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Abstract Currently, there is a national push for a smarter electric grid, one that is
more controllable and flexible. Only limited control and flexibility of electric assets
is currently built into electric network optimization models. Optimal transmission
switching is a low cost way to leverage grid controllability: to make better use of the
existing system and meet growing demand with existing infrastructure. Such control
and flexibility can be categorized as a “smart grid application” where there is a co-
optimization of both generators or loads and transmission topology. In this paper we
form the dual problem and examine the multi-period N-1 reliable unit commitment
and transmission switching problem with integer variables fixed to their optimal val-
ues. Results including LMPs and marginal cost distributions are presented for the
IEEE RTS 96 test problem. The applications of this analysis in improving the effi-
ciency of ISO and RTO markets are discussed.

Keywords Duality · Generation unit commitment · Mixed integer programming ·
Power generation dispatch · Power system economics · Power system reliability ·
Power transmission control · Power transmission economics

Nomenclature

Indices
c: Operating state; c = 0 indicates the no contingency state (steady-state);

c > 0 is a single contingency state, i.e. c ∈ C, C = CT ∪ CG.
e: Generator, load, or transmission element.
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g: Generator or load; for generators, g ∈ G; for load, g ∈ D.
g(n): Set of generators or load at node n.
k: Transmission element (line or transformer).
k(n, .): Set of transmission assets with n as the ‘from’ node.
k(., n): Set of transmission assets with n as the ‘to’ node.
m,n: Nodes.
n(g): Generator g located at bus n.
t : Time period; t = 1, . . . , T .

Parameters
Bk: Electrical susceptance of transmission element k.
cg: Production cost for generator (or value of load) g; generally cg > 0.
CG: Set of generator contingencies.
cr+

g , cr−
g : Ramp rate cost in the up and down direction for generator (or load) g.

CT: Set of transmission contingencies.
dn: Real power load (fixed) at bus n.
N1ec: Binary parameter that is 0 when element e is the contingency and is 1

otherwise.
P +

gc,P
−
gc: Max and min capacity of generator (or load) g in state c; for

g ∈ D,P +
gc = P −

gc.

P +
kc,P

−
kc: Max and min rating of transmission element k in state c; for lines

P +
kc = −P −

kc.
R+

gt ,R
−
gt : Max ramp rate in the up and down direction for generator (or load) g at

node n in period t except in the startup period.
Rc+

gt ,Rc−
gt : Max emergency (contingency) ramp rate in the up and down direction

for generator (or load) g in period t .
Rs

g: Max ramp rate for the start up period in the up direction for generator
(or load) g at node n.

SUgt : Startup cost for generator (or load) g in period t ; generally for
g ∈ G,SUgt ≥ 0.

T : Number of periods.
UTg,DTg: Min up and down time for generator (or load) g.
θ+, θ−: Max and min voltage angle; θ+ = −θ−.
ρc: Contingency c indicator; ρc = 1 for c = 0; ρc = 0, otherwise.

Variables
Pgct : Real power supply from generator g(>0) or demand from load (<0)g

(at node n), in state c and period t .
Pkct : Real power flow from node n to m for transmission element k, in state c

and period t .
r+
gct , r

−
gct : Ramp rate in the up and down direction for generator g, in state c and

period t .
ugt : Binary unit commitment variable for generator (or load) g in period t

(0 down, 1 operational).
vgt : Startup variable for generator (or load) g in period t (1 for startup, 0

otherwise).
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wgt : Shutdown variable for generator (or load) g in period t (1 for shutdown,
0 otherwise).

zkt : Binary variable for transmission element k in period t (0 open/not in
service, 1 closed/in service).

α−
nct , α

+
nct : Marginal value of lowering (raising) the min (max) phase angle at

node n, in state c and period t .
β−

gct , β
+
gct : Marginal value of reducing (increasing) the min (max) level of

generator (or load) g, in state c and period t .
γg: Uplift or additional profit for generator g.
δkt : Marginal value of switching transmission element k in period t .
η−

kct , η
+
kct : Marginal value of reducing (increasing) the lower (upper) limit for

transmission element k, in state c and period t .
θnct : Bus voltage angle at node n, in state c and period t .
λnct : Marginal value of a unit of generation or load at node n, in state c and

period t .
μkct : Marginal susceptance value of transmission element k, in state c and

period t .
σgt : Marginal value of enforcing the startup value for generator g in period t .
τgt : Marginal value of enforcing the relationship between startup, shutdown,

and unit commitment variables for generator g in period t .
χ+

gct , χ
−
gct : Marginal value of increasing the up (down) ramp rate for generator g, in

state c and period t .
χc+

gct , χ
c−
gct : Marginal value of increasing the up (down) emergency ramp rate for

generator g, in state c and period t .
ψgt : Marginal value of enforcing the shutdown value for generator g in

period t .
ω+

gct ,ω
−
gct : Marginal value of increasing the up (down) ramp rate constraint for

generator g, in state c and period t .

1 Introduction

There is a national goal to create a “smarter” electric grid, one that is more control-
lable and flexible. Currently, only limited approximations of electric asset control and
flexibility are built into electric power system optimization models. System operators
can and do change the network topology to improve system performance. Operators
switch transmission elements to improve voltage profiles or increase transfer capac-
ity. In PJM and other ISOs, Special Protection Schemes (SPSs) allow the operator to
disconnect a line during normal operations but return it to service during a contin-
gency; there are also SPSs that allow the operator to open a line during a contingency
demonstrating that further grid modifications during a contingency can be benefi-
cial. The operator makes these decisions under a set of prescribed rules rather than
including this flexibility in the optimization formulation.

Transmission switching has been explored in the literature as a control method
for problems such as over or under voltage situations, line overloading, loss and/or
cost reduction, and system security [1–12]. Recent research suggests that the network
topology should be co-optimized along with the generation [13–17].
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New transmission infrastructure can be expensive and hard to site. Therefore, opti-
mal use of the existing system and optimal expansion should be a priority. The US En-
ergy Policy Act of 2005 includes a directive for FERC to “encourage. . .deployment
of advanced transmission technologies,” including “optimized transmission line con-
figuration.”1 This research is also in line with FERC Order 890—to improve the eco-
nomic operations of the electric transmission grid. It also addresses the items listed in
Title 13 “Smart Grid” of the Energy Independence and Security Act of 2007: (1) “in-
creased use of. . . controls technology to improve reliability, stability, and efficiency
of the grid” and (2) “dynamic optimization of grid operations and resources.”

In this paper we form a dual problem of the multi-period N-1 reliable unit com-
mitment and transmission switching problem, with the integer variables fixed to their
optimal values, similar to the one in [17]. Next, we examine the economic concepts
and relationships that appear in the dual. From a mathematical point of view, the dual
MIP problem is not well-defined and difficult to economically interpret [18, 19]. The
cuts that form the convex hull have defied general economic interpretation [20].

When multiple market participants benefit from a unit of traded good, as is true for
generator startup or transmission switching, it can be called a club good [21]. A public
good is a club good where all market participants benefit; therefore, we need and will
only address club goods in this paper. A club good may require a two-part pricing
system in order to meet non-confiscatory requirements while a private good requires
only a single-part pricing system in markets without non-convexities. A private good
can therefore be thought of as a degenerate club good. Binary variables represent club
goods.

In this paper, we first present the multi-period unit commitment and transmission
switching formulation with N-1 contingency constraints enforced; this formulation is
a Mixed Integer Program (MIP). Section 3 then takes the MIP in Sect. 2, fixes the
integer variables to their optimal solution values, and presents the LP formulation
and its dual. Section 4 then presents the economic analysis of this problem. Section 5
identifies the terms representing the short term generation rent, the congestion rent,
and the load payment. Section 6 provides computational results based on the IEEE
73-bus model (RTS96); within this section, we examine the impact on LMPs, gener-
ators, and transmission. Section 7 concludes this paper.

2 N-1 DCOPF optimal transmission switching unit commitment multi-period
formulation

We modify the formulation in [17] to make it more general and to allow a more
intuitive economic interpretation. Load has comparable bidding parameters to gener-
ation. In essence it is the mirror image of generation. For example, load can bid the
value of consumption in a single period or can bid a single value for an entire eight
hour shift using minimum run parameters. Our model is similar to that of ISOs. The
motive is to survive any single contingency, but we do not include the contingency

1See Sect.1223.a.5 of the US Energy Policy Act of 2005.
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redispatch costs in the objective. The model ensures that the system can survive any
single contingency by explicitly enforcing N-1. The market model, a MIP, is:

N-1 MIP (NM1MIP):

MS = Maximize
∑

g,t

(−cgPg0t − SUgtvgt − cr+
g r+

g0t − cr−
g r−

g0t ) (1)

s.t.

