Law for AC Transmission Elements

The susceptance, Bk , is negative in value. When θ+
kct is positive, the line flow will be

negative, i.e, P+
kct needs to be zero and P−

kct needs to be positive. We have:

Bk
(
θ+

kct − θ−
kct

) − (
P+

kct − P−
kct

) = 0 (11)

We then replace (11) with (12) and (13):

Bkθ
−
kct + P+

kct = 0 (12)

and

Bkθ
+
kct + P−

kct = 0 (13)

To incorporate transmission switching and line outages, we change the constraints to:

−Bkθ
−
kct − P+

kct − Mk(2 − zkct − N1kc) ≤ 0 μ+M
kct ∀k ∈ AC, c, t (14)

−Bkθ
+
kct − P−

kct − Mk(2 − zkct − N1kc) ≤ 0 μ−M
kct ∀k ∈ AC, c, t (15)

Bkθ
−
kct + P+

kct ≤ 0 μ+
kct ∀k ∈ AC, c, t (16)

Bkθ
+
kct + P−

kct ≤ 0 μ−
kct ∀k ∈ AC, c, t (17)
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In contingency (or state) c, N1kc = 0. When zkt = 0, the transmission element is not
in the network for economic reasons. In both situations P+

kct = P−
kct = 0. If N1kc = 1

and zkt = 1, the transmission element is in the network and the second law is enforced.

Switching indicator variables. We capture the cost of switching a transmission element
from open to closed or closed to open from one period to the next. We include the
following constraints to enforce the relationship between zkct the period to period
switching status variable swkct :

zkct − zkct−1 − swkct ≤ 0 μsw+
kct ∀k ∈ AC, c, t (18)

zkct−1 − zkct − swkct ≤ 0, μsw−
kct ∀k ∈ AC, c, t (19)

swkct ≥ 0 ∀k ∈ AC, c, t (20)

Direct Current Lines. DC lines are modeled as a paired generator and load at the
terminal buses in either direction. For ease of presentation we do not include line losses
or AC-DC and DC-AC conversion losses, but could include a linear approximation of
losses.
A new transmission element k cannot be in the network in period t unless the investment
has been made in a prior period t ′ ≤ t ; therefore,

zkct −
∑

t ′≤t

ykt ′ ≤ 0 κkct ∀k, c, t (21)

ykt ∈ {0, 1} ∀k, t (22)

Note that, at optimality,
∑

t ykt ≤ 1. That is, at most one ykt variable will be equal to
one at optimality; this could be a constraint that is imposed in the model as it may help
computationally, but it is not needed to ensure optimality. For existing assets, Ikt = 0
and yk1 = 1 or Eqs. (21) and (22) are dropped. Going forward costs like fixed O&M
are ignored, but variable O&M is included in ckt .

Generator or Load Upper and lower bounds. In contingency c (when N1gc = 0) or
when the unit is not started up (ugt = 0), Pgct = 0.

Pgct − Pmax
gct N1gcugt ≤ 0 β+

gct ∀g, c, t (23)

−Pgct + Pmin
gct N1gcugt ≤ 0 β−

gct ∀g, c, t (24)

ugt ∈ {0, 1} ∀g, t (25)

Ramp rate constraints. Ramp rate constraints limit the change in output from t − 1 to
t separately in both directions.

Pgct − Pgct−1 − r+
gct ≤ 0 ω+

gct ∀g, c, t (26)

r+
gct − R+

gct ugt−1 − Rs
gvgt ≤ 0 χ+

gct ∀g, c, t (27)

Pgct−1 − Pgct − r−
gct ≤ 0 ω−

gct ∀g, c, t (28)

r−
gct ≤ R−

gct χ−
gct ∀g, c, t (29)

r+
gct , r

−
gct ≥ 0 ∀g, c, t (30)
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In Eq. (27), Rs
g gives a separate ramp rate during startup.

