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Abstract—We compare two alternative mechanisms for cap-
ping prices in two-settlement electricity markets. With sufficient

lead time and competitive entry opportunities, forward market
prices are implicitly capped by competitive pressure of potential
entry that will occur when forward prices rise above a certain
level. Another more direct approach is to cap spot prices through
regulatory intervention. In this paper we explore the implications
of the two alternative mechanisms in a two settlement Cournot
equilibrium framework. We formulate the market equilibrium
as a stochastic equilibrium problem with equilibrium constraints
(EPEC) capturing congestion effects, probabilistic contingencies
and market power. As an illustrative test case we use the 53-
bus Belgian electricity network with representative generator
cost but hypothetical demand and ownership assumptions. When
compared to two-settlement systems without price caps we find
that either of the price capping alternatives results in reduced
forward contracting. Furthermore the reduction in spot prices
due to forward contracting is smaller.

I. INTRODUCTION

It is generally believed that forward contracting mitigates

generators’ horizontal market power in the spot markets and

protect marketers against spot price volatility resulting from

system contingencies and demand uncertainty. Competitive

entry in the forward market and regulatory caps on spot prices

are further means of mitigating price spikes and market power

abuse. Previous works by [1], [2], [13], [20], focus on the im-

pact of forward markets on spot prices and social welfare un-

der alternative assumptions regarding the relationship between

forward and spot prices. It was shown that generators have

incentives to contract in the forward markets whereas forward

contracting reduces spot prices and increases consumption

levels and social welfare. These models, however, assume a

fixed generation stock which is an appropriate assumption

for two-settlement system over short time intervals (e.g., day

ahead and real time markets). For long term forward contracts,

potential competitive entries impose an implicit price cap on

forward contract prices since new investment in generation

capacity will occur when forward prices rise above a certain

level. Alternatively, regulators in many restructured electricity

markets have imposed price or offer caps in the spot markets

1Research supported by the National Science Foundation Grant ECS-
0224779 with the University of California.

in an attempt to rectify market imperfections such as demand

inelasticity, barriers to entry, imperfect capital markets and

locational market power. In this paper we extend our earlier

model in [20] by considering, separately, the effects of these

two cap types on the spot and forward prices.

In particular, we address the following questions: To what

extent do the generators commit forward contracts under price

caps? How do caps on forward prices affect the spot market

and how do caps on spot prices affect the forward market? We

study these questions via a two-settlement Cournot equilibrium

model where generation firms have horizontal market power.

The system is subject to contingencies due to transmission

and generation outages as well as to demand uncertainties.

Our model also accounts for network congestion which is

represented through a capacity constrained DC load flow

approximation of the electricity grid.

We convert our formulation into a stochastic equilibrium

problem with equilibrium constraints (EPEC) where each

generation firm faces a stochastic mathematical program with

equilibrium constraints (MPEC, see [14]). These MPEC prob-

lems have quadratic objective functions and share identical

lower-level constraints in the form of a parametric linear

complementarity problem (LCP, see [7]).

The remainder of this paper is organized as follows. Related

electricity market models and MPEC algorithms are reviewed

in the next section, section III presents the formulation for

the two-settlement markets. In section IV, we run a variety

of experiments on our MPEC and EPEC algorithms. Finally,

we investigate the implications of hypothetical price caps in a

network describing a reallized model of the Belgian electricity

market.

II. RELATED RESEARCH

In this section, we review models for electricity markets

with forward contracts and Cournot competition, as well as

MPEC algorithms.

Wei and Smeers [19] consider a Cournot model with regu-

lated transmission prices. They solve the variational inequali-

ties to determine unique long-run equilibria in their models. In

subsequent work, Smeers and Wei [18] consider a separated

energy and transmission market, where the system operator
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conducts a transmission capacity auction with power marketers

purchasing transmission contracts to support bilateral trans-

actions. They conclude that such a market converges to the

optimal dispatch for a large number of marketers.

Hobbs [12] calculates a Cournot equilibrium under the

assumptions of linear demand and cost functions, which leads

to a mixed linear complementarity problem (mixed LCP). In a

market without arbitrageurs, non-cost based price differences

can arise because the bilateral nature of the transactions

gives firms more degrees of freedom to discriminate between

electricity demand at various nodes. This is equivalent to a

separated market as in Smeers and Wei [18]. In the market with

arbitrageurs, any non-cost differences are arbitraged by traders

who buy and sell electricity at nodal prices. This equilibrium

is shown to be equivalent to a Nash-Cournot equilibrium in a

POOLCO-type market. Hobbs, Metzler and Pang [11] present

an oligopolistic market where each firm submits a linear

supply function to the Independent System Operator (ISO).