θ− ≤ θnct ≤ θ+ ∀n, c, t (2)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pg0t = 0 ∀n, c ∈ 0 ∪ CT, t (3a)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pgct = 0 ∀n, c ∈ CG, t (3b)

Pkct − P +
kcN1kczkt ≤ 0 ∀k, c, t (4a)

−Pkct + P −
kcN1kczkt ≤ 0 ∀k, c, t (4b)

Bk(θnct − θmct ) + Pkct + Mk(2 − zkt − N1kc) ≥ 0 ∀k, c, t (5a)

Bk(θnct − θmct ) + Pkct − Mk(2 − zkt − N1kc) ≤ 0 ∀k, c, t (5b)

zkt ∈ {0,1} ∀k, t (6)

Pgct − P +
gcN1gcugt ≤ 0 ∀g, c ∈ 0 ∪ CG, t (7a)

−Pgct + P −
gcN1gcugt ≤ 0 ∀g, c ∈ 0 ∪ CG, t (7b)

Pgct − Pgc,t−1 ≤ r+
gct ∀g, c ∈ 0 ∪ CG, t (8a)

r+
gct − R+

gctug,t−1 − Rs
gvgt ≤ 0 ∀g, c ∈ 0 ∪ CG, t (8b)

Pgc,t−1 − Pgct ≤ r−
gct ∀g, c ∈ 0 ∪ CG, t (9a)

r−
gct − R−

gctug,t−1 ≤ 0 ∀g, c ∈ 0 ∪ CG, t (9b)

Pgct − Pg0t − ugtR
c+
gt ≤ 0 ∀g, c ∈ CG, t (10a)

N1gcPg0t − N1gcPgct − ugtR
c−
gt ≤ 0 ∀g, c ∈ CG, t (10b)

vgt − wgt = ugt − ug,t−1 ∀g, t (11)

− ugt +
t∑

q=t−UTg+1

vgq ≤ 0 ∀g, t ∈ {UTg, . . . , T } (12)

ugt +
t∑

q=t−DTg+1

wgq ≤ 1 ∀g, t ∈ {DTg, . . . , T } (13)
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0 ≤ vgt ≤ 1 ∀g, t (14)

0 ≤ wgt ≤ 1 ∀g, t (15)

ugt ∈ {0,1} ∀g, t (16)

r+
gct , r

−
gct ≥ 0 ∀g, c, t. (17)

Each decision variable is indexed for each state c, except for zkt and the variables
associated with the unit commitment formulation: ugt , vgt , and wgt . State c = 0 rep-
resents the no-contingency, steady-state variables and constraints whereas all other
states represent single generator or (non radial) transmission contingencies. We intro-
duce a binary parameter for state c and element e: N1ec. N1kc = 0 represents the loss
of transmission element k; N1gc = 0 represents the loss of generator g. For c = 0,
N1e0 = 1 for all e as this state reflects steady-state operations. There are N (transmis-
sion element or generator) contingencies. For c > 0, N1ec = 0 if c = e; otherwise,
N1ec = 1. For each c > 0,

∑
e N1ec = N − 1. For each e,

∑
c>0 N1ec = N − 1. For

c = 0, N1ec = 1.
Transmission switching is incorporated into the traditional Direct Current Opti-

mal Power Flow (DCOPF) problem by modifying (4a)–(5b) to allow a line to be in
service (closed), i.e. zkt = 1, or out of service (open), i.e. zkt = 0. Constraints (5a)
and (5b) ensure that if a transmission element is opened, these constraints are satis-
fied no matter what the values are for the corresponding bus angles. The transmission
element is considered opened if it is the contingency, i.e. N1kc = 0, or it is chosen
to be opened as a result of transmission switching, i.e. zkt = 0. Further discussion on
transmission switching can be found in [14–17].

Reserve constraints, such as spinning and non-spinning reserve constraints, are
typically included in unit commitment models. The purpose of these reserve con-
straints within the unit commitment formulation is to ensure there is enough avail-
able capacity in order to survive any single contingency; once there is a contingency,
spinning and non-spinning reserve are called upon so that the system can survive the
contingency. These constraints are used as proxies to enforce N-1 since it is typically
too computationally challenging to explicitly list every contingency. Reserve con-
straints are therefore a surrogate way to enforce N-1 reliability requirements whereas
the ideal formulation would explicitly enforce the required contingency constraints
within the program. Since this formulation enforces all N-1 contingency constraints
explicitly, we do not include these proxy constraints, i.e. reserve constraints.

3 The chosen linear program and its dual

The set of feasible solutions to a MIP is disjoint; however, for a fixed set of binary
variables, the resulting feasible solution set is either empty or convex. By setting the
integer variables to their values in the best solution found, the resulting problem is
a linear program and the resulting dual is well defined and has value for economic
analysis. The linear program is optimal with respect to the fixed integer variables
and the LP, its dual, and the MIP objective function have the same optimal value. If
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the MIP is solved to optimality, the integer variables can be fixed to their solution
values thereby creating an LP and the resulting dual variables then form an economic
equilibrium [22].

For the purpose of economic analysis, MIP duality can be considered in two parts.
First, it is possible to determine the incremental value of a binary variable. With the
MIP optimal solution determined, all binary variables, except one binary variable,
are fixed to their optimal solution value; this single binary variable that was not fixed
to its optimal value is instead fixed to its opposite, i.e. 0 to 1 or 1 to 0, value. The
change in the objective function gives the incremental (switched) value of that binary
variable. The change in market surplus for each asset can therefore be calculated. For
complete analysis, all combinations of binary variables need to be considered, but
this is practically impossible. For practical reasons we need to perform analysis that
is cost beneficial. Second, for linear programs marginal information is almost free in
the dual program. Consequently, duality analysis of the linear program can be helpful
in marginal analysis and in choosing the binary variables for the incremental analysis.

Once the integer values are fixed, some constraints become redundant, thereby
creating many choices for formulating the linear program and its dual. We will choose
one that yields an intuitive economic interpretation. The following analysis holds
even if the feasible MIP solution is not a global optimum.

If N1kc = 0 or zkt = 0, (5a) and (5b) are not binding constraints, their dual vari-
ables equal zero, and we can drop them from the formulation. If N1kc = 1 and
zkt = 1, 2 − zkt − N1kc = 0; (5a) and (5b) are then binding and together they form
an equality constraint. We replace (5a) and (5b) with (5); also note that variable Pkct

does not exist within the formulation for z∗
kt = 0 or N1kc = 0.

The solution of NM1MIP determines a set of optimal startup and shutdown vari-
ables, v∗

gt and w∗
gt ; we enforce these values in the following linear program. Given

an initial value for the unit commitment variable, ug0, and recursively starting at
t = 1, using (11): ug,t = vgt − wgt + ug,t−1 and with ug,t−1 = u∗

g,t−1, vgt = v∗
gt , and

wgt = w∗
gt , u∗

g,t is then uniquely determined. Therefore, (12)–(16) can be discarded
and replaced by (14′) and (15′). The resulting linear program with its corresponding
dual variables is:

LP: MSLP = Maximize
∑

g,t

(−cgPg0t − SUgvgt − cr+
g r+

g0t − cr−
g r−

g0t ) (1)

s.t.

θnct ≤ θ+ ∀n, c, t α+
nct (2a)

−θnct ≤ θ+ ∀n, c, t α−
nct (2b)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pg0t = 0 ∀n, c ∈ 0 ∪ CT, t λnct (3a)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pgct = 0 ∀n, c ∈ CG, t λnct (3b)

Pkct − P +
kczktN1kc ≤ 0 ∀k, c, t, z∗

kt = 1,N1kc = 1 η+
kct (4a′)
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−Pkct + P −
kczktN1kc ≤ 0 ∀k, c, t, z∗

kt = 1,N1kc = 1 η−
kct (4b′)

Bk(θnct − θmct ) + Pkct = 0 ∀k, c, t, z∗
kt = 1,N1kc = 1 μkct (5)

zkt = z∗
kt ∀k, t δkt (6′)

Pgct − P +
gcN1gcugt ≤ 0 ∀g, c ∈ 0 ∪ CG, t β+

gct (7a)

−Pgct + P −
gcN1gcugt ≤ 0 ∀g, c ∈ 0 ∪ CG, t β−

gct (7b)

Pgct − Pgc,t−1 − r+
gct ≤ 0 ∀g, c ∈ 0 ∪ CG, t ω+

gct (8a)

r+
gct − R+

gtug,t−1 − Rs
gvgt ≤ 0 ∀g, c ∈ 0 ∪ CG, t χ+

gct (8b)

Pgc,t−1 − Pgct − r−
gct ≤ 0 ∀g, c ∈ 0 ∪ CG, t ω−

gct (9a)

r−
gct − R−

gtug,t−1 ≤ 0 ∀g, c ∈ 0 ∪ CG, t χ−
gct (9b)

Pgct − Pg0t − Rc+
gt ugt ≤ 0 ∀g, c ∈ CG, t χc+

gct (10a)

N1gcPg0t − N1gcPgct − Rc−
gt ugt ≤ 0 ∀g, c ∈ CG, t χc−

gct (10b)

vgt − wgt − ugt + ug,t−1 = 0 ∀g, t τgt (11)

vgt = v∗
gt ∀g, t σgt (14′)

wgt = w∗
gt ∀g, t ψgt (15′)

r+
gct , r

−
gct ≥ 0 ∀g, c, t. (17)

We now write the dual of the above linear program (note that μkct = 0 for zkt = 0
or N1kc = 0):

D: MSD = Minimize: θ+ ∑

nct

(α+
nct + α−

nct )

+
∑

gt

[v∗
gtσgt + w∗

gtψgt ] +
∑

kt

z∗
kt δkt (18)

s.t.