Startup, Minimum Uptime, Shutdown and Minimum Downtime Constraints.

vgt − wgt − ugt + ug,t−1 = 0 τgt ∀gt (31)

−ugt +
∑

q=t−U T g+1

vgq ≤ 0, ∀g, t ∈ {U Tg, . . . , T } (32)

ugt +
∑

q=t−DT g+1

wgq ≤ 1, ∀g, t ∈ {DTg, . . . , T } (33)

vgt ∈ {0, 1} ∀gt (34)

wgt ∈ {0, 1} ∀g, t (35)

A new generator or load g cannot be in the network unless the investment has been
made to construct and interconnect. Because generators have minimum up time and
down time constraints, the run status, ugt , is not available in a contingency; therefore,
ugt does not have a c subscript.

vgt −
∑

t ′≤t

xgt ′ ≤ 0, ξgt ∀k, t (36)

xgt ∈ {0, 1} ∀g, t (37)

For existing assets, Igt = 0, xg1 = 1, and xgt = 0 for t > 1 and Eqs. (36) and (37)
are dropped. Fixed going forward costs are ignored.

Renewable Portfolio Constraints. To include renewable portfolio constraints, we add
the following parameters and constraints. RCt is the renewable portfolio capacity
requirement in period t. This requirement can easily be made region or renewable spe-
cific. G R is the set of generators g that meet a specific renewable portfolio constraint.
For the specific renewable portfolio generation requirement in period t, we add the
constraint:

−
∑

g∈G R

∑

t ′≤t

xgt ′ P
max
g0t ≤ −RCt υt ∀t (38)

where υt is the marginal cost of meeting the portfolio in period t . Here, with parame-
ter Pmax

g0t , we refer to the nameplate capacity of the renewable resource. The c = 0
index represents the scenario where the renewable resource’s maximum capacity is
the manufacturer nameplate capacity. In general, Pmax

g0t = Pmax
gct as we do not change

the nameplate capacity by scenario for renewable resources. R Pt is a specific renew-
able portfolio production requirement in period t . This requirement can easily be
made region or renewable specific. For the specific renewable portfolio production
requirement in period t , we add the constraint:
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−
∑

g∈G R

∑

c

ρc Pgct ≤ −R Pt ψt ∀t (39)

whereψt is the marginal cost of meeting the production requirement from the portfolio
in period t . From here on we will use the renewable portfolio production requirement
since the usual approach and policy goal is too stimulate renewable production not
capacity. In addition, capacity requirements usually have weak incentives for produc-
tion. Of course, both constraints could be employed if desired.
Environmental Constraints. To include environmental constraints we add the following
parameters, variables and constraints. ELt is the amount of a pollutant allowed in
period t . This requirement can be made region and/or pollutant specific. agt is the
amount of a pollutant per MWh for generator or load g in period t . We add the
constraint:

∑

g

∑

c

ρcagt Pgct ≤ E Lt ιt ∀t (40)

where ιt is the marginal cost of reducing a unit of the pollutant in period t.
We note for the environmental and renewable production constraints that we have

chosen a formulation which enforces the requirements based on expected values of
renewable production and emissions across all contingencies and states c. While our
assumption here is that the minimum requirements (right hand side parameters) for
these constraints are developed based on ex ante statistical analysis and expected
values, it may also be reasonable to assume that these requirements are developed
without regard to expected values. In the latter case, the constraints would need to be
reformulated with the probability dropped from the left hand side and the constraints
enforced over all c. For example, Eq. (40) would be re-written as:

∑
g agt Pgct ≤

E Lt , ∀t, c with the dual variable ιtc. Of course, this would add even more dimensions
to the problem. Pre-processing the inputs to reduce the number of enforced constraints
would be beneficial and almost certainly necessary (this is true in general of the
constraint set for this model).

