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Reserve Requirements for Wind Power Integration: A
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Abstract—We present a two-stage stochastic programming
model for committing reserves in systems with large amounts of
wind power. We describe wind power generation in terms of a
representative set of appropriately weighted scenarios, and we
present a dual decomposition algorithm for solving the resulting
stochastic program. We test our scenario generation methodology
on a model of California consisting of 122 generators, and we
show that the stochastic programming unit commitment policy
outperforms common reserve rules.

Index Terms—Reserve requirements, stochastic unit commit-
ment, wind power integration.

I. INTRODUCTION

T HE large-scale integration of wind generation in power
systems presents a significant challenge to system opera-

tors due to the unpredictable and highly variable pattern of wind
power generation. Uncertainty in power system operations is
commonly classified in discrete and continuous disturbances.
Discrete disturbances include generation and transmission line
outages and require the commitment of contingency reserves.
Contingency reserves include spinning reserve, online genera-
tors which can respond within a few seconds, and nonspinning,
or replacement, reserve, which consists of offline generators that
replace spinning reserve a few minutes after the occurrence of a
contingency in order to restore the ability of the system to with-
stand a new contingency. Continuous disturbances most com-
monly result from stochastic fluctuations in electricity demand.
The resulting imbalances require the utilization of operating re-
serves which, as in the case of contingency reserves, are clas-
sified according to their response speed. Regulation reserves
are capable of responding within seconds in order to maintain
system frequency, and load following reserves are re-dispatched
in the intra-hour time frame in order to balance larger scale dis-
turbances that occur within the hour.

The unpredictable fluctuations of wind power supply are
more naturally categorized as smooth disturbances. Neverthe-
less, the integration of wind power at a large scale can create
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significant power shortages that can result in reliability events,
such as the 1700-MW wind generation ramp-down that oc-
curred within three and a half hours in Texas in February 2008,
and necessitated the curtailment of large industrial customers.
Reserve commitment rules have traditionally differentiated
between operating and contingency reserves, and have worked
effectively in practice for standard system operations. However,
the large-scale integration of wind power supply obscures the
differentiation between operating reserves and contingency
reserves and necessitates more sophisticated methods for dis-
patching and operating reserves.

Stochastic programming lends itself naturally to the task of
optimizing reserve operations due to the fact that reserve dis-
patch decisions are optimized endogenously in a stochastic pro-
gramming formulation. In addition to co-optimizing generation
schedules and reserve requirements, a stochastic programming
model can also be utilized for analyzing the economic impacts
of wind integration and demand response in power system op-
erations. Therefore, it is an extremely useful tool both for the
purpose of improving system operations but also for analyzing
the economic impacts of large-scale renewable power integra-
tion.

Despite its attractive features, the application of stochastic
programming presents two significant challenges. The first is
to develop a methodical approach for selecting and appropri-
ately weighing the scenarios that are input to a stochastic pro-
gramming formulation. The second challenge is to overcome
the computational intractability of the resulting problem. In this
paper, we present a methodology for selecting scenarios in sto-
chastic unit commitment problems with large amounts of wind
power, and a decomposition algorithm for solving the stochastic
program. We validate our scenario selection methodology by
comparing the resulting unit commitment policy with standard
unit commitment approaches.

II. LITERATURE REVIEW

Our work is motivated by the concerns that were raised in
the California ISO 2007 wind integration report [1]. In that re-
port, the California ISO estimates that the target of California to
reach a renewable integration level of 20% can increase load fol-
lowing capacity requirements up to 3470 MW, and ramping-up
and ramping-down requirements by up to 40 MW/min for up to
20 min, compared to their current levels. Similarly, in a 2006
British report published by the UK Energy Research Center [2],
over 80% of the studies that were cited concluded that for wind
power integration levels above 20%, an investment in system
backup in the range of 5%–10% of installed wind capacity is
required in order to balance the short-term (seconds to tens of
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minutes) variability of wind power supply. A 2006 study con-
ducted by Enernex for wind power integration in Minnesota [3]
concludes that the cost of additional reserves and costs related to
variability and day-ahead forecast errors will increase the cost
of wind power production by 2.11 $/MWh (15% penetration) to
4.41 $/MWh (25% penetration).