α+
nct − α−

nct +
∑

k∈k(n,.)

Bkμkct −
∑

k∈k(.,n)

Bkμkct = 0 ∀n, c, t θnct (19)

μkct + λmct − λnct + η+
kct − η−

kct = 0 ∀k, c, t, z∗
kt = 1,N1kc = 1 Pkct (20)

∑

c

(P −
kcN1kcη

−
kct − P +

kcN1kcη
+
kct ) + δkt = 0 ∀k, t zkt (21)
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∑

c∈CT ∪0

(λn(g)ct ) − β−
g0t + β+

g0t + ω+
g0t − ω−

g0t − ω+
g0,t+1 + ω−

g0,t+1

+
∑

c∈CG

(N1gcχ
c−
gct − χc+

gct ) = −cg ∀g, t Pg0t (22a)

λn(g)ct − β−
gct + β+

gct + ω+
gct − ω−

gct − ω+
gc,t+1

+ ω−
gc,t+1 + χc+

gct − N1gcχ
c−
gct = 0 ∀g, c ∈ CG, t Pgct (22b)

τg,t + σgt −
∑

c∈0∪CG

Rs
gχ

+
gct = −SUgt ∀g, t vgt (23)

−τg,t + ψgt = 0 ∀g, t wgt (24)
∑

c∈0∪CG

(−P +
gcN1gcβ

+
gct + P −

gcN1gcβ
−
gct )

− τgt + τg,t+1 − Rgt = 0 ∀g, t ugt (25)

−ω+
gct + χ+

gct ≥ 0 ∀g, c ∈ CG, t r+
gct (26a)

−ω−
gct + χ−

gct ≥ 0 ∀g, c ∈ CG, t r−
gct (26b)

−ω+
g0t + χ+

g0t ≥ −cr+
g ∀g, t r+

g0t (27a)

−ω−
g0t + χ−

g0t ≥ −cr−
g ∀g, t r−

g0t (27b)

α+
nct , α

−
nct , η

+
kct , η

−
kct , β

+
gct , β

−
gct ,

ω+
gct ,ω

−
gct , χ

+
gct , χ

−
gct , χ

c+
gct , χ

c−
gct ≥ 0 ∀n, k, g, c, t, (28)

where Rgt = ∑
c∈0∪CG(R+

g,t+1χ
+
gc,t+1 +R−

g,t+1χ
−
gc,t+1 +Rc+

gt χc+
gct +Rc−

gt χc−
gct ). Since

θ+ 	= θ−, α−
nctα

+
nct = 0. If z∗

kt = 1, N1kc = 1, and P +
kc 	= P −

kc , then η+
kctη

−
kct = 0. If

u∗
gt = 1, N1gc = 1, and P −

gc 	= P +
gc , then β+

gctβ
−
gct = 0. ω+

gctω
−
gct = 0. If u∗

g,t−1 = 1,

χ+
gctχ

−
gct = 0 and χc+

gc,t−1χ
c−
gc,t−1 = 0.

4 Economic analysis of the auction market

The primal MSLP problem maximizes the trade surplus for load and generation bids
subject to the bid and system operating constraints. The dual objective function min-
imizes the resource cost of the goods subject to marginal cost relationships. The dual
problem also yields an economic interpretation of the market and provides some set-
tlement parameters. A market participant’s surplus is the excess value over the set-
tlement payment, or short-term profit, which is used in part to cover the investments
costs.

In the dual formulation, the dual variables do not automatically ‘clear’ the market
and do not allocate all costs unlike a naïve, simple energy-only market defined by a
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linear program. In a neoclassical market where there are no nonconvexities, the linear
program produces dual variables that are market clearing prices. These market clear-
ing prices cover the bid costs for sellers and have net value for buyers. This property
is not present in non-neoclassical MIP markets. The market clearing settlement must
be modified to satisfy this criterion. The market clearing price construct is valid if
there are no binary variables or the binary variables can be relaxed to continuous
variables without changing the optimal value and all generators and loads have con-
vex bids and convex constraint sets. A positive minimum binding generation level
violates this assumption.

Commodities in balancing equations that sum to zero (e.g. energy in (3a) and (3b))
are called private goods. The market clears this private good or commodity using
the associated dual variable as the settlement price. There is a separate private good
and a dual variable for each period, bus, and contingency and there is a one-to-one
correspondence between injections and withdrawals. Notice that the dual variable of a
private good does not appear in the dual objective function. When bids are constrained
using convex constraints, e.g. upper and lower bounds, the private bid constraints
are not traded but the associated dual variable produces scarcity rent or opportunity
cost information. From complementary slackness conditions, if the constraint is not
binding, the associated scarcity rent or opportunity cost is zero.

Unlike with private goods, there is no natural (endogenous) pricing, i.e. cost al-
location, of club goods in this model. To a first approximation, the beneficiaries of
a club good are those whose surplus decreases when the club good is removed from
the market (MIP). The non-beneficiaries are those whose surplus either increases or
is unchanged when the club good is removed from the market. This process becomes
more complicated as the number of club goods and the combinations of club goods
increase. For a club good, the binary variable representing the good appears in the
objective function. The pricing of club goods must be decided by the exogenous set-
tlement rules. We can think of the MIP optimization as finding the club goods that
are optimal but not defining how to pay for them.

4.1 Power economics

As discussed above, power is a private good. Most ISOs clear the day-ahead market
assuming each bid will perform as bid. However, the ISO starts up enough gener-
ators to assure the market can survive any single contingency (generator, load, or
transmission). The dispatch must be able to operate within the emergency limits of
transmission during a contingency. Generators are not immediately redispatched in
a transmission contingency, that is, in (7) if c ∈ CT , Pgct = Pg0t and transmission
elements are allowed to temporarily exceed their steady state limits while procedures
for regaining N-1 reliability are instituted outside the model. These procedures (called
N-1-1 reliability) include startup of non-spinning reserve units, generator and/or load
redispatch, and transmission switching to reestablish N-1 reliability. Reliability rules
require that N-1 reliability be reestablished in thirty minutes.

We define the aggregate LMPs (ALMPs) at node n for time t as: λnt = ∑
c λnct .

Also let β−
gt = ∑

c β−
gct , β+

gt = ∑
c β+

gct , ω−
gt = ∑

c ω−
gct , and ω+

gt = ∑
c ω+

gct . Sum-
ming (22b) over c ∈ CG for each n and t and adding (22a) to it we have the identity
in Table 1.
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Table 1 Economic
interpretation of the aggregate
nodal price identity

λn(g)t = Aggregate nodal price

−cg Marginal cost

+β−
gt Marginal value of the minimum operating level

−β+
gt Marginal value of the maximum operating level

−ω+
gt Marginal value of ramping up in period t

+ω−
gt Marginal value of ramping down in period t

−ω−
g,t+1 Marginal value of ramping down in period t + 1

+ω+
g,t+1 Marginal value of ramping up in period t+l

For c ∈ 0 ∪ CT , Pgct = Pg0t . For c ∈ CG, Pgct may be different from Pg0t . Here,
we only require the feasibility of re-dispatch and no cost appears in the objective
function for Pgct (where c 	= 0). Likewise, if (10a) and (10b) are inactive, then for
c ∈ CG, λn(g)ct = β−

gct = β+
gct = ω+

gt = ω−
gt = 0. With (10a) and (10b) inactive, there

is no link between Pgct for c ∈ CG and Pg0t ; thus, there is no cost consequence on
the chosen value of Pgct . The only issue is obtaining a feasible solution. This does not
mean that there is no impact from the c ∈ CG variables. The impact is just not cap-
tured within the dual LP problem when the integer values are fixed; essentially, the
formulation enforces that enough generation capacity is committed so that the sys-
tem can survive any single contingency. This assumption understates expected costs
of redispatch in a generator contingency in the day-ahead market. If the contingency
is realized, the redispatch costs are incurred in the real-time market. This creates a
difference between the day-ahead market and the optimal expected surplus commit-
ment, but will not be addressed here. Instead, we are following the ISOs’ procedure
of only enforcing survivability of all single contingencies rather than incorporating
the expected redispatch cost of a contingency into the formulation.