At this point we have formulated a very large and complex problem that is difficult to
solve using current computing technology. This poses a challenge to the mathematical
programming community of how to solve such models on a timescale that matches the
needs of analysts and planners, and how to adapt and re-solve such models to explore
scenarios. To calibrate the scale of this challenge we note that the current application
of mixed integer linear programming in pricing and dispatch of electricity corresponds
to stage 2 in this model, but without the complication of transmission switching which
adds enormous complexity. Production cost models currently used to analyze the
economic effects of transmission expansion simulate generator commitment, dispatch
and pricing but do not attempt to optimize transmission expansion (likely due to
computational complexity). Nevertheless, we next proceed to form a dual problem
and present an economic analysis of the theoretical solution. This shows the relative
tractability of sensitivity analysis for this problem.
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4.4 Economic analysis using the dual problem

Sensitivity analysis can address many issues including sensitivity to data inputs,
assumptions, approximations, and market power. The list is large and the analysis can
be computationally intense. Duality analysis can make some analysis computationally
simpler, practical and focused. For the purpose of economic analysis, stochastic MIP
economic duality can be considered in two parts. First, a linear program can be formed
with the binary variables fixed at their optimal values. For linear programs, marginal
economic information is almost computationally free from the dual program. Second,
a set of binary variables in the MIP can be changed, the MIP is then resolved, and the
change in the objective function then gives the expected incremental value for that set
of binary variables. For complete analysis, all combinations of binary variables need to
be considered, but this is practically impossible for all but small programs. For practi-
cal reasons we need to find analysis that is more cost beneficial. Consequently, duality
analysis of the linear program can be helpful in marginal analysis and in choosing the
binary variables for the incremental analysis. Hence, we form the ‘economic’ dual for
sensitivity analysis.

The set of feasible solutions to a MIP may be nonconvex, but for a fixed set of binary
variables, the resulting feasible solution set is either empty or a convex polytope. By
setting the integer variables to their values in the optimal or best solution found, the
resulting problem is a linear program and the resulting dual is well defined and yields
economic information about the solution. The linear program is optimal with respect
to the fixed integer variables and the LP, its dual and the MIP objective function have
the same optimal value [32].

Once the integer values are fixed, some constraints and variables become redundant
creating many choices for formulating the linear program and its dual. We will choose
one that yields an intuitive economic interpretation. The following analysis holds even
if the feasible MIP solution is not a global optimum and the solution is only a local
optimal solution for a fixed set of binary variables.

We form a linear program by replacing the binary constraints with constraints
setting the variables equal to their optimal (or best) values and assigning each a dual
variable:

zkct = z∗
kct δkct ∀k, c, t (41)

ykt = y∗
kt πkt ∀k, t (42)

vgt = v∗
gt σgt ∀g, t (43)

wgt = w∗
gt γgt ∀g, t (44)

xgt = x∗
gt ϕgt ∀g, t (45)

If zkt = 0 or if N1kc = 0, Eqs. (14) and (15) are not binding constraints, and we
drop them from the formulation. If N1kc = 1 and zkt = 1, 2 − zkt − N1kc = 0
and constraints (14) and (15) along with (16) and (17) form equality constraints.
Constraints (14)-(17) can then be replaced by (46), or (47) and (48).

Bk(θ
+
kct − θ−

kct )− P+
kct + P−

kct = 0 μkct ∀k ∈ AC, c, t, z∗
kt = 1, N1kc = 1

(46)
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Bkθ
−
kct + P+

kct = 0 μ+
kct ∀k ∈ AC, c, t, z∗

kt = 1, N1kc = 1 (47)

Bkθ
+
kct + P−

kct = 0, μ−
kct ∀k ∈ AC, c, t, z∗

kt = 1, N1kc = 1 (48)

We choose (47) and (48). Since Eqs. (21), (31)–(33) and (36) are redundant in the
linear program, we also drop these equations. We now write the dual of the above linear
program. The objective of the dual program is to minimize the opportunity costs of
meeting the optimal plan, which is equal to maximizing the benefits to society.
Dual: Minimize

MSD = θ+ ∑

t

∑

k

∑

c

(α+
kct +α−

kct )+
∑

t

∑

g

[
∑

c

(R−
gctχ

−
gct )+x∗

gtϕgt +v∗
gtσgt +w∗

gtγgt

]

+
∑

t

∑

k

(y∗
ktπkt + z∗

ktδkt )−
∑

t

(R Ptψt + RCtυt − E Lt ιt ) (49)

Angle value constraints.