Unit commitment models are essential for studying the im-
pact of wind power integration in power system operations, due
to the fact that operational costs are accurately modeled in a
multistage framework. Sioshansi [4] uses a deterministic unit
commitment model to perform an annual simulation of wind
integration in the ERCOT system, and accounts for load flexi-
bility and transmission constraints. As we described above, the
additional advantage of stochastic unit commitment models is
the endogenous optimization of reserve commitment. Conse-
quently, stochastic programming has been increasingly utilized
in wind integration studies [5]–[8]. Our stochastic programming
unit commitment model follows the work of Ruiz et al. [9]
in formulating a two-stage stochastic program, where the first
stage of the problem represents day-ahead unit commitment of
slow generators, and the second stage represents hour-ahead
economic dispatch of the entire system, given the fixed day-
ahead schedule of slow generators. Another appealing feature
of the model in [9] which we adopt in our paper is testing unit
commitment policies against Monte Carlo samples of wind gen-
eration outcomes, instead of the scenario set, since the scenario
set holds limited information regarding the behavior of the wind
generation resource. Ruiz et al. [5] use the general model that
they develop in [9] to estimate the impact of wind power inte-
gration in the system of the Public Service of Colorado. For the
purpose of their annual simulations, Sioshansi [4] and Ruiz [5]
solve the unit commitment problem for each day of the year. Al-
though this approach provides a complete picture of annual op-
erations, it is reasonable to expect that much of the information
of the model can be captured by focusing the analysis on a rep-
resentative set of days, thereby reducing computational burden
substantially. In particular, we select a representative weekday
and weekend for each season, thereby focusing our analysis on
eight distinct day types. In addition, we use a decomposition al-
gorithm for solving the stochastic program. In contrast, the au-
thors in [9] solve the stochastic unit commitment problem ex-
haustively as a mixed integer program. In order to cope with the
resulting computational complexity, the authors use a limited
number of scenarios and continuous variables for the commit-
ment of fast generators [10], [5].

Bouffard et al. [11] introduce a two-stage stochastic program-
ming formulation for modeling reserves that utilizes explicit de-
cision variables for reserves, assuming that reserve bids as well
as energy bids are available to the system operator. Bouffard and
Galiana [7] use the model developed in [11] to analyze the im-
pact of wind integration on reserve requirements in a small-scale
model with three generators and a 4-h horizon without transmis-
sion constraints. Morales et al. [8] utilize a similar formulation
to [7] in order to analyze reserve requirements in the presence
of wind power. By aggregating generator unit commitment vari-
ables and utilizing a scenario reduction technique, they are able
to solve the IEEE 1996 reliability test system with transmission
constraints. In contrast to [8], [7], and [11], we focus on a central

unit commitment problem where the ISO strives to minimize op-
erating costs. Therefore, we do not consider reserve bids in our
model, since these bids are not associated with an intrinsic cost
for generators and should therefore not affect the ISO decision
for dispatching resources.

As we mentioned in the introduction, stochastic unit com-
mitment models present computational challenges due to their
large scale. A common approach to deal with these challenges
is the utilization of decomposition techniques. Such decompo-
sition techniques are used by Takriti et al. [12], who use the
progressive hedging algorithm of Rockafellar and Wets [13] in
order to decompose the stochastic unit commitment problem to
single scenario subproblems. Carpentier et al. [14] employ an
augmented Lagrangian algorithm for solving a multistage sto-
chastic unit commitment problem. Shiina and Birge [15] also
employ decomposition by devising a column generation algo-
rithm in order to decompose a multistage stochastic unit com-
mitment problem to single generator subproblems. A heuristic
decomposition approach was recently proposed by Zhang et al.
[16]. In this paper, we employ a Lagrangian relaxation algo-
rithm, in which a first-stage subproblem schedules slow gener-
ators and, given these schedules, a set of second-stage subprob-
lems are solved for committing fast generators and dispatching
all resources. As we describe in Section B of the Appendix,
the advantage of the proposed decomposition is that it allocates
computational load evenly among subproblems and yields a fea-
sible solution and upper bound at every step. In addition, it is
possible to parallelize the algorithm by solving each second-
stage subproblem in a separate processor.