4.2 Economic analysis of generators as units in ISO markets

Since a generator must first be started up before it can generate, the startup variable
can be thought of as a discrete real option sold by the generator to offer its power
to the market. Loads, e.g. industrial processes, have similar startup characteristics to
generators. For example, they can purchase options to buy. Since multiple market
participants can jointly ‘purchase’ this discrete option, the startup variable can be
thought of as the membership part of a club good. The costs or profits from club
goods appear in the dual objective function and these costs or profits need to be
allocated. Current allocation rules are established by the regulatory process.

Let B+
gt = ∑

c∈CG∪0 P +
gcN1gcβ

+
gct . The product u∗

gtB
+
gt is nonnegative and it

gives the value or profit across all contingencies from the upper bound for gener-
ator g and period t ; it is called the generator scarcity rent in period t . Let B−

gt =
−∑

c∈CG∪0 P −
gcN1gcβ

−
gct . The product u∗

gtB
−
gt is nonpositive and it gives the value

or cost across all contingencies of enforcing the lower bound limit; it can be inter-
preted as the marginal opportunity cost of enforcing the binary variable, u∗

gt = 1.
In the simplest case, this could represent the tradeoff between shutting down and
restarting later versus ‘riding through’ this period at the minimum operating level.
With minimum up and down time constraints, this relationship is more complex.
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Now, let TUP(g) = {t | for u∗
gt = 1}; TUP(g) is the set of periods the genera-

tor is up. Let SUP(g) = {t | for v∗
gt = 1}; SUP(g) is the set of startup periods. Let

SD(g) = {t | for w∗
gt = 1}; SD(g) is the set of shutdown periods. Let Bgt = B+

gt +B−
gt .

Assuming for simplicity that (8a)–(10b) are not binding and, therefore, ω+
gct = ω−

gct =
χ+

gc,t+1 = χ−
gc,t+1 = χc+

gct = χc−
gct = 0 for all g, c, and t , equation (25) becomes

Bgt + τgt − τg,t+1 = 0. Define a startup and shutdown cycle as a set of consecu-
tive periods where ugt = 1 ∀t ∈ [t ′, t ′′ − 1] where t ′ is the startup period and t ′′ is the
shutdown period. For any start up and shutdown cycle,

∑

t ′<=t<=t ′′−1

(Bgt + τgt − τg,t+1) =
∑

t ′<=t<=t ′′−1

(Bgt ) + τg,t ′ − τg,t ′′ = 0.

As a result,
∑

t∈TUP(g) Bgt + ∑
t∈SUP(g) τgt − ∑

t∈SD(g) τg,t = 0. Using −τg,t ′ =
σgt ′ + SUgt ′, τg,t ′′ = ψgt ′′ and rearranging, we have

∑

t∈TUP(g)

Bgt −
∑

t∈SUP(g)

(SUgt + σgt ) −
∑

t∈SD(g)

ψg,t = 0. (29)

Substituting γg = ∑
t∈SUP(g) σgt + ∑

t∈SD(g) ψg,t , in (29) we have

∑

t∈TUP(g)

Bgt −
∑

t∈SUP(g)

SUgt − γg = 0. (30)

Multiplying (22a) by Pg0t and (22b) by Pgct , adding them together, and summing
over t we obtain

−
∑

c∈CT ∪0,t

Pg0t λn(g)ct −
∑

c∈CG,t

Pgctλn(g)ct

=
∑

c∈CG∪0,t

[Pgct (β
+
gct − β−

gct )] +
∑

t

cgPg0t . (31)

Note that (31) does not include ω+
g1 and ω−

g1 because it is assumed that the ramp
rate constraints are inactive between the first period and the initial states. Observing
that complementary slackness from (7a) and (7b) requires

P +
gcN1gcu

∗
gtβ

+
gct = Pgctβ

+
gct (32)

P −
gcN1gcu

∗
gtβ

−
gct = Pgctβ

−
gct . (33)

With
∑

c∈CG∪0 P +
gcN1gcu

∗
gtβ

+
gct = u∗

gtB
+
gt and

∑
c∈CG∪0 P −

gcN1gcu
∗
gtβ

−
gct =

−u∗
gtB

−
gt , we can sum (32) and (33) over c and t to get

−
∑

c∈CG∪0,t

Pgctβ
−
gct +

∑

c∈CG∪0,t

Pgctβ
+
gct =

∑

t

ugtBgt =
∑

t∈TUP(g)

Bgt . (34)

Substituting (34) into (31) and using (29), we obtain
∑

c∈CT ∪0,t

Pg0t λn(g)ct +
∑

c∈CG,t

Pgctλn(g)ct +
∑

t∈SUP(g)

σgt +
∑

t∈SD(g)

ψg,t
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= −
∑

t∈SUP(g)

SUgt −
∑

t

cgPg0t . (35)

With further substitutions, we have
[ ∑

c∈CT ∪0,t

Pg0t λn(g)ct +
∑

c∈CG,t

Pgctλn(g)ct

]
(LMP Revenues)

+ γg (Uplift/profits)

= −
∑

t∈SUP(g)

SUgt (Startup costs)

−
∑

c∈CG∪0,t

ρccgPgct . (Operating costs) (36)

If σgt > 0, vgt = v∗
gt = 1 can be replaced by vgt ≤ v∗

gt = 1 without changing the
optimality properties of the linear program and γgt can be interpreted as the marginal
value of an increase in capacity and is called the generator scarcity rent in period t .
If σgt < 0, vgt = v∗

gt = 1 can be replaced by vgt ≥ v∗
gt = 1 without changing the op-

timality properties of the linear program. If ψgt > 0, wgt = w∗
gt = 1 can be replaced

by wgt ≤ w∗
gt = 1 without changing the optimality properties of the linear program.

If ψgt < 0, wgt = w∗
gt = 1 can be replaced by wgt ≥ w∗

gt = 1 without changing the
optimality properties of the linear program.

Note that
∑

g γg = ∑
gt [v∗

gtσgt + w∗
gtψgt ], which appears in the objective func-

tion. If γg > 0, γg is called the total linear scarcity rent over the time horizon for
generator g. If γg < 0, it can be interpreted as the marginal cost of enforcing the
binary constraints. Once a unit is turned on, it must stay on in order to satisfy the
minimum up time constraints. At times, a unit is forced to stay on and operate at
its lower bound when its variable cost is higher than the unit’s LMP. In essence, the
market could be more efficient if the constraints were not binary. Nevertheless, dis-
patching other generators would be even more expensive. The full incremental cost
of the binary constraint is calculated by fixing the binary variable to its opposite value
and resolving the MIP while the rest of the binary variables remain at their previous
fixed values. The difference in objective function value is the true incremental value
of the asset or the cost of forcing it into the optimal. Incremental cost analysis can
be a significant computational burden thereby making the marginal analysis from the
dual variables more valuable.

4.3 Analysis of transmission assets

Transmission assets exist to move power from lower valued locations to higher val-
ued locations; nevertheless, co-optimizing the network along with generation is still
beneficial. For k, c, and t , Table 2 shows the economic relationship between the nodal
price difference, λnct − λmct (n and m are the terminal nodes of k), the susceptance
value μkct , and the marginal values of flowgate capacity, η+

kct and η−
kct .

If the asset is not at its thermal capacity, η+
kct = η−

kct = 0 and the LMP difference is
the marginal value of susceptance, μkct . For any loop within the network, summing
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Table 2 Economic
interpretation of (20) λnct − λmct = Difference in nodal prices

+η+
kct

− η−
kct

Marginal value of another unit of capacity

+μkct Marginal value of another unit of susceptance

over the transmission elements (k) for loop L gives
∑

k∈L(λnct − λmct ) = 0 and (20)
becomes 0 = ∑

k∈L(η+
kct − η−

kct ) + ∑
k∈L(μkct ). If there are no capacity constrained

elements in loop L, η+
kct = η−

kct = μkct = 0 for all k in loop L.
To be included in the network, a transmission asset should increase the market

surplus as expressed in the objective function. To find the optimal topology, each net-
work must be a candidate for the optimal topology. Transmission switching, zkt , is
a club good. The dual objective function minimization includes

∑
k,t z

∗
kt δkt . Rewrit-

ing (21), we have
∑

c

P +
kcN1kcη

+
kct −

∑

c

P −
kcN1kcη

−
kct = δkt . (37)

Marginal value of increasing capacity Marginal value of switching k in t

From (37), it is evident that even though δkt is free to be positive or negative,
this dual variable will always be non-negative. Since the dual variables η−

kct and η+
kct

must be non-negative along with the fact that P +
kc is positive and P −

kc is negative, this
forces δkt to always be non-negative. This fact is easily explained. Equations (5a)
and (5b) are rewritten as (5) for zkt = 1 and N1kc = 1 within MSLP. Equations (5a)
and (5b) are never binding when zkt = 0 or N1kc = 0; thus, those constraints are not
included in the LP. As a result, zkt only affects transmission lines in (4a′) and (4b′).
δkt therefore has the economic interpretation of reflecting the value of additional line
capacity as zkt increases the upper bound and decreases the lower bound, which is
evident from (37).