They assume that firms can only manipulate the intercepts of

the supply functions, but not the slopes, while power flows

and pricing strategies are constrained by the ISO’s linearized

optimal power flow (OPF). Each firm in this model faces a

MPEC problem with spatial price equilibrium as the inner

problem.

Work in forward markets has focused on the welfare en-

hancing properties of forward markets and the commitment

value of forward contracts. The basic model in [1] assumes

that producers meet in a two period market where there is

some demand uncertainty in the second period. Allaz shows

that generators have a strategic incentive to contract forward

if other producers do not. This result can be understood

using the concepts of strategic substitutes and complements

of Bulow, Geneakoplos and Klemperer [4]. In these terms,

the availability of the forward market makes a particular

producer more aggressive in the spot market. Due to the

strategic substitutes effect, this produces a negative effect on

its competitors’ production. The producer with access to the

forward market can therefore use its forward commitment to

improve its profitability to the detriment of its competitors.

Allaz shows, however, that if all producers have access to

the forward market, it lead to a prisoners’ dilemma type of

effect, reducing profits for all producers. Allaz and Vila [2]

extend this result to the case where there is more than one time

period where forward trading takes place. For a case without

uncertainty, they establish that as the number of periods when

forward trading takes place tends to infinity, producers lose

their ability to raise market prices above marginal cost due to

the competitive solution.

von der Fehr and Harbord [8] and Powell [17] study

contracts and their impact on an imperfectly competitive

electricity spot market: the UK pool. von der Fehr and Harbord

[8] focus on price competition in the spot market with capacity

constraints and multiple demand scenarios. They find that

contracts tend to put downward pressure on spot prices.

Although, this provides disincentive to generators to offer such

contracts, there is a countervailing force in that selling a large

number of contracts commits a firm to be more aggressive

in the spot market, and ensures that it is dispatched into its

full capacity in more demand scenarios. Powell [17] models

explicitly re-contracting by Regional Electricity Companies

(RECs) after the maturation of the initial portfolio of contracts

set up after deregulation. He adds risk aversion on the part of

RECs to earlier models. Generators act as price setters in the

contract market. He shows that the degree of coordination has

an impact on the hedge cover demanded by the RECs, and

points to a “free rider” problem which leads to a lower hedge

cover chosen by the RECs.

Newbery [15] analyzes the role of contracts as a barrier to

entry in the England and Wales electricity market. He extends

earlier work by modelling equilibria of supply functions in

the spot market. He further shows that if entrants can sign

base load contracts and incumbents have enough capacity, the

incumbent can sell enough contacts to drive down the spot

price below the entry deterring level, resulting in more volatile

spot prices if producers coordinate on the highest profit supply

function equilibrium (SFE). Capacity limit however may imply

that incumbents cannot play a low enough SFE in the spot

market and hence cannot deter entry. Green [10] extends

Newbery’s model showing that when generators compete in

SFEs in the spot market, together with the assumption of

Cournot conjectural variations in the forward market, imply

that no contracting will take place unless buyers are risk

averse and willing to provide a hedge premium in the forward

market. He shows that forward sales can deter excess entry,

and increase economic efficiency and long-run profits of a

large incumbent firm faced with potential entrants.

Yao, Oren and Adler [20] study the Nash Equilibrium in the

two-settlement competitive electricity markets with uncertainty

of transmission, generation and demand in the spot market.

The Cournot generators’ and the social-welfare-maximizing

system operator’s behaviors are modelled in both forward and

spot markets. The equilibrium is modelled as an EPEC in

which each generation firm solves a MPEC problem. The

model is applied to a six-bus illustrative example, and it

is found that the generators have incentives for committing

forward contracts under spot market uncertainties and con-

gestions, whereas two settlements increase social welfare,

decrease spot price magnitudes and volatilities.

III. THE MODEL

In this section, we introduce a generic model of the two-

settlement electricity system with both spot and forward price

caps. The system with either spot or forward market is a

special case of this generic model by setting the forward or

the spot price caps, or both, to infinity.