The other major challenge of stochastic unit commitment
models is the selection of scenarios and their associated proba-
bilities. Kuska et al. [17] present stability results on stochastic
programs which motivate an algorithm for scenario selection
that strives to minimize the information that is lost by the sce-
nario selection process. Dupacova et al. [18] test the algorithm
in the context of unit commitment models with load uncer-
tainty. Heitsch and Römisch [19] present faster variants of the
algorithm. Morales et al. [20] develop an alternative algorithm
which resembles the one in [19], but uses a different metric for
measuring distances between probability measures. Although
there is sound theoretical justification for the algorithm pro-
posed in [19], it suffers from two practical drawbacks for the
purposes of our analysis: the algorithm is not consistent with
the moments of the wind time series, and the modeler cannot
explicitly specify scenarios that are believed to significantly
influence the performance of the unit commitment schedule. In
this paper, we propose an alternative scenario selection method
which addresses these drawbacks.

We test our scenario selection methodology against determin-
istic reserve rules in a model of the California ISO system con-
sisting of 122 generators and imports from the Western Elec-
tricity Coordinating Council (WECC) [21]. We focus our com-
parison on two types of deterministic reserve rules. The first rule
commits reserves by requiring that total reserve in the system is
at least a certain fraction of forecast peak load, where the pro-
portionality factor is chosen optimally within a range of reason-
able values. The second rule that we test is inspired by a recent
report published by the National Renewable Energy Laboratory
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[22]. The authors propose a heuristic approach for committing
spinning reserves, the 3 5 rule, which requires the system to
carry hourly spinning reserve no less than 3% of hourly fore-
cast load plus 5% of hourly forecast wind power. This rule is
adapted in our model and we present the results of our compar-
ison in Section V.

III. MODEL

A. Unit Commitment

The stochastic unit commitment model is described by the
following minimization problem. Section A of the Appendix de-
scribes the nomenclature used in the formulation of the problem.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

The objective in (1) minimizes startup, minimum load, and
fuel costs. As we described in Section II, the stochastic model
is a two-stage problem. The first stage of the model represents a
day-ahead unit commitment, where the schedules of slow gen-
erators are specified. The decisions that are made in this stage
cannot be altered once the uncertainty in the system is mani-
fested. The second stage of the model corresponds to hour-ahead
operations, and decisions can be adjusted according to the sce-
nario that is realized. In the second stage, we decide about the
commitment schedule of fast generators, and the production

plans of all generators. The objective of the stochastic model is
to minimize the expected sum of day-ahead commitment costs
and hour-ahead commitment and dispatch costs. We also as-
sume the existence of a dummy load with a very high marginal
value and no operational constraints, which corresponds to load
shedding.

The market clearing constraint in (2) requires that supply
matches net demand. Net demand is indexed by scenario be-
cause it is uncertain, due to the uncertainty of wind generation.
The constraints of (3) and (4) specify the minimum and max-
imum operating capacity limits of each generator. Equations (5)
and (6) model the ramping constraints of each generator. Min-
imum up and down times are modeled in (7)–(10), following
[23]. Note that the integrality of the startup variables can
be relaxed in order to reduce the size of the resulting branch and
bound tree, which reduces computation time. Equations (11)
and (12) are necessary for relaxing the integrality of the startup
variables. Equations (13) and (14) model the state transition
of the startup variables. The nonanticipativity constraints on the
commitment and startup variables are given in (15) and (16).

The deterministic unit commitment problem generates a unit
commitment policy that serves as a benchmark for comparing
the performance of the stochastic model. The formulation fol-
lows [4]:

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Equations (21) and (22) are modified maximum capacity
constraints which account for the possibility of generators
providing reserves. As in [4], we assume that reserve offers
reduce the available generation capacity for energy. Equations
(26) corresponds to a total reserve requirement, and (27) corre-
sponds to a fast reserve requirement. There is a day-ahead wind
generation forecast which determines forecast net demand. In
order to isolate the impact of wind power on operating reserve
requirements, we do not model contingency reserves.