Since for most flowgates, −P −
kc = P +

kc , the value of another unit of capacity
is available for both the upper and lower bounds. The marginal value of another
unit of thermal capacity is therefore ηkt = ∑

c(η
−
kct + η+

kct ). From (4a′) and (4b′),
complementary slackness requires P −

kczktN1kcη
−
kct = η−

kctPkct and P +
kczktN1kcη

+
kct =

η+
kctPkct . Multiplying (37) by z∗

kt , we have (38), which leads to (39)

∑

c

P +
kcz

∗
ktN1kcη

+
kct −

∑

c

P −
kcz

∗
ktN1kcη

−
kct = z∗

kt δkt (38)

∑

c

[(η+
kct − η−

kct )Pkct ] =
∑

c

[(λnct − λmct − μkct )Pkct ] = z∗
kt δkt . (39)

Note that (η+
kct −η−

kct )Pkct will never be negative. η+
kct −η−

kct can only be negative
when: (a) Pkct is at its lower bound, which is a negative number. Therefore, this
product is still nonnegative; (b) z∗

kt = 0 or N1kc = 0 and, therefore, Pkct = 0. Thus,
(39) is always non-negative, which is obvious since z∗

kt δkt is always non-negative.
In an analogous way to generation and load, if δkt > 0, zkt = z∗

kt can be replaced
by zkt ≤ z∗

kt without changing the optimality properties of the linear program. For any
line that is closed within the optimal solution, since (5) is rewritten into an equality
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constraint for zkt = 1 and N1kc = 1, this reduces the variable zkt to only affect the
capacity of the line and no longer reflects the ability to switch lines. Therefore, δkt is
the marginal value of capacity and is called the total transmission scarcity rent.

If (5a) and (5b) are not reduced to (5), then δkt will have a different meaning.
First, for this analysis we will assume that N1kc = 1. With (5a) and (5b), δkt will
be non-negative when z∗

kt = 0. Increasing the right hand side of (6′) will have two
main affects on the LP: (a) this will increase the upper bound and decrease the lower
bound on Pkct , thereby expanding the feasible set. (b) With (5a) and (5b) in the for-
mulation, these constraints are inactive when z∗

kt = 0; therefore, Kirchhoff’s laws are
not enforced. An increase in z∗

kt from zero to a small number will keep (5a) and (5b)
inactive; this translates into allowing a small flow on line k while being able to vi-
olate Kirchhoff’s laws, which also expands the feasible set. These two results will
only help the maximization formulation leading to δkt being non-negative whenever
z∗
kt = 0 if (5a) and (5b) are used instead of (5).

Though increasing the right hand side of (6′) will improve the upper and lower
bounds for line k, with (5a) and (5b), increasing z∗

kt above a value of one will create
an infeasible solution since Bk(θnct − θmct ) + Pkct will then have to be greater than
or equal to a positive number as well as less than or equal to a negative number.
Thus, δkt may be positive or negative when z∗

kt = 1. With (5), whenever z∗
kt = 1, it

was often the case that δkt was positive since by increasing z∗
kt the capacity of line k

would increase, which expands the feasible set of the LP. When using (5a) and (5b)
and when z∗

kt = 1, δkt is likely to have the opposite sign and a completely different
interpretation.

4.4 Phase angle

ACOPF formulations include constraints on the angle difference between two con-
nected buses; these constraints ensure angle stability. However, in a DCOPF model,
an angle difference constraint can be subsumed by the line flow capacity con-
straints, (4a) and (4b). Restricting the angle difference between connected buses,
i.e. θ− ≤ θnct − θmct ≤ θ+, indirectly places a bound on that line’s flow, Pkct since
Pkct = Bk(θnct − θmct ). Instead of including angle difference constraints, the power
flow constraint can contain the limit on angle difference. If the angle difference limit
places a tighter bound on the line’s flow than the thermal capacity constraints, then
the capacity limits can be adjusted to enforce the angle constraints. In the formulation
presented in Sect. 2, we employ limits on each bus angle (2) since it is not redundant
and it conveniently provides a lower bound on Mk .

The phase angle constraint at a node is a reliability constraint, since it protects
against a local (or system) outage. The objective function minimization includes
the following: the product of the phase angle limit and marginal values of rais-
ing or lowering the phase angle limit across all contingencies, nodes, and periods
θ+ ∑

nct (α
+
nct + α−

nct ).
Since the phase angle constraint is for system reliability, it can be classified as club

good. For each transmission asset k, the marginal relationship between the value of
the phase angle and susceptance, for each c, t , is described in Table 3.
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Table 3 Economic interpretation of (19)

∑
k∈k(n,.) Bkμkct Marginal value of increasing susceptance for k ∈ k(n, .)

−∑
k∈k(.,n) Bkμkct Marginal value of increasing susceptance for k ∈ k(., n)

+α+
nct − α−

nct = 0 Marginal value of a radian of phase angle

5 Load payment, generation rent, and congestion rent

Once the integer variables are fixed to their optimal values, the resulting program
is a linear program. Whether the integer variables are kept as variables and fixed to
their solution values, as in (11), (14′), and (15′), or treated as parameters, the set of
dual optimal solutions for the rest of the equations does not change. In this section,
the integer variables are treated as parameters and set at their solution values; load is
fixed as an input and represented by dn. To identify the terms representing the load
payment, the short term generation rent, and the congestion rent, we formulate the
primal and the corresponding dual. Since v∗

gt is an input parameter, the startup cost
term is not included in the primal objective. For these problems, (5a) and (5b) are not
reduced to (5) as is the case in Sect. 3

Primal: P = Maximize:
∑

gt

(−cgPg0t − cr+
g r+

g0t − cr−
g r−

g0t ) (1′)

s.t.

(2a), (2b), (8a), (9a), (17)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pg0t = dn ∀n, c ∈ 0 ∪ CT, t λnct (3a′)

∑

k(.,n)

Pkct −
∑

k(n,.)

Pkct +
∑

g(n)

Pgct = dn ∀n, c ∈ CG, t λnct (3b′)

Pkct ≤ P +
kcz

∗
ktN1kc ∀k, c, t η+

kct (4a′′)

−Pkct ≤ P +
kcz

∗
ktN1kc ∀k, c, t η−

kct (4b′′)

−Bk(θnct − θmct ) − Pkct ≤ Mk(2 − z∗
kt − N1kc) ∀k, c, t μ+

kct (5a′)

Bk(θnct − θmct ) + Pkct ≤ Mk(2 − z∗
kt − N1kc) ∀k, c, t μ−

kct (5b′)

Pgct ≤ P +
gcN1gcu

∗
gt ∀g, c ∈ 0 ∪ CG, t β+

gct (7a′)

−Pgct ≤ −P −
gcN1gcu

∗
gt ∀g, c ∈ 0 ∪ CG, t β−

gct (7b′)

r+
gct ≤ R+

gctu
∗
g,t−1 + Rs

gv
∗
gt ∀g, c ∈ 0 ∪ CG, t χ+

gct (8b′)

r−
gct ≤ R−

gtu
∗
g,t−1 ∀g, c ∈ 0 ∪ CG, t χ−

gct (9b′)
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Pgct − Pg0t ≤ Rc+
gt u∗

gt ∀g, c ∈ CG, t χc+
gct (10a′)

N1gcPg0t − N1gcPgct ≤ Rc−
gt u∗

gt ∀g, c ∈ CG, t χc−
gct (10b′)

Dual: π = Minimize: πD + πG + πK + π0 (40)

s.t.

α+
nct − α−

nct +
∑

k∈k(n,.)

