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Abstract—We consider the Alternating Current Optimal Power
Flow (ACOPF) problem, formulated as a nonconvex Quadrat-
ically-Constrained Quadratic Program (QCQP) with complex
variables. ACOPF may be solved to global optimality with a
semidefinite programming (SDP) relaxation in cases where its
QCQP formulation attains zero duality gap. However, when there
is positive duality gap, no optimal solution to the SDP relaxation
is feasible for ACOPF. One way to find a global optimum is to
partition the problem using a spatial branch-and-bound method.
Tightening upper and lower variable bounds can improve solution
times in spatial branching by potentially reducing the number of
partitions needed. We propose special-purpose closed-form bound
tightening methods to tighten limits on nodal powers, line flows,
phase angle differences, and voltage magnitudes. Computational
experiments are conducted using a spatial branch-and-cut solver.
We construct variants of IEEE test cases with high duality gaps to
demonstrate the effectiveness of the bound tightening procedures.

Index Terms—Optimal power flow, conic optimization, spatial
branch and bound, bound tightening.

NOMENCLATURE

Sets and Indices

Set of nodes
Nodes,
Set of nodes connected to

Variables

Complex voltage
Voltage angle
Angle between bus and
Nodal real and reactive power, respectively
Net real and reactive power flow from to ,
respectively
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Parameters
Nodal admittance matrix
Nodal conductance and susceptance matrix,
respectively
Vectors of real and reactive load, respectively
Nodal real power limits
Nodal reactive power limits
Voltage magnitude limits
Limits on
Objective coefficients for nodal real power

Operators
Conjugate transpose, i.e., the transpose with
entry-wise complex conjugates
Element-wise square
A vector containing diagonal elements of a
matrix
Real and imaginary components, respectively

I. INTRODUCTION

A N important challenge in power systems optimization is
to accurately and tractably model electricity in alternating

current (AC) networks. Multi-period problems employ coarser
approximations, where transmission losses are eschewed and
power flows are linearized so that efficient algorithms can
be employed. For certain purposes linearization can perform
adequately (see [1]–[3]). However, the inaccuracies that stem
from these approximations can result in suboptimal and even
infeasible solutions, which may be unacceptable in other cases.
It is unclear how much room for improvement may be made by
better accounting for AC power flow. However, as Mixed-In-
teger Programming software for Unit Commitment has shown,
even small improvements in operations can have significant
overall impact [4].
In this paper we consider a single-period scheduling problem

that incorporates steady-state AC power, the Alternating
Current Optimal Power Flow (ACOPF). A standard ACOPF
problem is to find a minimum cost dispatch of generation
and transmission assets to supply load, subject to engineering
constraints. Since the AC power flow equations are nonlinear,
a common approach to solving ACOPF is through iterative
Newton-type solvers (e.g., [5]), which can only guarantee local
optimality. Linearization approaches (see [6]) suffer from the
same problems. Therefore, in terms of global optimality, the
performance of ACOPF methods used in practice remain an
open question. The feasible set of ACOPF is nonconvex [7],
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and it is NP-hard to solve [8], [9]. Even finding a feasible
solution to ACOPF for radial instances with fixed voltages is
NP-hard [10].
Interest in conic optimization techniques for ACOPF is

largely due to multiple reports of zero duality gap for various
IEEE power system test cases (see [9], [11], [12]). Zero duality
gap means that the optimal value of a problem instance coin-
cides with that of the corresponding dual. Throughout the paper
we will be referring to the Lagrangian dual of the ACOPF
problem formulated as a nonconvex Quadratically-Constrained
Quadratic Program (QCQP). The Lagrangian dual of any
QCQP can be solved with semidefinite programming (SDP).
SDP is a type of conic optimization problem, which is a useful
paradigm for global optimization as it guarantees that any local
optimum is also globally optimal. Conic optimization can be
done with robust methods that can automatically find initial
starting points, and have polynomial-time convergence towards
the global optimal solution. Even when duality gap exists for
ACOPF, by property of weak duality conic relaxations provide
a lower bound on the global optimal value, which can be used
to judge the quality of candidate feasible solutions. Thus,
unlike ACOPF algorithms used in practice, conic optimization
can prove a problem is infeasible, or prove that a solution is a
global optimum.
For certain network topologies, simple formulations of