In this generic model, we formulate the two-settlement

electricity markets as a complete-information two-period game

with the forward market being settled in the first period,

and the spot market being settled in the second period. The

equilibrium in either market is a sub-game perfect Nash

equilibrium (SPNE, see [9]).

In the forward market, the generation firms determine their

forward commitments while anticipating other firms’ forward

quantities and the spot market outcomes. The spot market is

a subgame with three stages: in stage one, Nature picks the
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state of the world so as to reveal the actual capacities of the

generation facilities and the transmission lines as well as the

shape of the demand functions at each node; firms determine

generation quantities to compete in a Nash-Cournot manner in

stage two; and the System Operator (SO) determines how to

dispatch electricity within the network to maximize total social

welfare. Note that the generation firms take into consideration

the SO’s actions, it is rational to assume that generation firms

and the SO move simultaneous in the spot market.

A. Notation:

We consider the set of nodes, transmission lines, zones,

generation firms and their generation facilities, and the states

of the spot market.

• : The set of all nodes or buses.

• : The set of all zones. Moreover, ( ) represents the
zone where node resides.

• : The set of transmission lines whose probabilities of

congestion in the spot market are strictly positive. These

lines are called flowgates.

• : The finite set of all states of the spot market.

• : The set of all generation firms. denotes the set of

nodes which generation firm has facilities attached to.

In the two-settlement markets, generators determine how

much to commit in the forward contracts and how much to

generate in the spot market. The system operator determines

how to adjust the consumption level at each node in the spot

market. The variables related to the forward markets are:

• : The forward quantity committed from firm to zone

.

The variables related to the spot markets are:

• : The spot quantity generated at node in state .

• : Adjustment quantity at node by the system operator

in state .

The following exogenous parameters are considered in our

formulation:

• : lower and upper capacity bounds of generation

facility at node in state .

• ¯: the spot price cap.
•
¯: the forward price cap.

• (·): Inverse demand function at node in state . We

denote ¯ as the common price intercept across all nodes
in each state , and being the slopes:

( ) = ¯

We assume that the inverse demand at each node shifts

inwards or outwards in different states, but the slope does

not change.

• (·): Generation cost function at node . We assume that
the cost function is convex quadratic where

( ) = +
1

2
2

with given positive and non-negative .

• : capacity limit of line in state .

• : Power transfer distribution factor in state on line

with respect to node .

• ( ): Probability of state in the spot market.

• : ( 0
P

: ( )= = 1) the weights used to settle
the zonal prices.

B. The Spot Market

For the sake of generality we allow different levels of

granularity in the financial settlements (with equal granularity

being a special case). This is motivated by the fact that in real

markets we observe different granularity levels in spot and

long term forward markets (for example in PJM, the western

hub representing the weighted average price over nearly 100

nodes is the most liquid forward market). Specifically, the

network underlying the nodal spot market is divided into a set

of zones, each of which is a cluster of connected nodes. This

suggests three pricing schemes: spot nodal prices, spot zonal

prices (used to settle zonal forward contracts) and forward

(zonal) prices.

Spot nodal prices are the prices at which generation and

loads are settled at their respective nodes. In state of the

spot market, the total consumption at node is + , which

is sum of the quantity generated by the generator and the

(export or import) adjustment made by the SO. Because loads

can never be negative, we restrict

+ 0

Consumers evaluate their consumptions of + at price

( + ) according to the inverse demand functions. The
actual spot nodal prices are min{¯ ( + )} due to the
spot price caps.

The spot zonal price at a zone in state is defined

as the weighted average of nodal prices in the zone with

predetermined weights . Typically we expect theses weights

to reflect historical load ratios and be updated periodically,

however they are treated as constants in our model so that

contracting, production and consumption decisions do not

affect these weights. In mathematical terms the zonal spot

price is given as:

=
X
: ( )=

min{¯ ( + )}

The forward zonal prices are the prices at which forward

commitments are agreed upon in the respective zones. We

assume that in equilibrium no profitable arbitrage is possible

between forward and spot zonal prices. This implies that the

forward zonal price is equal to the expected spot zonal prices.