B. Economic Dispatch

After the commitment schedule of the slow generators has
been determined from the solution of the unit commitment
models presented above, the economic dispatch problem is
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Fig. 1. Net load for each type of day.

solved. The economic dispatch model is derived from the model
presented in (19)–(28), with the following exceptions: there are
no reserve requirements; the commitment variables of the slow
generators are fixed to the values that were determined from
the solution of the unit commitment problem; the model is run
against samples of wind power generation which are generated
according to the wind power model that we describe in the next
section; finally, the set of generators is reduced to the set of
generators that were either producing or committed for reserve
in the unit commitment model.

As we mentioned in Section II, in contrast to [4] and [5], we
focus on eight representative types of days, instead of solving
the unit commitment problem for all days of the year. Thus,
we are able to avoid resorting to heuristics [10] in order to re-
duce the computational burden of the analysis, while extracting
most of the relevant information from the model. We specify a
different type of day for each season, and also differentiate be-
tween weekdays and weekends. Hence, the eight types of days
include winter weekdays, winter weekends, spring weekdays,
and so forth. Each type of day is identified by its forecast net load
profile (excluding wind). We note that we have not modeled load
forecast uncertainty in our model. The net load profile for each
type of day is shown in Fig. 1. For each type of day, we solve the
unit commitment problem, which yields a corresponding com-
mitment schedule for slow generators. The Monte Carlo simu-
lations of economic dispatch are then performed, under the pre-
sumption that the type of day, therefore the net load excluding
wind, is known in advance. For each type of day, we perform
economic dispatch for 250 outcomes of wind generation in order
to obtain an accurate estimate of the expected performance of
each unit commitment policy.

C. Wind Generation

A major difficulty with modeling wind power production is
that the mapping of wind speed to wind power production is
highly nonlinear. In order to overcome this difficulty, we model
wind speed instead of wind power. Given a wind speed model,
we follow the approach of Brown et al. [24] and Torres et al. [25]
of using the power curve to model wind power output. However,
due to the fact that we are modeling wind production for the en-
tire state, we cannot use the power curve of a single wind gen-
erator. Instead, we estimate the aggregate power curve of the
entire state by fitting a piecewise linear approximation of av-
erage wind speed in the entire state to total power production.

Fig. 2. Total wind power production versus average wind speed (14% wind).

Fig. 3. Probability distribution function of average wind speed (14% wind).

The estimated power curve is superimposed on the data sample
in Fig. 2 for one of the two wind integration levels that we are
considering in our study. The power curve resembles that of a
typical wind generator, although it is smoother due to the geo-
graphical diversity of wind generator sites.

As we describe in detail in Section V-A, we model two cases
of wind integration, a moderate integration level of 6688 MW
and a deep integration level of 14 143 MW. In order to fit the
wind speed data, we experimented with various parametric
distributions that are suggested in [24], and found the inverse
Gaussian distribution to provide the best fit to the wind speed
data. The fit is shown in Fig. 3. Once we determine a fit to the
wind speed data, we can transform wind speeds to obtain a
Gaussian distribution for the transformed data-set:

(29)

where is the inverse of the cumulative distribution
function of the normal distribution and is the cumulative
function of the inverse Gaussian distribution. This is analogous
to the wind speed data transformation in [24, (1)], [25, Section
2.1], and [26, (2)] for transforming Weibull-distributed data to
Gaussian data, as well as the nonparametric transformation that
is used in [27, (8) and (9)].

In order to remove diurnal and seasonal effects, we follow the
methodology that is suggested in [24], [25], and [27]. In partic-
ular, we calculate the sample mean and variance of transformed
wind speeds for each hour of each month, and normalize our
data by subtracting the hourly mean and dividing by the hourly
standard deviation:

(30)
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Fig. 4. Probability distribution function of wind power production (14% wind).

where and are the mean and standard deviation of
for hour of month . The resulting data-set is modeled by
a third order autoregressive model:

(31)

where is a standard normal random variable, ,
are the coefficients of the autoregressive model and is the vari-
ance of the underlying noise. The coefficients of the third order
autoregressive model and the variance of the underlying noise
are obtained by solving the Yule-Walker equations [28]. Dif-
ferent parameters of the autoregressive model are calculated for
the two different cases of wind integration that we study, as we
describe in Section V-A.