ACOPF can be solved exactly using a conic relaxation [9],
[13], [14]. However, numerous examples demonstrate that zero
duality gap cannot be guaranteed in general (e.g., [15]–[18]).
In cases with positive duality gap, more advanced techniques
must be developed to search for global optimal solutions, such
as higher moment relaxations [19], [20]. The method of higher
moment relaxations involves solving a sequence of convex
problems that grow rapidly in problem size. Several papers
have considered an alternative method to global optimization,
a spatial branch-and-bound algorithm (see [11], [17], [21]).
These algorithms all use lifted relaxations that are computation-
ally expensive to solve for large instances. Therefore practical
global optimization for ACOPF remains an active research
area.
This paper provides computationally efficient methods for

bound tightening, namely the tightening of voltage magnitude,
line flow, and phase angle limits. Bound tightening reduces the
domain of a problem by removing infeasible regions. This can
improve the quality of a relaxation while maintaining its va-
lidity; this is true of any relaxation, whether SDP, SOCP, or
LP-based (e.g., [22], [23]). For computational experiments we
have applied bound tightening to the spatial branch-and-cut al-
gorithm introduced in Chen, Atamtürk, and Oren [24]. Although
domain reduction has a natural application to global optimiza-
tion as it can tighten relaxations, it can be applied elsewhere.
For instance, bound tightening could improve the warm-start
for an iterative optimization method, or it may complement the
low-rank SDP-based heuristic introduced in Sojoudi, Madani
and Lavaei [25]. In addition to the bound tightening methods,
we also construct modified IEEE test cases with large duality
gap that may pose a challenge to global optimization algorithms.
Computational tests using a complex QCQP solver (see [24])
show that bound tightening improves the solver's convergence
rate on these hard problems. The instances are made publicly
available at https://sites.google.com/site/cchenresearch/.

The rest of the paper is organized as follows: Section II de-
scribes ACOPF and a SDP relaxation for it; Section III in-
troduces new ACOPF instances with large duality gap;
Section IV details the bound tightening procedures;
Section V contains computational results; Section VI concludes
the paper.

II. FORMULATIONS

We present a basic optimal power flow formulation:

(1a)
(1b)
(1c)
(1d)

(1e)

The power flow equations are modeled with constraint
(1a), and nodal and generation power limits with constraints
(1b) and (1c). Constraint (1d) enforces voltage magni-
tude limits, and constraint (1e) enforces bus angle differ-
ence limits. Bus angle differences can be recovered with

. Note that for nota-
tional brevity we have left out line limits, but three types are
explicitly considered in Section IV.
Following Lavaei and Low [9], we consider the following

lifted SDP relaxation:

(2a)
(2b)
(2c)
(2d)
(2e)
(2f)
(2g)

The decision vector has been replaced by the Hermitian
decision matrix , and a rank-one condition on
has been relaxed.

III. NEW INSTANCES WITH LARGE DUALITY GAP

First we provide some intuition regarding the construction of
cases with duality gap. Provided ACOPF is feasible, RACOPF
has the same optimal cost if and only if there exists an optimal
solution to RACOPF with rank 1. We use an alternative condi-
tion from Chen, Atamtürk, and Oren [24]:
Proposition 1: For a nonzero Hermitian positive

semidefinite matrix has rank one iff all its 2 2 prin-
cipal minor determinants are zero.

Proof: Suppose has rank . Since X is Hermitian
it has an nonzero principal minor. Since X is positive
semidefinite this principal minor corresponds to a positive defi-
nite submatrix. As , this implies there exists a 2 2
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strictly positive principal minor. Now suppose instead that
has a strictly positive 2 2 principal minor. Then contains a
rank-two principal submatrix and thus .
Suppose we are given an ACOPF-optimal solution with volt-

ages and powers . Consider its corresponding rank-one
optimal solution in lifted space . From Proposi-
tion 1, we have that the principal minor condition

holds across all bus pairs. The positive semidefinite
constraint (2g) enforces , so a gap
between RACOPF and ACOPF can only occur if for each op-
timal solution to RACOPF there exists at least one pair
such that .
If there is a pair where decreasing either or