α+
kct + αkct + Bkμ

−
kct ≥ 0 θ+

kct ∀k ∈ AC, c, t, z∗
kt = 1, N1kc = 1 (50)

α−
kct − αkct + Bkμ

+
kct ≥ 0 θ−

kct ∀k ∈ AC, c, t, z∗
kt = 1, N1kc = 1 (51)

∑

k(.,n)

αkct −
∑

k(n,.)

αkct = 0 θnct ∀k ∈ AC, c, t, z∗
kt = 1, N1kc = 1 (52)

If θ+
kct > 0, α+

kct + αkct = −Bkμ
−
kct . If θ−

kct > 0, α−
kct − αkct = −Bkμ

+
kct .

Flowgate value constraints for AC transmission.

λmct − λnct + η+
kct + μ+

kct ≥ −ρcckt P+
kct ∀k ∈ AC, c, t, z∗

kct =1, N1kc =1 (53)

λnct − λmct + η−
kct + μ−

kct ≥ −ρcckt P−
kct ∀k ∈ AC, c, t, z∗

kct =1, N1kc =1 (54)

Flowgate value constraints for DC transmission.

λmct − λnct + η+
kct ≥ −ρcckt P+

kct ∀k ∈ DC, c, t, z∗
kct = 1, N1kc = 1 (55)

λnct − λmct + η−
kct ≥ −ρcckt P−

kct ∀k ∈ DC, c, t, z∗
kct = 1, N1kc = 1 (56)

The susceptance values, μ+
kct and μ−

kct do not appear in the equations for DC lines.

Flowgate investment constraints.

−Pmax
kc N1kcη

+
kct − Pmin

kc N1kcη
−
kct + δkct + κkct + μsw+

kct − μsw+
k,t+1,c

+μsw−
k,t+1,c − μsw−

kct = 0

zkct ∀k ∈ AC, c, t (57)

−Pmax
kc N1kcη

+
kct − Pmin

kc N1kcη
−
kct + δkct + κkct = 0 zkct ∀k ∈ DC, c, t (58)
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−μsw+
kct − μsw−

kct ≥ −ρc Skt swkct ∀k ∈ AC, c, t (59)

πkt −
∑

c

∑

t ′≥t

κkct ′ = −Ikt ykt ∀k, t (60)

Operating constraints for generation and load elements.

λnct − β−
gct + β+

gct + ω+
gct − ω−

gct − ω+
gc,t+1 + ω−

gc,t+1 − ρc(agt ιt + ψt ) = −ρccg

Pgct ∀g, c, t (61)

Startup constraints.

ξgt + τgt + σgt −
∑

c

Rs
gχ

+
gct = −SUgt vgt ∀g, t (62)

−τgt + γgt = 0 wgt ∀g, t (63)

∑

c

(−Pmax
gct N1gcβ

+
gct + Pmin

gct N1gcβ
−
gct )− τgt + τg,t+1−R+

g,c,t+1χ
+
g,c,t+1 =−N Lgt

ugt ∀g, t (64)

Ramp constraints

−ω+
gct + χ+

gct ≥ −ρccr+
g r+

gct ∀g, c, t (65)

−ω−
gct + χ−

gct ≥ −ρccr−
g r−

gct ∀g, c, t (66)

Investment constraints

ϕgt −
∑

t ′≥t

ξgt ′ = −Igt xgt ∀g, t (67)

α+
nct , α

−
nct , η

+
kct , η

−
kct , β

+
gct , β

−
gct , ψt , ω

+
gct , ω

−
gct , χ

+
gct , χ

−
gctμ

sw+
kct , μ

sw−
kct , κkct ,

ξgt , υt , ιt ≥ 0 (68)

If z∗
kct = 1, N1kc = 1 and P+

kct 
= P−
kct , then η+

kctη
−
kct = 0.

If u∗
gt =1, N1gc =1 and P−

g 
= P+
g : β+

gctβ
−
gct =0. r+

gct , r−
gct =0. ω+

gctω
−
gct =0.