Once we obtain a third order autoregressive model for the
residual of the transformed wind data series, we can work in
the opposite direction to simulate wind speed and wind power
supply. We use a random number generator to generate resid-
uals through (31), add back diurnal and seasonal effects by in-
verting (30), and transform the resulting process to wind speed
by inverting (29). The resulting process is approximately dis-
tributed according to the inverse Gaussian distribution. The fit
of our wind speed model to wind speed data for the 14% wind
integration case that we study in the results section is shown
in Fig. 3. Wind power production is then simulated by using the
power curve in Fig. 2. The fit of our model to the data-set for the
14% wind integration case is shown in Fig. 4. The deviations in
the fit arise from the fact that the wind speed distribution is not
exactly inverse Gaussian and also due to the fact that the power
curve cannot exactly reproduce the behavior of the scatter plot
in Fig. 2, which is produced by aggregating data from hundreds
of locations. Once we have constructed a wind power produc-
tion model, it is used both for generating wind scenarios, as we
will describe next, but also for generating samples for the Monte
Carlo simulation of economic dispatch.

IV. SCENARIO GENERATION

The challenge of selecting scenarios for the stochastic unit
commitment problem is to discover a small number of represen-
tative daily wind time series that properly guide the stochastic
program to produce a unit commitment schedule that improves
average costs, as compared to a unit commitment schedule de-
termined by solving a deterministic unit commitment model.

The basic tradeoff that needs to be balanced in dispatching
fast reserves is the flexibility that fast units offer in utilizing
wind generation versus their higher operating costs. Fast gen-
erators are fueled by gas, which has a relatively high marginal
cost. In addition, the startup and minimum load costs of these
units are similar to those of slow units; however, their capacity
is smaller. Hence, their startup and minimum load cost per unit
of capacity is greater than that of slow generators. The advan-
tage of largely relying on fast units is that the system is capable
of discarding less wind power, which results in significant sav-
ings in fuel costs. Unlike fast generators which can shut down
in short notice in the case of increased wind power generation,
slow generators cannot back down from their minimum genera-
tion levels and therefore require the waste of excess wind energy
in order to stay online.

As we describe in Section II, despite the theoretical justifica-
tion of the scenario reduction algorithms proposed in [17] and
[19], the algorithms are not guaranteed to preserve the moments
of hourly wind generation. Due to the predominant role of fuel
costs in the operation of the system, the accurate representation
of average wind supply in the case of large-scale wind integra-
tion is crucial for properly guiding the weighing of scenarios.
Moreover, the modeler cannot specify certain scenarios which
are deemed crucial. For example, in the case of wind integration,
the realization of minimum possible wind output throughout the
entire day needs to be considered explicitly as a scenario. Other-
wise, there is the possibility of under-committing resources and
accruing overwhelming costs from load shedding in economic
dispatch. Therefore, it is desirable to develop a scenario selec-
tion method which allows us to include such a scenario in the
scenario set.

In order to overcome the drawbacks that arise from imple-
menting the algorithms proposed in [17] and [19], we adopt an
alternative approach. We generate a large number of wind power
samples from the autoregressive model described in Section III,
and select a subset of wind time series , based
on a set of prescribed criteria which are deemed important. We
then assign weights to each scenario such that the first moments
of hourly wind output are matched as closely as possible. That
is, we solve the following problem:

(32)

(33)

(34)

where is the average wind for hour for the day type that is
being considered. The lower bound in (34) is included in order
to ensure that all scenarios are considered, albeit with a small
weight.

In the results that we present in Section V, we use eleven cri-
teria to select the set of wind time series. The criteria are the
following: the series closest to the sampled mean; the series re-
sulting in net load with the greatest variance; the series resulting
in net load with the least variance; the series resulting in net load
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with the greatest morning up-ramp; the series resulting in net
load with the greatest evening up-ramp; the series resulting in
net load with the greatest sum of hourly absolute differences;
the series resulting in net load with the greatest min-to-max
within the day; the series with the least aggregate wind output
throughout the day; the series with the greatest aggregate wind
output throughout the day; the series resulting in the greatest
observed net load peak; and the series resulting in net load with
the greatest observed change within one hour. All of these cri-
teria are considered to capture either typical behavior of wind
output, or certain anomalous features that need to be explicitly
accounted for when scheduling reserves.