Bk(μ
−
kct − μ+

kct ) −
∑

k∈k(.,n)

Bk(μ
−
kct − μ+

kct ) = 0

∀n, c, t θnct (19′)

−μ+
kct + μ−

kct + λmct − λnct + η+
kct − η−

kct = 0 ∀k, c, t Pkct (20′)

(22a), (22b), (26a)–(28)

μ+
kct ,μ

−
kct ≥ 0 ∀k, c, t. (28b)

With the following identities

πD =
∑

nct

dnλnct (41)

πG =
∑

g,c∈0∪CG,t

(P +
gcN1gcu

∗
gtβ

+
gct − P −

gcN1gcu
∗
gtβ

−
gct )

+
∑

g,c∈0∪CG,t

[(R+
gctu

∗
g,t−1 + Rs

gv
∗
gt )χ

+
gct + R−

gtu
∗
g,t−1χ

−
gct ]

+
∑

g,c∈CG,t

(Rc+
gt u∗

gtχ
c+
gct + Rc−

gt u∗
gtχ

c−
gct ) (42)

πK = θ+ ∑

nct

(α+
nct + α−

nct ) +
∑

kct

P +
kcz

∗
ktN1kc(η

+
kct + η−

kct ) (43)

π0 =
∑

kct

[Mk(2 − z∗
kt − N1kc)(μ

+
kct + μ−

kct )]. (44)

First, the load payment is easy to identify as (41). Next, let us assume that all
ramp rates are inactive. The generation rent is:

∑
g,c∈0∪CG,t (P

+
gcN1gcu

∗
gtβ

+
gct −

P −
gcN1gcu

∗
gtβ

−
gct ). Taking (22a) and multiplying by Pg0t and then using (32) and

(33) as a substitution, we can get:

Pg0t

∑

c∈CT ∪0

(λn(g)ct ) = −P +
gcN1g0u

∗
gtβ

+
g0t + P −

gcN1g0u
∗
gtβ

−
g0t − cgPg0t . (45)

Doing the same for (22b), we get

Pgctλn(g)ct = −P +
gcN1gcu

∗
gtβ

+
gct + P −

gcN1gcu
∗
gtβ

−
gct . (46)
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Adding (45) and (46) and summing over g, c, and t , we get

−
∑

gt

[ ∑

c∈CG

(Pgctλn(g)ct ) + Pg0t

( ∑

c∈CT ∪0

(λn(g)ct ) + cg

)]

=
∑

g,c∈0∪CG,t

(P +
gcN1gcu

∗
gtβ

+
gct − P −

gcN1gcu
∗
gtβ

−
gct ). (47)

Equation (47) then shows that, when the ramp rate constraints are inactive, the
generation rent is identified by the term in the dual’s objective, which is identified by
the right hand side of (47). Note that the left hand side of (47) actually has the negative
generator payments plus cost inside the brackets. Based on the formulation of the
primal, the λn(g)ct , i.e. the LMP, is generally negative as an increase in consumption
will decrease the objective.

When the ramp rates are active, without loss of generality we will assume that
the unit is not operating at its lower or upper bounds; otherwise, we have redundant
constraints and then we will use (47) and (50) to identify the generation rent.

Suppose only the ramp up rate (8a) is active. We know ω+
gct = χ+

gct and
(R+

gctu
∗
g,t−1 + Rs

gv
∗
gt )χ

+
gct = r+

gctχ
+
gct = ω+

gct (Pgct − Pgc,t−1). This then allows us
to have

∑

g,c∈0∪CG,t

[(R+
gctu

∗
g,t−1 + Rs

gv
∗
gt )χ

+
gct ]

=
∑

g,c∈0∪CG,t

(Pgct − Pgc,t−1)ω
+
gct

=
∑

g,c∈0∪CG,t

[Pgct (ω
+
gct − ω+

gc,t+1)].

Multiplying (22a) by Pg0t and (22b) by Pgct , we get:

Pg0t

∑

c∈CT ∪0

(λn(g)ct ) + Pg0t (ω
+
g0t − ω+

g0,t+1) = −Pg0t cg (48a)

∑

c∈CG

[Pgctλn(g)ct + Pgct (ω
+
gct − ω+

gc,t+1)] = 0. (48b)

Summing over g and t we get
[∑

g,t

Pg0t

( ∑

c∈CT ∪0

λn(g)ct

)
+ Pg0t cg +

∑

c∈CG

Pgctλn(g)ct

]

+
∑

g,c∈0∪CG,t

Pgct (ω
+
gct − ω+

gc,t+1) = 0. (49)

Equation (49) then becomes:

−
∑

gt

[ ∑

c∈CG

(Pgctλn(g)ct ) + Pg0t

( ∑

c∈CT ∪0

(λn(g)ct ) + cg

)]
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=
∑

g,c∈0∪CG,t

[(R+
gctu

∗
g,t−1 + Rs

gv
∗
gt )χ

+
gct ]. (50)

For the situation where (8a) is active with (7a′) and (7b′) inactive, the generation
rent is defined as the right hand side of (50). If (8a) and (7a′) or (7b′) are active, we
have redundant constraints. At that time, the right hand sides of (47) and (50) would
identify the generation rent. This same process can be repeated for (9a) being active
along with (10a′) or (10b′). With this process, the generation rent is defined by (42).

We now have identified the load payment and the generation rent. Since all inte-
ger variables are treated as parameters instead of fixed variables, we know that the
primal objective contains only the total generation operational cost, i.e. startup and
shutdown costs are not apart of the objective at this time. Thus, we know the dual ob-
jective is listed as the load payment, which is non-positive with this formulation, plus
the generation rent plus the congestion rent, which are surpluses and therefore non-
negative with this formulation. Thus, the congestion rent is equal to the remaining
terms of the dual objective: θ+ ∑

nct (α
+
nct + α−

nct )+ ∑
kct P

+
kcz

∗
ktN1kc(η

+
kct + η−

kct )+∑
kct [Mk(2 − z∗

kt − N1kc)(μ
+
kct + μ−

kct )], which we will show to be the case. First,
note that (5a) and (5b) are always inactive constraints whenever z∗

kt = 0 or N1kc = 0,
which results in μ+

kct = μ−
kct = 0. When that is not the case, 2 − z∗

kt −N1kc = 0. This
tells us that

∑
kct [Mk(2 − z∗

kt − N1kc)(μ
+
kct + μ−

kct )] = 0 always at optimality, i.e.
(44) is always zero at optimality. Multiplying (19′) by θnct to get: θnct (α

+
nct −α−

nct )+∑
k∈k(n,.)[θnctBk(μ

−
kct − μ+

kct )] − ∑
k∈k(.,n)[θnctBk(μ

−
kct − μ+

kct )] = 0.
Using complementary slackness from (2a) and (2b):

θ+(α+
nct + α−

nct ) +
∑

k∈k(n,.)

θnctBk(μ
−
kct − μ+

kct ) −
∑

k∈k(.,n)

θnctBk(μ
−
kct − μ+

kct ) = 0.

If we sum over n, c, and t , we get:

∑

nct

[
θ+(α+

nct + α−
nct ) +

∑

k∈k(n,.)

θnctBk(μ
−
kct − μ+

kct ) −
∑

k∈k(.,n)

θnctBk(μ
−
kct − μ+

kct )

]

=
∑

nct

[θ+(α+
nct + α−

nct )] +
∑

kct

(θnct − θmct )Bk(μ
−
kct − μ+

kct ) = 0

=
∑

nct

[θ+(α+
nct + α−

nct )] −
∑

kct

Pkct (μ
−
kct − μ+

kct ) = 0.

Thus:
∑

nct

[θ+(α+
nct + α−

nct )] =
∑

kct

Pkct (μ
−
kct − μ+

kct ). (51)

Next, we take (20′), multiply by Pkct , rearrange the equation, and sum over k, c,
and t to get:

−
∑

kct

Pkct (λmct − λnct ) =
∑

kct

Pkct (−μ+
kct + μ−

kct + η+
kct − η−

kct ). (52a)
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It can easily be seen that the left hand side of (52a) is the congestion rent identity.
With (51), (52a) becomes:

−
∑

kct

Pkct (λmct − λnct ) =
∑

nct

[θ+(α+
nct + α−

nct )] +
∑

kct

Pkct (η
+
kct − η−

kct ). (52b)

Using the complementary slackness conditions from (4a′′) and (4b′′), we have
(52c) below, which states that the congestion rent is defined by (43)

−
∑

kct

Pkct (λmct − λnct )

=
∑

nct

[θ+(α+
nct + α−

nct )] +
∑

kct

P +
kcz

∗
ktN1kc(η

+
kct + η−

kct ). (52c)

To summarize, the following identities hold
Load Payment:

∑

nct

dnλnct

Generation Rent:
∑

g,c∈0∪CG,t

(P +
gcN1gcu

∗
gtβ

+
gct − P −

gcN1gcu
∗
gtβ

−
gct )

+
∑

g,c∈0∪CG,t

[(R+
gctu

∗
g,t−1 + Rs

gv
∗
gt )χ

+
gct + R−

gtu
∗
g,t−1χ

−
gct ]

+
∑

g,c∈CG,t

(Rc+
gt u∗

gtχ
c+
gct + Rc−

gt u∗
gtχ

c−
gct ).

Congestion Rent:

θ+ ∑

nct

(α+
nct + α−

nct ) +
∑

kct

P +
kcz

∗
ktN1kc(η

+
kct + η−

kct ).