χ+
gctχ

−
gct = 0.

4.5 Economic analysis of the stochastic investment market

An analysis of ‘post investment’ economics in the dual problem for a unit commitment
and transmission switching problem is presented in O’Neill et al. [6]. Here we examine
the investment economics for the above auction formulation.

For transmission elements in the optimal plan, y∗
kt = 1 and for some t and state c,

if the transmission asset is in the optimal topology, z∗
kct = 1 for period t and state c,

and
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κkct = −δkct +(Pmax
kc N1kcη

+
kct +

Pmin
kc N1kcη

−
kct )

−μsw+
kct +

μsw−
kct

−μsw−
k,c,t+1 +

μsw+
k,c,t+1

Profit
in t
and c

System
value of
being in the
system in t
and c

linear incremental
value (LIV ) of
another unit of
capacity

Incremental
value of
switching
from open
to closed or
closed to
open in t

Incremental
value of
switching
from open
to closed or
closed to
open in t+1

(69)

Let LIVkct = Pmax
kc N1kcη

+
kct + Pmin

kc N1kcη
−
kct . Since Pmax

kc , N1kc, η
+
kct , Pmin

kc ,

η−
kct ≥ 0, then LIVkct ≥ 0. Expected incremental switching value in period t, δkct ,

may be either positive or negative. If κkct < 0, it appears to be uneconomic. However,
since the system is optimal, due to the nonconvexities of the market, and as a result of
switching and the interaction of AC lines via susceptances, the value of the flowgate
is in combination with other elements positive and adds to the market surplus. In a
market where LIV is the settlement value as it is in FTR markets or some flowgate
markets, without a call option for commitment, the transmission owner would remove
it from the network. The minimum payment to the owner to keep the asset in the
network is κkct > 0. Today the RTO or ISO system operator usually has an option call
on the asset in return for a cost-of-service payment.

Let κkt = ∑
c z∗

kctκkct . Multiplying by z∗
kct and summing over the contingencies c,

expected profit in t can be stated as

κkt = −
∑

c

z∗
kctδkct −

∑

c

z∗
kct

(
Pmax

kc N1kcη
+
kct + Pmin

kc N1kcη
−
kct

)

+
∑

c

z∗
kct

(
μsw+

kct − μsw+
k,c,t+1 + μsw−

k,c,t+1 − μsw−
kct

)
(70)

If the transmission investment occurs in period t, y∗
kt = 1, total expected profitabil-

ity from the investment πkt can be defined as

πkt = κkt + κk,t+1 + · · · + κkT − Ikt (71)

If πkt > 0 and y∗
kt = 1, for some t, a risk-neutral investor would undertake the

investment k stimulated by its positive expected profitability. If πkt < 0 and y∗
kt = 1,

for some t, the linear value is negative, but since the investment is optimal, there is a
coalition of market participants who would be willing to make up the shortfall. The
reasoning is simple. If investment k is removed, absent non-uniqueness, the market
surplus falls; therefore, there is a coalition of market participants who receive less
benefits, i.e., they would be better off with the investment. Consider all paths in the cut
set from m to n. In what follows we will assume a unique solution. Assume the flow
is from n to m and λnct < λmct . Let path(n,m) be a path from n to m; this can be
a direct path, i.e. one transmission line, or a path involving multiple transmission assets.
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From adding over k ∈ path(n,m), the intermediateλ’s cancel and
∑

k∈path(n,m) λmct−
λnct = λmct − λnct = ∑

k∈path(n,m) η
+
kct + μ+

kct + ρcckt .