V. RESULTS

A. Data

We have used a model of the California ISO with imports
from WECC which is developed by the authors in [21]. In con-
trast to the model that is used in [21], we do not model trans-
mission constraints. We collapse the import schedules of 22
thermal generators outside the California ISO, the export to the
Sacramento Municipal Utility District, and the production data
from three biomass facilities, six hydroelectric generators, and
two geothermal facilities in [21] to a single fixed quantity bid.
We do not use the wind production data from [21] since our
model contains a much more detailed representation of wind
production. Since the model in [21] reflects import, hydroelec-
tric, geothermal, and biomass production data for a six-month
period from May 1, 2004, to October 1, 2004, we replicate the
data for the remaining six months of the year in order to pro-
duce an entire year of data. This extrapolation is justified by the
fact that the average production profiles of all these resources
are almost identical for the three seasons that are covered by the
data-set. Since we are using 2006 wind production data from
the NREL database, we also use load data from the same year,
which is publicly available at the CAISO Oasis database. The
average load in the system is 27 298 MW, with a minimum of
18 412 MW and a peak of 45 562 MW. The net load profile for
each type of day, which needs to be served by thermal genera-
tors and wind power, is shown in Fig. 1.

The wind data used in this study is sourced from the Na-
tional Renewable Energy Laboratory 2006 western wind data-
base. The entire data-set is used for calibrating the autoregres-
sive model. The locations of the wind generation sites that are
used for the study represent a moderate integration target of
6688 MW, based on the data presented in the CAISO report
[1], and a deep integration target of 14 143 MW, corresponding
to the 2010 California generation interconnection queue [29].
There is a total of 2648 MW of wind power currently connected
in the California system. The locations of the wind parks for
each wind integration case are presented in Table II. Wind data
was sourced from the NREL database according to the locations
that are described in Table II. The wind power production model
is described in detail in Section III-C. The penetration level for
the moderate integration case is 24.5% of average load capacity
and 7.1% of average energy demand, while the penetration level
for the deep integration case is 51.8% of average load capacity
and 14.0% of average energy demand. In order to identify the

TABLE I
GENERATION MIX FOR THE TEST CASE

TABLE II
LOCATIONS AND CAPACITY OF WIND POWER (MW)

two wind integration cases that are analyzed in our study, we
label them by their energy penetration level.

We use a finer model for thermal generators within CAISO,
with 122 generators, compared to the model in [21], which uses
23 aggregated thermal generators. The value of lost load is set
to 5000 $/MWh. The number of generators and the capacity for
each fuel type are shown in Table I. The last two rows of Table I
describe how the fossil fuel generation mix is partitioned into
fast and slow generators. The set of fast generators consists of
generators with a capacity no greater than 250 MW, amounting
to a total capacity of 9156.1 MW. The entire thermal generation
capacity of the system is 28 381.5 MW.

B. Relative Performance of Stochastic Policy

In this section, we compare the performance of the stochastic
unit commitment policy with a clairvoyant policy, as well as
with common reserve rules. The clairvoyant policy commits re-
serves with advance knowledge of wind production for each
day. The common reserve rules that we consider, peak-load-
based unit commitment and the 3 5 rule, are explained in the
last paragraph of Section II.

In Fig. 5, we present average cost performance of peak-load-
based unit commitment for various levels of total reserve re-
quirements. We see that the optimal reserve requirement for the
moderate wind integration level lies at 20% of maximum load,
whereas for the deep integration level it lies at 30% of max-
imum load, and slightly exceeds the policy that commits 40% of
maximum load. Reserve requirements that are exceedingly low
result in significant load shedding, whereas exceedingly high re-
serve requirements result in high fuel costs due to the excessive
rejection of wind power.
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Fig. 5. Cost as a function of total reserve requirements for 7.1% wind (top) and
14% wind (bottom).

TABLE III
DAILY COST OF OPERATIONS FOR EACH DAY TYPE—7.1% WIND

The lowest possible cost that any unit commitment policy can
attain is determined by the performance of a clairvoyant policy,
which can anticipate wind generation in advance of unit com-
mitment. In Tables III and IV, we compare the cost performance
of the clairvoyant policy, the stochastic policy, the 3 5 rule, and
the best peak-load-based policy for the two different wind inte-
gration cases. The column with bold figures, which corresponds
to the stochastic policy, contains absolute cost values. Cost fig-
ures corresponding to the other policies are relative to the sto-
chastic policy costs. The row with total costs weighs the cost of
each day type with its relative frequency in the year in order to
yield annual results. The last row shows the improvement of the
stochastic policy over each other policy, normalized by the cost
of the stochastic policy.