That is:

= [ ]

=
X

( ) (2)

With a forward price cap, a threshold is put on the forward

prices:

¯ (3)

In each state of the spot market, generation firms decide

variables : the output from each of its plants. These outputs

can not be below the minimal output, neither can they exceed
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the respective capacities of the plants in that state. Hence the

generators face the constraints:

Each generator ’s revenue in state of the spot market

is her generation quantities paid at spot nodal prices and the

financial settlement of her forward commitments settled at the

difference between the forward zonal prices and spot zonal

prices. Her profit is given by:

=
X

min{¯ ( + )}+
X
( )

X
( )

To avoid discontinuity in generators’ profit function (see for

example [16]), We have assumed here that the generators do

not consider the impact of their decisions on the settlement

of transmission rights. Each generator solves the following

program in state of the spot market:

max

subject to:

¯ (3)

(4)

+ 0 (5)

The SO decides in each state of the spot market how

to dispatch the energy within the network (i.e., import and

export quantities at each node) given the production decisions

by generators. She makes the adjustment at each node

. Her dispatch must satisfy the network thermal constraints

on power flows. We model electricity flows on transmission

lines through Power Transfer Distribution Factors (PTDFs)

using a Direct Current (DC) approximation of Kirchoff’s law

[6]. The PTDF is the proportion of flow on a particular line

resulting from an injection of one unit at a particular node and

a corresponding one-unit withdrawal at the reference “slack

bus”. The network feasibility constraints are

X

The SO also maintains real time balance of loads and outputs,

that is X
( + ) =

X

or equivalently

X
= 0

The SO’s objective is to maximize the social welfare defined

by the area under the consumers’ inverse demand function

minus total generation cost. She solves the following mathe-

matical program in each state of the spot market:

max
X
[

Z +

0

( ) ( )]

subject to:

+ 0 (5)X
= 0 (6)

X
(7)

Since the generators’ decision variables are treated as

constant parameters in the SO’s decision, the term ( ) can
be dropped from the objective function without affecting its

optimal solution.

The constraint (3) is excluded in spot market decision

problems because it has been considered by the generators

in the forward market.

C. Spot market smooth formulation

The generators’ and the system operator’s decision problems

in the spot market do not have straightforward optimality

conditions due to the non-smooth function characterizing the

spot prices. In this sub-section, we reformulate these problems

by removing the minimization terms of spot nodal prices. It

is accomplished by considering separately two cases.

1) High spot caps: The first case is of high spot caps, i.e.

¯ ¯ . Due to the constraint (5), it must hold that

¯ ( + )

Thus the spot nodal prices are

min{ ( + ) ¯} = ( + )

and the spot zonal prices are

=
X
: ( )=

min{¯ ( + )}

=
X
: ( )=

( + )

High spot price caps are hence not binding, and we drop

them from the generators’ decision problems. So the genera-

tors’ spot decision problems become

G : max

subject to:

¯ (3)

(4)

+ 0 (5)

where

=
X

( + ) +
X
( )

X
( )
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Fig. 1. Low spot price caps

For the system operator, she still faces the decision problem:

S : max
XZ +

0

( )

subject to:

+ 0 (5)X
= 0 (6)

X
(7)

2) Low spot price caps: When the spot price caps are

low, i.e. ¯ ¯ , they intersect the inverse demand functions,
and are possibly binding (see figure 1). Although spot nodal

price min{ ( + ) ¯} is a minimization function and the
generators’ objective is to be maximized, we can not apply a

“min-max” formulation to it. This is because of the uncertainty

of the relative magnitude between and in , which

we should not restrict. To overcome this issue, we introduce

artificial variables

• : inframarginal quantity from + at node which

the generators evaluate at the spot price cap.

Following from its definition, must satisfies

0 +

Moreover, quantity can not be to the right of the intersection

point of the price cap and the inverse demand functions, i.e.

¯ =
¯ ¯

Due to the SO’s objective to maximize social welfare, the

optimal spot outcomes will set as high as possible up to

min{¯ + }, before setting the remaining quantity +
to the decreasing line segment of the inverse demand

functions. In another word, it can not be true that

min{¯ + } and + 0

Otherwise, the social surplus is not maximized. The spot nodal

prices are thus functions of and : ¯ ·( + ).

The system operator’s social welfare maximization problem

becomes:

Ŝ :max
X
(

Z
0

( ) +

Z ¯ + +

¯

( ) )

subject to:X
= 0 (6)

X
(7)

0 ¯ (8)

+ 0 (9)

The generation firms’ spot profit maximization problems

are:

Ĝ : max

subject to:

¯ (3)

(4)

+ 0 (9)

where the generators’ spot profits are

=
X

(¯ · ( + ))

+
X
( )

X
( )

D. Spot market outcomes

The spot market is described by the pair of G and S if spot

price caps are no less than the price intercepts of the inverse

demand functions, or otherwise the pair of Ĝ and Ŝ . These
four problems are all strictly concave-maximization programs,

which implies that their first-order necessary conditions (the

KKT conditions) are also sufficient. Thus, the spot market

outcomes can be replaced by their KKT conditions.