If for all k ∈ path(n,m), 0 < P+
kct < Pmax

kc , and ckt = 0, then η+
kct = 0, and

λmct − λnct = ∑
k∈path(n,m) μ

+
kct . This result is extended by superpositioning to any

cut set, multiple paths and any number of elements in the series.
Let ηkct = η+

kct + η−
kct and Pkct = P+

kct + P−
kct . If the transmission investment in

DC cable k occurs in period t, y∗
kt = 1, total expected profitability of the investment,

πkt can be defined as

πkt = ηkct Pkct + (ηk,c,t+1)(Pk,c,t+1)+ · · · + ηkcT PkcT − Ikt (72)

If πkt > 0 and y∗
kt = 1, for some t, the investment would be stimulated by its expected

profitability. If πkt < 0 and y∗
kt = 1, for some t, the investment is optimal even though

the linear value is negative. The reasoning is the same as previously. If investment k is
removed the market surplus falls, therefore, there is a coalition of market participants
who receive less benefits who would be better off subsidizing the investment.

If the generation and/or load investment occurs in period t, x∗
gt = 1, Eq. (67) can be

restated and interpreted as the sum of the discounted expected profits in each period
over the post investment horizon.

ϕgt = ξgt + ξg,t+1 + · · · + ξgT − Igt (73)

If ϕgt > 0 and x∗
gt = 1, for some t, the investment would be stimulated by its expected

profitability. If ϕgt < 0 and x∗
gt = 1, for some t, the linear value is negative, but since

the investment is optimal, there is a coalition of market participants who would be
willing to make up the shortfall. Again, if investment g is removed from the market
surplus falls, then, there is a coalition of market participants who receive less benefits
who would be better off subsidizing the investment.

If the renewable portfolio constraint is only a production constraint, the dual con-
straint for production (61) is modified as follows. Since most renewables have near
zero production costs and low emissions, we can set cg = 0 and agt = 0. Since
variable energy resources are the lowest costs units on the system and ramping is
driven by the state of nature, we can drop the ramp rate constraints and, there-
fore, ω+

gct = ω−
gct = 0, ∀ t . For variable or renewable energy resource g, (61)

becomes λnct − β−
gct + β+

gct − ρcψt = 0, ∀ c, t. Summing over c and t, we obtain
ψg = ∑

c
∑

t ρcψt = ∑
c
∑

t (λnct − β−
gct + β+

gct ). ψg can be interpreted as the
expected unit production subsidy necessary to induce renewable or other generation
into the market. A similar analysis can be undertaken for capacity.

Environmental Constraints. The environmental constraint is a production constraint.
The dual constraint for production is modified as follows (61). For non-renewable
resources, with cg > 0 and agt > 0 (assuming a resource that is not ramp constrained),
(61) becomes λnct − β−

gct + β+
gct − ρcact ιt = −ρccg, ∀c, t. Summing over c and t,

we obtain ιg = ∑
c
∑

t ρcact ιt = ∑
c
∑

t (ρccg + λnct − β−
gct + β+

gct ). ιg can be
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interpreted as the expected unit additional costs of generation. Summing over g, we
obtain

∑
g ιg = ∑

g
∑

c
∑

t ρcact ιt = ∑
g
∑

c
∑

t (ρccg + λnct − β−
gct + β+

gct ).

5 Summary, conclusions and additional work

In this paper we presented a process for planning, formulated a transmission planning
model, introduced sensitivity analysis techniques, and presented several approaches to
allocation of transmission costs and rights. The planning model is a multi-period N-1-
reliable unit commitment, transmission switching and investment model. This model
poses a challenge to the optimization community of building computational tools to
facilitate decision making by providing analysts and planners better information in rea-
sonable time. Beyond optimization algorithms, modelling tools for exploring of the
tradeoff between modelling accuracy and computational complexity are also called for.
Sensitivity analysis can help examine model assumptions and can help find relaxations
that could reduce the computational burden. Future work would involve identifying the
necessary approximations and demonstrating the feasibility of the modeling approach
computationally. Several different levels of equivalenced models defined by the ability
to solve them on the available hardware and software could be developed, ranging from
rough approximations that solve in hours to more granular approahces that are given
up to several days to solve. Evaluating additional details, such as the incorporation
of different loss approximation techniques, could be included as part of identifying
necessary approximations. The results and computational performance from incorpo-
rating varying levels of detail could be compared and evaluated to determine both the
acceptable and necessary levels of approximation.