The stochastic policy indeed improves on the deterministic
policies. The relative savings are greater for the case of deep
wind integration. This indicates that the benefits of stochastic
unit commitment are larger as uncertainty increases in the
system. The clairvoyant policy has a significant advantage over

TABLE IV
DAILY COST OF OPERATIONS FOR EACH DAY TYPE—14% WIND

TABLE V
SLOW AND TOTAL CAPACITY (MW) FOR EACH POLICY—7.1% WIND

TABLE VI
SLOW AND TOTAL CAPACITY (MW) FOR EACH POLICY—14% WIND

the stochastic policy in the deep integration case, versus the
moderate case, because greater wind integration exacerbates the
level of uncertainty in the system. The 3 5 rule performs better
in the deep integration case versus the moderate integration
case, compared to the peak-load-based policy. The stochastic
policy yields 41% of the potential benefits of having perfect
knowledge of the future compared to the best deterministic
policy for the 7.1% wind integration case, and 34% of the
benefits for the 14% wind case.

We present the total fossil fuel capacity and the average slow
generator capacity that is committed for each day type and each
policy in Tables V and VI. For the stochastic unit commitment
formulation, this table includes the capacity of those slow gen-
erators that are committed for at least one hour of the day, or
those fast generators that are committed for at least one hour for
at least one scenario. For the deterministic unit commitment for-
mulation, this table includes those generators which are required
to supply power, slow reserves, or fast reserves for at least one
hour of the day. The last line of these tables presents total ca-
pacity, which is calculated by weighing the results of each day
type by the frequency of occurrence of the respective day type.
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TABLE VII
DAILY MWh OF WIND SHED FOR EACH POLICY—7.1% WIND

TABLE VIII
DAILY MWh OF WIND SHED FOR EACH POLICY—14% WIND

We note that in the 7.1% wind case, the stochastic unit commit-
ment policy tends to commit less total capacity, and less slow
capacity. In contrast, in the 14% wind case, the stochastic policy
commits more slow capacity and less total capacity. It is inter-
esting to note that the stochastic policy achieves savings with re-
spect to the deterministic policies both in the case where it com-
mits more, as well as less capacity. In the cases where the sto-
chastic policy commits less slow capacity (e.g., summer week-
ends), the savings result from peak load periods during which
the deterministic policies incur large startup costs by commit-
ting an excessive amount of slow reserves in order to satisfy re-
serve requirement constraints. In the cases where the stochastic
policy commits more slow capacity (e.g., spring weekdays), the
deterministic policies commit less capacity because they under-
estimate the potential fuel and minimum run savings. This is due
to the fact that the deterministic policies optimize for expected
wind supply, instead of averaging the cost savings of insuring
against fast capacity dispatch for various wind supply outcomes.
Due to the fact that fuel and minimum run costs are convex for
the system under consideration, deterministic policies underes-
timate savings from committing slow reserves.

We also present the daily amount of wind that is shed in
Tables VII and VIII. In contrast to the results presented in [5],
the average wind that is wasted from the clairvoyant policy is
less. The losses in the 7.1% wind case are negligible, and the
stochastic policy sheds less wind compared to the deterministic
policies, which is consistent with the observations in [5]. In the
contrary, losses from the stochastic unit commitment policy in
the 14% wind case are slightly greater due to the fact that the
average slow capacity that is committed in the stochastic policy
is greater than the average slow capacity committed in the de-
terministic policies. Hence we observe that, in order to reduce
fuel and startup costs in the 14% wind case, the stochastic policy
commits more reserves and sheds slightly more wind power.