In the spot market equilibrium, the shadow prices of the

constraint (3) regarding each zone are equal across all states

for each generator. If not, the generators could gain profits by

decreasing their outputs in states with lower shadow prices

and increase the outputs in states with higher shadow prices.

Moreover, the shadow prices in each zone are equal for

different generators, because they are also the marginal profit

for new entry due to forward price caps. We define these

shadow prices, the Lagrangian multipliers to the constraint

(3), as .

Let and + be the Lagrangian multiplier to both

directions of the constraint (4), to the constraint (5) and

(9), to the constraint (6), and + to both directions of

constraint (7), and and + to both directions of constraint

(8), we have KKT conditions as follows:
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1. For the pair of G and S

( 1) :
X

= 0

¯ +

+
X
( +) = 0

0
X

+ 0

0 +

X
0

0 + 0

¯ 2 +

+ (1 ( )) ( ) + +

+ ( ) = 0

0 ¯ 0

0 0

0 + 0

2. for the pair of Ĝ , and Ŝ

( 2) : 0 + 0X
= 0

¯ ¯ + · ( + ) +

+
X
( +) = 0

¯ · ( + ) + + = 0

0
X

+ 0

0 +

X
0

0 0

0 + ¯ 0

¯ 2 · ( ) +

+ (1 ( )) ( ) + +

+ ( ) = 0

0 ¯ 0

0 0

0 + 0

(10)

E. the Forward Market

In the forward market, network feasibility is ignored and

the forward contracts are settled. Each firm takes all her

rivals’ forward quantities as given, and determines her own

best forward quantities to maximize her expected spot utility.

Assuming the firms are risk neutral, their forward objectives

are to maximize their expected spot profits subject to the KKT

conditions which represent the anticipated equilibrium in the

spot market. The generators should also consider constraint

(3) in the forward market so that their forward contracting

decisions will not result in expected spot zonal prices, or the

forward prices, above the forward price cap. Thus each firm

’s optimization problem in the forward market is a stochastic

MPEC problem:

max [ ] =
X

( )

subject to:

×

and constraints (KKT1) and (KKT2)

where defines the set of allowable non-negative forward

positions for firm .

Combining the generators’ MPEC problems, the equilibrium

problem in the forward market is an EPEC. Furthermore, this

EPEC problem is a stochastic EPEC due to the uncertainty of

exogenous data.

Note that variables and can be eliminated from the

KKT conditions, we further define

• : The vector of firm ’s forward variables.

= [ ]

• : = [ ] where is the vector of lagrangian

multipliers for all inequality constraints in the generators’

and the SO’s decision problems in the spot market.

• : = [ ] where is the slackness of the

constraints corresponding to .

Then spot market KKT conditions becomes the following

parametric LCP with respect to and with being the

parameters

= +
X

+ 0 0 (11)

where , , and are suitable vector and matrices derived

from constraints (KKT1) and (KKT2).

Now, the generators’ forward objectives [ ] can be
expressed as functions ( ) with respect to ,

and , where “ ” denotes \{ } and denotes all other

firms’ design variables except for generator ’s. The firms’

forward problems can be represented as:

F : min ( )

subject to :

(12)

= + + + (13)

0 0 (14)

Here, are design variables, are state variables, are

parameters. The constraints (13) and (14) are a rewriting of

the LCP constraint (11) by separating and . Moreover,

the constraints (13) and (14) are shared among all generators.

We observe from the problems S , G , Ŝ and Ĝ that

is positive semi-definite. Note that both problems G
and S have optimal solutions for any set of , the KKT

conditions (KKT1) and (KKT2) have thus feasible solutions,

so do the LCP constraints (11) as a transformation of the KKT

conditions. Furthermore, due to theorem 3.1.7 in [7], the LCP

problem (11) satisfies the -uniqueness condition.
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Fig. 2. Belgian high voltage network

For simplicity, we further assume that the exogenous param-

eters in our formulation are perturbed in such a way that the

spot decision problems have non-degenerate optimal solutions.

Following again from theorem 3.1.7 in [7], the LCP constraints

(11) have a unique solutions as well. This property is stated

as follows.