6 Computational results

We also examine the economics of the transmission switching problem in a whole-
sale electricity market, through analysis of the computational results. We solved the
IEEE RTS96 unit commitment transmission switching problem over a 24 hour pe-
riod using the formulation presented in [17]. In RTS96, load is fixed, i.e., P −

gc = P +
gc

and cg = 0, ∀g ∈ D. The primal problem maximizes the surplus for load and genera-
tion bids subject to system operating constraints. Since load is perfectly inelastic, the
computation reduces to a minimization of the dispatch cost. The lowest dispatch cost
found is $3,129,778, [17].
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We analyze the Locational Marginal Prices (LMPs), as well as marginal values
associated with generator limits and transmission constraints. Additionally, we dis-
cuss the generator short term profits and the need for uplift, as well as the marginal
values on the switching decision variables. Since we present a full N-1 formulation,
a number of the marginal values associated with locations, generators, or elements
in a given time period must be aggregated over all contingency constraints to show
the full marginal impact on surplus, as discussed throughout this paper. Prices are ex-
amined by presenting their locational and temporal variation, as well as the variation
across contingency constraints. We analyze the frequency of the various marginal
relaxation values in this problem, and describe the frequency by building empirical
distribution functions (EDF) of the appropriate combinations of dual variables. The
EDF describes the proportion of the data that falls below a particular value. Dual vari-
ables for this problem were computed from the solution to the linear program (LP)
with the MIP binary variables fixed at their values in the best solution found.

6.1 Aggregate LMPs

We define the aggregate LMP (ALMP) as λnt = ∑
c λnct . In other words, it is the sum

of the marginal cost of enforcing the power balance constraints across all N-1 con-
tingency states plus the marginal cost for the no contingency state. The formulation
presented in Sect. 2 starts enough generators as well as chooses appropriate genera-
tor dispatch values in order to survive any one generator or transmission contingency.
The individual LMP for a particular bus-state-hour combination is λnct , which is the
dual variable on the power balance constraint, (3a) and (3b). For this specific test
case, once the integer variables are fixed to their solution values, the generator con-
tingency constraints and variables are only linked to the objective function by ramp
rate constraints. Since these ramp rate constraints are inactive and since the cost of
ramping in a contingency is zero for this test case, λnct = 0 ∀c ∈ CG.

Figure 1 shows the maximum and minimum aggregate LMPs by hour. Periods 3–5
have the same ALMP across all buses. These periods all have low load levels.

Figure 2 plots the aggregate LMPs across bus and hour. ALMPs tend to fall when
demand is falling and after units are committed even though demand may be increas-
ing. For example, bus 73 experiences an ALMP drop of 88% (from $13.02 to $1.55)
from hour 7 to 8, while hourly demand increases from 74% to 86% of daily peak
load.

For c ∈ 0 ∪ CT , the individual LMPs, λnct , vary considerably. Table 4 gives a
summary of the top 10 ALMPs, along with the range of the individual λnct values
across all c ∈ 0 ∪ CT . The individual λnct values provide useful information about
enforcing constraints in individual contingencies, but they do not represent system
marginal costs. For example, at bus 13 in hour 11, the marginal cost of power bal-
ance under the no contingency state is $0.00/MWh. However, note that this does not
reflect the true cost to the system to deliver another MW unit to bus 13 in hour 11. If
bus 13’s load is to increase by another MW for hour 11, then all contingency states
must also adjust their load level since the load level will be the same over all con-
tingency states. The true marginal cost to the system to deliver another MW to a bus
is therefore based on the ALMP, not any of the individual LMPs. For n = 13 and
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Fig. 1 Maximum and minimum ALMP by hour

Fig. 2 ALMP by hour and bus

t = 11, the individual LMP λnct for transmission contingency c = 21 is $115.45; the
individual LMP for transmission contingency c = 117 is −$0.76. The ALMP at bus
13 in hour 11 is $156.49.

The 10 largest ALMPs vary from $156/MWh to $107/MWh and all are higher
than the most expensive generator dispatched at $101/MWh. They occur at various
buses and time periods without a simple pattern except the obvious result that ALMPs
are generally higher at buses with less generation than load. The individual LMPs
range from −$4.19 at bus 61 in hour 10 under transmission contingency 116 to $115
at bus 13 in hour 11 under transmission contingency 21. Although generators and
loads would have no concern other than the ALMP, extreme values of the individual
LMPs have economic and reliability interpretations. An individual LMP with a high
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Table 4 10 Largest ALMPs λnt

n t λnt λn0t Min LMP, (state c):
minc∈CT {λnct }, (argmincλnct )

Max LMP, (state c):
maxc∈CT {λnct }, (argmaxcλnct )

13 11 156.49 0.00 −0.76 (117) 115.45 (21)

31 8 135.87 0.00 −0.67 (3) 73.78 (116)

31 23 133.03 0.03 −0.01 (40) 100.24 (53)

61 10 129.45 0.22 −4.19 (116) 102.86 (97)

61 9 129.31 0.04 −1.67 (116) 104.58 (97)

12 11 124.68 0.00 −0.77 (117) 83.48 (21)

38 15 123.04 0.00 −0.36 (70) 43.44 (66)

32 8 117.81 0.00 −0.67 (3) 55.72 (116)

32 23 112.52 0.03 −0.01 (40) 80.25 (53)

38 22 107.28 0.01 −0.64 (117) 40.08 (66)

Fig. 3 Range of individual LMPs, λnct vs. c ∈ CT

value indicates a contingency constraint that the system pays a high dispatch cost
to enforce. Figure 3 illustrates the range of individual LMPs against c ∈ CT , taken
across all hours and buses. It is seen that the majority of transmission contingencies
have very little impact on LMPs, having values at or near 0 across all hours and buses.
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Table 5 10 Smallest ALMPs λnt

n t λnt λn0t Minc∈CT {λnct }, (argmincλnct ) Maxc∈CT {λnct }, (argmaxcλnct )

70 21 0.00 0.11 −67.75 (116) 13.26 (115)

70 16 0.00 0.26 −71.92 (116) 12.63 (115)

70 13 0.00 0.16 −68.16 (116) 13.28 (115)

70 12 0.00 0.16 −68.16 (16) 13.28 (115)

70 14 0.00 0.16 −71.43 (116) 14.54 (117)

70 8 0.00 0.00 −72.63 (116) 19.53 (115)

46 23 0.00 0.03 −18.46 (53) 3.14 (60)

73 16 0.06 0.26 −37.32 (116) 14.98 (115)

73 21 1.49 0.11 −32.72 (116) 16.61 (115)

73 8 1.56 0.00 −40.56 (116) 22.52 (115)

However, the enforcement of certain transmission contingencies creates a wide range
of individual LMPs. For instance, the enforcement of transmission contingency 21
results in LMPs ranging from −$23.69 at bus 23 in hour 11, to $115.45 at bus 22 in
hour 24. The smallest ALMPs occur at various buses and time periods (see Table 5)
without a simple pattern except the ALMPs at bus 70, a hydro location, are zero for
several periods. Most buses with low ALMPs are without load.

6.2 Generators

Of the 99 generators in the RTS96 system, 51 make short run profits ranging from
$358,546 to $26,121, and 19 receive uplift payments totaling $157,874 or about 4%
of total costs; 29 generators are not dispatched. The optimization is indifferent to
choosing between generating units at a single node having the same characteristics.
In hours 8 and 21, there are four hydro units with zero cost at bus 70 that are collec-
tively operating at less than capacity. Bus 13 has three Oil/Steam generators each with
variables costs of $80.6/MWh, a high startup cost ($6510), and minimum run times
of 12 hours. The ALMP rises to $156.5/MWh in hour 11 but the units are uneco-
nomic due to the startup costs and minimum run time. When operating at its upper
bound, a generator may have a scarcity value. Positive scarcity values are as high
as $125/MWh. When operating at its lower bound, a generator may have a negative
scarcity value or opportunity cost. Negative scarcity values are as low as −$85/MWh.
Most generators operate at their upper or lower bounds and only a few operate in be-
tween; this is a result due to using linear generator costs. Figure 4 displays the empir-
ical distribution of the marginal values of reducing the minimum run level or increas-
ing the maximum output in all generator-hour combinations, i.e.

∑
c(β

+
gct − β−

gct );
β+

gct and β−
gct are the dual variables of (7a) and (7b) respectively in Sect. 3.