TABLE IX
DAILY COST SAVINGS COMPARED TO NO-WIND CASE (%)

C. Impact of Wind Integration Level

In Table IX, we categorize the cost savings resulting from
wind integration. The second column shows the total cost sav-
ings for each case of wind integration relative to the case where
no wind is integrated. The deep integration case results in almost
twice as much savings. The remaining columns refer to the per-
centage of cost savings that result from each type of cost. Cost
savings mainly originate from fuel costs. Load shed costs are
insignificant. There are also minor savings from startup costs.
For the 14% wind case, the startups required to cope with wind
variability tend to reduce the benefits of startup costs.

VI. CONCLUSION

We have developed a two-stage stochastic unit commitment
model for determining reserve requirements in the presence
of wind power. We have presented a method for generating
and weighing the scenarios that are used in the stochastic
unit commitment model and we have evaluated our scenario
generation methodology by Monte Carlo simulation of unit
commitment and economic dispatch. Our stochastic unit com-
mitment schedule is shown to outperform peak-load-based
reserve schedules, as well as the 3 5 rule proposed in [22]. Our
model is also used to assess the sensitivity of operating costs in
wind integration levels. We have omitted various constraints of
the unit commitment problem in order to closely analyze our
scenario generation methodology. For example, we have not
included transmission constraints or import constraints. This is
work which we wish to pursue in future research.

APPENDIX

A. Nomenclature for Unit Commitment Problems

Sets

Set of all generators.

Subset of slow generators.

Subset of fast generators.

Set of scenarios.

Set of time periods.

Decision variables

Commitment of generator in scenario , period .

Startup of generator in scenario , period .

Production of generator in scenario , period .

Commitment of slow generator in period .

Startup of slow generator in period .

Slow reserve provided by generator in period .

Fast reserve provided by generator in period .
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Parameters

Probability of scenario .

Minimum load cost of generator .

Startup cost of generator .

Marginal cost of generator .

Net demand1 in scenario , period .

Minimum and maximum capacity of generator .

Minimum and maximum ramping of generator .

Minimum up time of generator .

Minimum down time of generator .

Number of periods in horizon.

Total reserve requirement.

Fast reserve requirement.

B. Decomposition Algorithm for Stochastic Unit Commtiment

We present a decomposition algorithm for solving the
problem presented in (1)–(18). By dualizing the constraints of
(15) and (16) we get the following Lagrangian:

(35)

The first subproblem is, for each scenario

(36)

(37)

Note that if we did not impose (12), the previous problem
would have been unbounded; therefore, this constraint is nec-
essary for the proposed algorithm. The second subproblem be-
comes

(38)

(39)

The updating of the dual variables is as follows:

(40)

(41)

1Net demand refers to demand minus wind.

The step size rule follows [30] and [31] and is given by

(42)

where is a constant parameter, is the value of (35) at the
optimal solution, is an upper bound on the optimal solution,
and are optimal solutions at the th step.

We could have restricted ourselves to relaxing only (15). The
advantage of also relaxing (16) is that the first subproblem is
smaller, since the constraints on the unit commitment of the slow
generators become a part of the second set of subproblems. An
additional advantage of this choice of decomposition is that, at
each step, the slow generator unit commitment solutions of the
first subproblem can be used for generating a feasible solution to
the original problem. As a result, at each step of the algorithm,
we obtain an upper bound on the optimal solution, as well as a
feasible schedule. This should be contrasted to the case where
we restrict ourselves to relaxing only (15).

The stochastic unit commitment algorithm was implemented
in AMPL. The mixed integer programs were solved with
CPLEX 11.0.0 on a DELL Poweredge 1850 server (Intel Xeon
3.4 GHz, 1 GB RAM). The first and second subproblem were
run for 200 iterations. For the last 100 iterations, the problem of
(1)–(18) was run with fixed to their op-
timal values, in order to obtain a feasible solution and an upper
bound for the stochastic unit commitment problem of (1)–(18).
The average elapsed time for this entire process was 5685 s.
The mip gap for the first and second subproblem was set to

%, and the mip gap for obtaining a feasible schedule was
set to %. The sum of the optimal solutions of the first
and second subproblem yield a lower bound on the optimal
cost, whereas the optimal solution of the feasibility run results
in an upper bound . The average gap, ,
that we obtained was 0.80%. However, to estimate an upper
bound on the optimality gap, we also need to account for the
mip gap that we introduce in the solution of the first and
second subproblem. The average upper bound on the optimality
gap, , is 1.75%.
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