A1: The LCP constraints (11) have unique solutions of and

corresponding to all feasible { }.

Another observation from problems F is that

A2: the objective function are quadratic.

Properties A1 and A2 guarantee that the solution approaches

in [21] are also applicable here.

IV. THE BELGIAN ELECTRICITY MARKET

We use the Belgian electricity network to illustrate the

economics results. For the completeness of the network, we

incorporate some lines in the Netherlands and France. The

network has 92 380kV and 220kv transmission lines, some of

which are parallel lines between the same pair of nodes. For

computational purpose, parallel lines are combined to single

lines with adjusted thermal capacities and resistances, thus

the network is reduced to 71 transmission lines linking 53

nodes (see figure 2). Insignificant lower voltage lines and small

generation plants have been excluded from this example.

We assume that there are six states in the spot market. The

first state is a state in which the demands are at the shoulder, all

generation plants operate at their full capacity, all transmission

lines rated at full thermal limits. The second state is the same

as the first state except that it has on-peak demand. Off-peak

state 3 differs from state 1 by the very low demand levels. State

4 denotes the contingency of the transmission line [31,32]

being out of service. State 5 and 6 capture the unavailability

of two plants at node 10 and 41 respectively. The assumed

probabilities of these states are given in table I.

We assume that there are two generation firms competing

in the forward market and the spot market, and two zones in

the network with nodes 1 through 32 being in zone 1 and

the remaining nodes being in zone 2. Firm 1 owns plants at

nodes 7, 9, 11, 31, 32, 33, 35, 37, 41, 47, and 53, and firm 2

owns plants at nodes 10, 14, 22, 24, 40, 42, 44, and 48. There

are no generation plants on other nodes. The corresponding

information of generation plants is listed in table II. More

details are given in table II describing the nodal information

on inverse demand functions, first-order marginal generation

costs, generation capacities and historical load ratios (in this

example, marginal costs are assumed constant). As to thermal

limits, we ignore the intra-zonal flows and focus only on the

flowgates of lines [22,49], [29,45], [30,43], and [31,52]. We

consider five test cases:

• Case 1: price-uncapped single-settlement system, i.e. sin-

gle settlement without (spot) price caps.

• Case 2: price-capped single-settlement system, i.e. single

settlement with (spot) price caps.

• Case 3: price-uncapped two-settlement system, i.e. two

settlements without spot and forward price caps.

• Case 4: forward-capped two-settlement system, i.e. two

settlements with only forward price caps. We set the

forward price cap to 425, about 10% below the prices

in the price-uncapped single-settlement system.

• Case 5: spot-capped two-settlement system, i.e. two set-

tlements with only spot price caps. The spot price cap is

set to 600.

Case 1 and 2 are essentially equivalent to a two-settlement

system with the allowable forward contracts forced to zero

quantity.

We restrict the generators’ forward positions to their total

generation capacity in the respective zones. Table III reports

the spot zonal prices of these five scenarios. We find that

• Both spot and forward price caps reduce the magnitude

of spot prices as compared to the corresponding single-

settlement market.

• Spot price cap reduces generators’ incentives to com-

mit forward contracts compared to price-uncapped two-

settlement system. The spot price cap causes the gen-

erators to commit about 70% compared to the price-

uncapped two-settlement markets. This is because the

spot price caps themselves already reduce spot prices

leaving less incentives for generators to commit forward

contracts.

• Forward price caps increase generators’ incentives for

forward contracting. The generators commitment in the

forward-capped two-settlement markets is about 180%

compared to the same markets without caps. Under the

forward price caps, the generators are in fact net electric-

ity buyer in the spot market. This is because, knowing

that entry would occur if the forward prices are too high,

the incumbents have to act more competitively to deter it.

They will only play an equilibrium in which the forward

prices are below the forward price cap.

• Compared to the price-uncapped two-settlement system,

the spot cap results in more production in on-peak states,

therefore the on-peak prices are lower; but, the reduced

forward contracting due to spot caps cause different
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TABLE I

STATES OF THE BELGIAN NETWORK

State Probability Type and description

1 0.50 Shoulder state: Demands are at shoulder.
2 0.20 On-peak state: All demands are on the peak.
3 0.20 Off-peak state: All demands are off-peak.
4 0.03 Shoulder demands with line breakdown: Line [31,32] goes down.
5 0.03 Shoulder demands with generation outage: Plant at node 10 goes down.
6 0.04 Shoulder demands with generation outage: Plant at node 41 goes down.