References

1. Hedman, K.W., O’Neill, R.P., Fisher, E.B., Oren, S.S.: Optimal transmission switching–sensitivity
analysis and extensions. IEEE Trans. Power Syst. 23(3), 1469–1479 (2008)

2. Hedman, K.W., O’Neill, R.P., Fisher, E.B., Oren, S.S.: Optimal transmission switching with contin-
gency analysis. IEEE Trans. Power Syst. 24(3), 1577–1586 (2009)

3. Hedman, K.W., Ferris, M.C., O’Neill, R.P., Fisher, E.B., Oren, S.S.: Co-optimization of generation
unit commitment and transmission switching with N-1 reliability. IEEE Trans. Power Syst. 25(2),
1052–1063 (2010)

4. Hedman, K.W., O’Neill, R.P., Fisher, E.B., Oren, S.S.: Smart flexible just-in-time transmission and
flowgate bidding. IEEE Trans. Power Syst., publication (2010, accepted)

5. O’Neill, R.P., Baldick, R., Helman, U., Rothkopf, M.H., Stewart, W.: Dispatchable transmission in
RTO markets. IEEE Trans. Power Syst. 20(1), 171–179 (2005)

6. O’Neill, R.P., Hedman, K.W., Krall, E.A., Papavasiliou, A., Oren, S.S.: Economic analysis of the N-1
reliable unit commitment and transmission switching problem using duality concepts. Energy Syst.
1(2), 165–195 (2010)

7. Fisher, E.B., O’Neill, R.P., Ferris, M.C.: Optimal transmission switching. IEEE Trans. Power Syst.
23(3), 1346–1355 (2008)

8. Garver, L.L.: Transmission network estimation using linear programming. IEEE Trans. Power Appa-
ratus Syst. PAS–89(7), 1688–1697 (1970)

9. Villasana, R., Garver, L.L., Salon, S.J.: Transmission network planning using linear programming.
IEEE Trans. Power Apparatus Syst. PAS–104(2), 349–356 (1985)

123



266 R. P. O’Neill et al.

10. Dusonchet, Y.P., El-Abiad, A.: Transmission planning using discrete dynamic optimizing. IEEE Trans.
Power Apparatus Syst. PAS–92(4), 1358–1371 (1973)

11. Romero, R., Monticelli, A.: A hierarchical decomposition approach for transmission network expansion
planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

12. Baughman, M.L., Siddiqi, S.N., Zarnikau, J.W.: Integrating transmission into IRP part I: analytical
approach. IEEE Trans. Power Syst. 10(3), 1652–1659 (1995)

13. Gallego, R.A., Monticelli, A., Romero, R.: Transmission system expansion planning by an extended
genetic algorithm. IEE Proc. Gener. Transm. Distrib. 145(3), 329–335 (1998)

14. Binato, S., Pereira, M.V., Granville, S.: A new Benders decomposition approach to solve power trans-
mission network design problems. IEEE Trans. Power Syst. 16(2), 235–240 (2001)

15. Alguacil, N., Motto, A.L., Conejo, A.J.: Transmission expansion planning: a mixed-integer LP
approach. IEEE Trans. Power Syst. 18(3), 1070–1077 (2003)

16. deOliveira, E.J., daSilva, I.C.: Transmission system expansion planning using a sigmoid function to
handle integer investment variables. IEEE Trans. Power Syst. 20(3), 1616–1621 (2005)

17. de la Torre, S., Conejo, A.J., Contreras, J.: Transmission expansion planning in electricity markets.
IEEE Trans. Power Syst. 23(1), 238–248 (2008)

18. Moulin, L.S., Poss, M., Sagastizábal, C.: Transmission expansion planning with re-design. Energy
Syst. 1(2), 113–139 (2010)

19. Kazerooni, A.K., Mutale, J.: Transmission network planning under security and environmental con-
straints. IEEE Trans. Power Syst. 25(2), 1169–1178 (2010)