The scarcity rent, or short term profit, is calculated as revenue from ALMPs, less
production costs, less startup costs. The calculation includes the generator’s or load’s
value as reserves in a contingency. Figure 5 presents the empirical distribution of gen-
erator scarcity rents. The generators that receive uplift payments are listed in Table 6
along with their uplift payments. Uplift payments can be caused by integer based
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Fig. 4 Empirical distribution—value of an additional unit of capacity of lower minimum run level for
generators

Fig. 5 Empirical distribution of scarcity rents (short term profits from LMPs)

constraints, such as minimum run levels and minimum up/down time constraints, as
well as startup costs.
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Table 6 Generators paid uplift

g LMP revenue Variable bid cost Startup bid cost LMP profits

45 231168 244332 0 −31164

46 169584 198644 0 −29061

78 226078 237376 0 −11298

75 96887 107951 0 −11064

9 20607 25495 4754 −9642

11 18287 23100 4754 −9567

10 16603 21000 4754 −9151

80 88328 90247 6510 −8429

12 105389 106795 6510 −7916

42 130514 136592 0 −6078

43 91587 91587 4754 −4754

44 44183 44183 4754 −4754

76 37457 37457 4754 −4754

77 29400 29400 4754 −4754

52 1618 2661 571 −1614

49 571 968 571 −968

50 571 968 571 −968

51 571 968 571 −968

53 571 968 571 −968

6.3 Transmission

We examine the transmission lines in a similar manner. Transmission lines have three
constraints within the DCOPF problem: capacity in both directions and a line flow
constraint, which contains the susceptance of the line and the phase angle at each
end of the line. The flow capacity in one direction is the negative of the flow capac-
ity in the other direction. Consequently, a relaxation in either direction will expand
the feasible region and, therefore, may increase the surplus. Since η−

kct , η+
kct ≥ 0, the

marginal relaxation value in the negative direction is −η−
kct . In this problem very few

transmission branches are utilized at capacity; this is a result of enforcing all N-1 con-
tingencies. Figure 6 shows the marginal value of transmission constraint relaxation,
either increasing the upper (positive) bound or reducing the lower (negative) bound,
ηkt = ∑

c ηkct = ∑
c(−η−

kct + η+
kct ). For over 95% of the transmission constraint-

hours, the marginal transmission capacity values are zero.
This optimal transmission switching with unit commitment formulation problem

enforces all N-1 contingencies and transmission constraints have emergency thermal
ratings to allow for additional utilization of transmission capacity during a contin-
gency event. Very few transmission-contingency-hour combinations require a utiliza-
tion of transmission capacity at or above the normal transmission line thermal rating.

The marginal susceptance value, μkct is the value of the marginal change in Bk

in contingency c and period t . This marginal susceptance value is relevant when
the susceptance is variable, e.g. for phase shifters or transformers. Let the aggregate
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Fig. 6 Empirical distribution of transmission line relaxation values in single periods

Table 7 Largest and smallest marginal susceptance values

10 most negative marginal susceptance values 10 most positive marginal susceptance values

Marginal value t k Marginal value t k

−57.66 11 22 54.25 23 52

−42.83 10 98 25.89 8 52

−42.70 9 98 25.42 11 17

−35.12 21 115 23.51 21 116

−34.97 14 115 23.16 10 93

−34.28 16 115 23.10 9 93

−32.97 12 115 22.96 8 53

−32.97 13 115 22.27 11 7

−31.81 11 20 22.08 22 97

−30.55 16 97 21.71 14 116

marginal susceptance value for a given transmission line in a given hour be μkt =∑
c μkct .
The 10 largest transmission line-hour marginal susceptance values (in either di-

rection) are presented in Table 7. The empirical distribution of these marginal sus-
ceptance values by transmission line and hour is presented in Fig. 7.

After the MIP is solved, the integer variables are set to their solution values. This
creates an LP with the constraint zkt = z∗

kt . The dual variable of this constraint is, δkt ,
which is the marginal value of enforcing the binary transmission switching constraint.
Section 4.3 discusses how the interpretation of this value varies based on the chosen
LP formulation. The following results are based on an LP formulation with all line
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Fig. 7 Empirical distribution of marginal susceptance values in single periods

variables and constraints included no matter if the line is opened or closed, i.e. we do
not reduce (5a) and (5b) to (5).

In NM1MIP, variable zkt only affects (4a)–(6). When examining only its affect
on (4a) and (4b), if you increase z∗

kt you are relaxing the original problem, i.e. by
increasing z∗

kt in (6′) you are increasing the upper bounds in (4a) and (4b). If this was
the only impact that z∗

kt has on the problem, then δkt must then be non-negative even
though it is a dual variable for an equality constraint. However, z∗

kt also affects (5a)
and (5b). When z∗

kt = 0, we know that (5a) and (5b) are not binding as the value
of Mk is chosen to ensure this is the case when z∗

kt = 0. Therefore, increasing the
value of z∗

kt when z∗
kt = 0 does not affect (5a) and (5b) since the constraints are

inactive and would remain inactive for minor increases in z∗
kt . Therefore, we know

that δkt will be non-negative when z∗
kt = 0. When z∗

kt = 1, (5a) and (5b) are active
constraints so the same conclusion does not hold. In fact, for this RTS96 test case,
when z∗

kt = 1 the δkt variables are all negative. When z∗
kt is increased beyond one, this

causes infeasibility through (5a) and (5b). This, however, does not guarantee that δkt

must be non-positive when z∗
kt = 1; rather, the results show that it is possible for δkt to

be negative. For further discussion on the economic interpretation of δkt , refer back to
Sect. 4.3. The distribution of δkt is presented in Fig. 8. Of course, the full incremental
value of the asset is obtained by forcing z∗

kt to its opposite value and resolving the
MIP. The difference in objective function value is then the true incremental value of
the asset or the cost of forcing it into the optimal solution.

7 Conclusion

In this paper, we analyzed the multi-period N-1-reliable unit commitment and trans-
mission switching MIP problem by fixing all integer variables to their optimal values
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Fig. 8 Empirical distribution marginal transmission switching values

and, thus, forming an LP and its dual; we then presented economic interpretations
and examined the sensitivity of this problem. The combination of duality theory and
computational results of the marginal system costs of the RTS96 system unit com-
mitment problem with N-1 reliability and transmission switching has been presented.
This paper presents empirical distributions of the duality concepts of the transmis-
sion switching problem. These distributions describe the frequency by which mar-
ginal values occur in the solution. This information is a complement to the theory,
and is intended to provide further insight into the economics of the formulation.

Sensitivity analysis can help to find relaxations of soft constraints and their in-
teraction with reliability constraints that are also soft. Such control and flexibility
can be categorized as a “smart grid application” where there is a co-optimization of
both generator or loads and transmission topology. Empirical distributions of binding
transmission constraint dual variables (presumably over a much longer period than 24
hours) can be used to predict relaxation costs that will lead to infrequent relaxations
that can improve market efficiency. These predictions could be used in conjunction
with analytical computation of contingency probabilities, and analysis of conductor
properties to create relaxation costs that allow thermal constraint relaxations for lim-
ited periods of time within reliability rules, while maintaining an acceptable expected
loss of life on conductors. Such a methodology could lead to thermal overload pric-
ing. RTOs today do relax transmission line thermal ratings for a predefined price; for
instance, $4,000/MWh is used in NYISO, $5,000/MWh in CAISO, and $2,000/MW
in SPP [23–25]. An improved methodology for determining these relaxation prices,
which analytically attempts to balance the tradeoffs between solution feasibility, eco-
nomics, and system reliability, could be an important subject for further research.

The probability of an individual contingency is very low and the requirement of
N-1 is to guarantee load can be served when there is any single contingency. The em-
phasis in this paper is on minimizing the current forward dispatch cost and surviving
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the contingencies. Essentially, the objective does not include the expected re-dispatch
cost that is incurred once or if there is a contingency. Extending this research to in-
vestigate the costs associated with probabilistic contingency events due to random
generator failures may provide insight into possible settlement mechanisms where
stochastic events are considered. The operational costs in each contingency state
could be considered in a formulation that maximizes expected surplus if the prob-
ability distribution of contingencies is correctly defined. Distributions that account
for uncertainty in load and the variable output of renewable resources could also be
included. This is especially relevant for Day Ahead Markets.

Better modeling for both reliability and market efficiency increases societal bene-
fits. Optimal transmission switching and intelligent constraint relaxations that appro-
priately factor in risks associated with expected line loss of life due to low probability
overloads, while allowing for an increase in total surplus, could eventually be part of
a smarter and more flexible electric grid. Hardware upgrades to enable these concepts
are relatively cheap, and more efficient software has very low marginal costs, most of
which are maintenance costs. In this paper we have demonstrated, through compu-
tational results and sensitivity analysis, an economic investigation of these modeling
enhancements on the IEEE 73-bus test system (RTS96) over 24 hours. A model of
this size provides useful insights, but larger models would prove to be even more in-
formative. Further savings may be obtained if thermal constraint relaxations with an
associated cost were incorporated into the overall MIP formulation, thereby allowing
relaxations to affect the unit commitment and transmission switching decisions. Fur-
ther analysis could be performed by extending the formulation and analysis methods
presented in these two papers onto larger models representative of actual RTO/ISO
markets. Such analysis could potentially lead to policy recommendations relating to
transmission switching, relaxation of constraints, and relaxation costs in RTO/ISO
markets.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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