TABLE II

NODAL INFORMATION.

Node demand marginal capa- Node demand marginal capa-
Id slope cost city Id slope cost city
1 1 N/A 0 28 1 N/A 0
2 0.82 N/A 0 29 0.93 N/A 0
3 1.13 N/A 0 30 0.85 N/A 0
4 1 N/A 0 31 1 180 712
5 0.93 N/A 0 32 1 580 95
6 0.85 N/A 0 33 0.88 20 496
7 1 450 70 34 0.5 N/A 0
8 1 N/A 0 35 1 250 1053
9 0.88 180 460 36 0.73 N/A 0
10 0.9 180 121 37 1 100 1399
11 1 200 124 38 0.85 N/A 0
12 0.73 N/A 0 39 1 N/A 0
13 1 N/A 0 40 1.15 100 1378
14 0.85 130 1164 41 1 210 522
15 1 N/A 0 42 0.79 180 385
16 1.3 N/A 0 43 0.68 N/A 0
17 1 N/A 0 44 1.03 200 538
18 0.79 N/A 0 45 1 N/A 0
19 0.68 N/A 0 46 1 N/A 0
20 1.05 N/A 0 47 1 100 32
21 1 N/A 0 48 0.73 220 258
22 1.1 190 602 49 1.2 N/A 0
23 1 N/A 0 50 1.5 N/A 0
24 0.75 100 2985 51 1 N/A 0
25 1 N/A 0 52 1 N/A 0
26 0.8 N/A 0 53 1 200 879
27 1.13 N/A 0
, : these numbers are zeros in state 5 and 6 respectively.
N/A: the marginal costs are not applicable to zero capacities.

TABLE III

SPOT ZONAL PRICES COMPARISONS

Case 1 Case 2 Case 3 Case 4 Case 5
zone 1 zone 2 zone 1 zone 2 zone 1 zone 2 zone 1 zone 2 zone 1 zone 2

state 1 428.29 429.04 428.29 429.04 423.95 424.79 363.30 363.03 425.27 425.60
state 2 849.75 844.72 600.00 600.00 845.18 841.02 823.53 823.75 600.00 600.00
state 3 232.30 232.30 232.30 232.30 224.24 224.24 189.45 189.45 229.46 229.46
state 4 428.20 429.14 428.20 429.14 419.75 420.97 405.46 406.32 424.38 424.56
state 5 429.96 430.78 429.96 430.78 421.55 422.53 407.19 407.93 426.11 426.12
state 6 431.35 432.31 431.35 432.31 423.34 424.49 409.34 410.47 428.77 428.14
Expected 473.55 473.01 423.56 424.07 468.03 467.73 425.00 425.00 421.19 421.34

results in off-peak states, i.e. lower production and higher

nodal prices. On the contrary, the increased forward

contracting due to forward price caps results in more

production and lower spot prices compared to the price-

uncapped two-settlement markets.

Note that the forward prices are decreasing functions in

forward commitments and spot generation quantity, the gener-

ators will succeed in deterring entry by playing an equilibrium

with forward prices lower than the forward cap whenever then

have sufficient capacity. On the other hand, if the generators

don’t have enough capacity, the forward contracts will be

signed at prices higher than the forward price cap, and entry

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8



to the markets is inevitable. This result is consistent with

Newbery [15].

V. CONCLUDING REMARKS

In this paper, we extend our model in [20] to the case

in which either the forward prices or the spot prices are

capped. The forward caps represent an approximation to com-

petitive entry by new generators. We formulate the Cournot

equilibrium in the price-capped two-settlement markets as a

stochastic equilibrium problem with equilibrium constraints.

We also consider the spot market with uncertainty of demand,

generation capacity, and thermal limits of transmission lines.

The main goal in this paper is the development of an

effective formulation to analyze capping alternatives under

a variety of scenarios in the framework of two-settlement

markets. We run test cases based on the Belgian electricity

market. The resulting equilibrium reveals less incentives from

the generators to commit forward contracts due to the spot

price caps, and more incentives due to forward price caps.

However, the spot zonal prices under both cap types still

decrease as compared to the respective single-settlement cases.

Moreover, these two cap types result in different behaviors of

spot production and spot energy prices. Additional interesting

analysis concerning social welfare, generator’s profits as well

as other aspects of the market affected by the presence of price

caps, will be the subject of future work.
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