20. van der Weijde, A.H., Hobbs, B.F.: The economics of planning electricity transmission to accommodate
renewables: using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty.
Energy Econ. 34, 2089–2101 (2012)

21. Sauma, E.E., Oren, S.S.: Economic criteria for planning transmission investment in restructured elec-
tricity markets. IEEE Trans. Power Syst. 22(4), 1394–1405 (2007)

22. Sauma, E.E., Oren, S.S.: Proactive planning and valuation of transmission investments in restructured
electricity markets. J. Regul. Econ. 30(3), 358–387 (2006)

23. Murphy, F., Smeers, Y.: On the impact of forward markets on investments in oligopolistic markets with
reference to electricity. Oper. Res. 58(3), 515–528 (2010)

24. Murphy, F., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured elec-
tricity markets. Oper. Res. 53(4), 646–661 (2005)

25. ABB, GridView Brochure, [Online] available at: http://www05.abb.com/global/scot/scot221.nsf/
veritydisplay/581366a0c212c93ac1256fda00488562/$File/Gridview%20Brochure.pdf (2010)

26. GE Energy, MAPS Software, [Online] available at: http://www.gepower.com/prod_serv/products/
utility_software/en/ge_maps/index.htm (2010)

27. Ventyx Energy Planning and Analytics Software: PROMOD IV, [Online] available at: http://www.
ventyx.com/analytics/promod.asp (2010)

28. ISONE (2010) ISO New England, ISO New England Outlook: Smart Grid is About Consumers, Apr.
2010. [Online]. Available: http://www.iso-ne.com/nwsiss/nwltrs/outlook/2009/outlook_may_2009_
final.pdf

29. Littlechild, S.C., Ponzano, E.A.: Transmission expansion in Argentina 5: the Regional Electricity
Forum of Buenos Aires Province, Dec. 2007. [Online]. Available: http://www.dspace.cam.ac.uk/
bitstream/1810/195431/1/0762&EPRG0729.pdf

30. Young, H.P.: Cost allocation: methods, principles, applications, North-Holland, 1985. Alsosee, Young,
H.P. In: Equity: Theory and Practice, Princeton University Press (1995)

31. Hogan, W.: Transmission Cost Allocation. Presentation to the Harvard Electricity Policy Group 30
Sept, 2010. 17 p

32. O’Neill, R.P., Sotkiewicz, P.M., Hobbs, B.F., Rothkopf, M.H.: Efficient market-clearing prices in
markets with nonconvexities. Eur. J Oper. Res. 164(1), 269–285 (2005)

123

http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/581366a0c212c93ac1256fda00488562/$File/Gridview%20Brochure.pdf
http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/581366a0c212c93ac1256fda00488562/$File/Gridview%20Brochure.pdf
http://www.gepower.com/prod_serv/products/utility_software/en/ge_maps/index.htm
http://www.gepower.com/prod_serv/products/utility_software/en/ge_maps/index.htm
http://www.ventyx.com/analytics/promod.asp
http://www.ventyx.com/analytics/promod.asp
http://www.iso-ne.com/nwsiss/nwltrs/outlook/2009/outlook_may_2009_final.pdf
http://www.iso-ne.com/nwsiss/nwltrs/outlook/2009/outlook_may_2009_final.pdf
http://www.dspace.cam.ac.uk/bitstream/1810/195431/1/0762&EPRG0729.pdf
http://www.dspace.cam.ac.uk/bitstream/1810/195431/1/0762&EPRG0729.pdf

	A model and approach to the challenge posed  by optimal power systems planning
	Abstract
	1 Introduction
	2 Literature and model review
	3 Overview of proposed approach and model
	3.1 Input data, assumptions and scenarios
	3.2 The stochastic mixed integer programming planning model
	3.3 Sensitivity analysis
	3.4 Transmission investment decisions
	3.5 Transmission costs and rights allocation

	4 The mathematical model
	4.1 The model
	4.2 Nomenclature
	4.3 Model formulation
	4.4 Economic analysis using the dual problem
	4.5 Economic analysis of the stochastic investment market

	5 Summary, conclusions and additional work
	References