improves the objective value, then there is a gap between the op-
timal values of RACOPF and ACOPF. A decrease in the magni-
tude of has the equivalent effect of a decrease in the mag-
nitude of . Note that this is a nonphysical effect if the rank
condition is lost; for instance this could lead to an increase in
power factor between and without affecting flows else-
where. Decreasing decreases real and reactive power at
both buses by decreasing real and reactive power flows in both
directions across the connecting lines.
Let us now consider conditions where decreasing the magni-

tudes of or (and adjusting nodal powers accordingly)
could improve the objective function. Since decreasing
reduces the power transfer between and , then it may be
desirable when line congestion is problematic, or when transfer
across a lossy transmission line is otherwise unavoidable. De-
creasing increases losses, which would allow an other-
wise unmanageable amount of power to be produced by dissi-
pating flows in an unphysical manner. Using this intuition, we
construct new cases with large duality gap by applying simple
changes to IEEE test cases. We name these cases as follows:

, and , with number indicating the
number of buses and letter indicating the type of change. To the
best of our knowledge, the use of negative costs and alternative
types of line limits is a novelty in the construction of cases with
duality gap. Known instances in the literature use methods in-
cluding the creation of excess power by changing nodal genera-
tion/load limits [17], [18], [20], [21], restricting apparent power
flow [15], [20], [21], and changing voltage magnitude limits
[18], [20].
Negative Costs and : We use the 9-bus instance

in MATPOWER and change the cost coefficients by setting all
quadratic coefficients to be zero, and reversing the sign of
the linear real power cost coefficients on certain generators,
making these costs negative. Negative cost coefficients can
model opportunity costs such as start-up and shut-down cost
avoidance, ramping considerations (e.g., anticipating high
demand in the next period), feed-in-tariffs from renewable
resources, and the value of absorbing excess generation from an
import bus. Thus the cost coefficients in these cases represent
bids rather than marginal generation costs. For this small 9-bus
network we have constructed extreme cases: in we give
negative costs to generators 1 and 3, and in we do so for
all three generators.
Congestion: and : We modified the IEEE 14-bus

case by applying a a universal line limit across all lines, ap-
plying either real power or apparent power limits.
For we apply a per-unit limit of 0.23, and for 14S a per-unit

limit of 0.24. These produce severe amounts of congestion, as
further lowering the limit on either case by 0.01 resulted in in-
feasibility.
Congestion and Negative Costs: : We modified the

118-bus IEEE case in order to construct a relatively large case
withmodest duality gap. The first (in lexicographic order) 7 gen-
erators were set to have negative linear costs, and all quadratic
cost coefficients were set to zero. Substantial congestion was
created by setting a thermal limit across all lines of 1.14 p.u. on
current magnitude.

IV. BOUND TIGHTENING PROCEDURES FOR ACOPF
In this section we propose fast procedures for domain re-

duction aka bound tightening. The typical procedure for bound
tightening is as follows: minimize/maximize the desired vari-
able subject to the constraints of the relaxation; however, this
is computationally intensive. Instead we consider ACOPF-spe-
cific methods with closed-form solutions based on general prin-
ciples described in Chen, Atamtürk, and Oren [24].
Tightening on Power Flows: Let us examine some bus .

If we consider voltage magnitude and angle constraints at all
buses, and real and reactive power constraints only at bus ,
then we have the following ACOPF relaxation in polar coordi-
nates:

(3a)
(3b)

(3c)

(3d)

We can further relax the problem by decoupling P and Q,
and rewriting some terms using the optimal solution to certain
subproblems. First let us define the following terms:

Thus we can rewrite the nodal power equations:

We can obtain upper and lower bounds on by
finding the following optima:
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Each bound is computed by checking variable bounds
and the unconstrained first-order necessary conditions
(FONC). For instance, for , FONC give us either

if , or else ,
in which case we can discard the point as infeasible. We can
test all candidates (

, etc.) to determine
bounds for . With these variable bounds we form the
following relaxation:

From here, new variable bounds are determined in a straight-
forward and computationally efficient manner. Let us consider
the power bounds first. An over/underestimate of the max/min
real/reactive power flow is attained either at variable bounds or
the appropriate unconstrained FONC point. For we have:

Here, are FONC solutions for given a fixed value
of , and are the corresponding nodal powers. Reac-
tive power can be updated in the same way, replacing with

, and with . Thus voltage limits can be used to tighten
nodal power limits.
We can apply the quadratic root formula to make inferences

about voltage magnitude using real and reactive power con-
straints. Note that only the positive root needs to be considered,
as the negative part corresponds to the lower portion of the nose
curve that is avoided in power systems operation to maintain
stability. Let us consider the following problem structure:

Here, are parameters, and are real-valued vari-
ables. For example, with the real power upper bound we have

, and hence tight-
ening of the limits on voltage magnitude. We are interested in
the projection on so that we can establish implied variable
bounds for purposes of tightening: . We use the
property that the lower portion of nose curves are forbidden or
infeasible regions and take only the higher root:

From here, by maximizing or minimizing the right-hand side
with , we infer either upper and lower bounds , or else
infeasibility:
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Tightening on Line Constraints: Three types of line flow
limits typically used for ACOPF are apparent power, real power,
and line current magnitude. For notational simplicity we will
assume that nodes are connected by a single line. This is not a
technical requirement (we include limits on specific lines in our
experiments) as multiple lines can be easily accommodated by
replacing entries with the appropriate indices for specific
lines.
Apparent power is usually applied as a proxy for thermal line

or transformer limits:
Note that line limits are quartic constraints with respect to

voltages. In our relaxation we include nodal powers as explicit
decision variables, so the line limits are modeled as convex
quadratic constraints with respect to power, which maintains the
QCQP framework.
Let us now deduce some limits by fixing either or

in the same way as with nodal powers. For brevity we will only
show the procedure for real power, with the procedure holding
symmetrically for reactive power. First let us determine themin-
imum possible magnitude of reactive power flow:

Using the same principles as with nodal powers, we have de-
termined , respectively upper and lower bounds on
reactive power flow from to . gives us the minimum
magnitude, so we the have the following valid inequality:

Note that the explicit real power limits are sometimes in-
cluded as a proxy for voltage stability limits. In such a case
we use whichever bound is tighter. Voltage magnitude bound
tightening can then be applied to line flow limits using the same
procedure as for nodal power limits. For instance, with
and we have .
Line current magnitude is the key factor in thermal line limit

violation. In the lifted space we write this as a linear constraint,
unlike apparent power bounds:

Defining as the feasible
angle closest to zero, we make the following inference, sup-
posing that :

The same procedure applies symmetrically on . We also
update the angle bounds, considering only the nontrivial cases
where :

(4)

We can then determine the minimum of the left-hand side of
inequality (4). Supposing a nontrivial bound, where

, by examining deriva-
tives we can see that the minimum is attained at one of the fol-
lowing values:
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TABLE I
COMPARISON WITH AND WITHOUT BOUND TIGHTENING

Let be the minimum value for the left-hand side of in-
equality (4). If , then the problem is infeasible; other-
wise, is bounded above and below by .
Tightening on Graph Cycles: For meshed networks, we prop-

agate angle bound changes across cycles using the identity that
the sum of angle differences around a cycle must sum to zero.
For instance, if we choose to partition the bounds of , it
is easy to check if there is some third bus that connects to

and in the chordally completed graph. Supposing that all
bounds are at to 30 degrees, and that the upper bound
has been updated to degrees, then we can update the other
lower bounds:

Although this applies to cycles of any size, for simplicity
we restrict the procedure to 3-cycles in our experiments. Note
that this procedure generalizes to QCQP with bounded complex
variables (see [24]).

V. COMPUTATIONAL EXPERIMENTS

A. Setup
All experiments herein are performed with a 2.26 dual-core

Intel i3-350M processor and 4 GB main memory. Algorithms
are coded in MATLAB (see [26]) with model processing per-
formed by YALMIP (see [27]). We use the solver for QCQP
with bounded complex variables developed in Chen, Atamtürk,
and Oren [24]. A brief description of the solver follows.

B. Solver
The solver of Chen, Atamtürk, and Oren [24] is designed for

general QCQP problems with bounded real or complex vari-
ables. A spatial branch-and-cut approach is used, and live nodes
are selected using depth-first search strategy. At every live node,
the upper bound problem is solved using IPOPT [28]. The lower
bound problem is a sparse lifted SDP relaxation that is strength-
ened with cuts and is solved with MOSEK [29]. A live node is
pruned if the lower bound is infeasible or if the lower bound ex-
ceeds or else is within a user-specified percentage of the best-
known upper bound. If a live node is not pruned, then it is
branched upon: an entry of the lifted matrix of the SDP relax-
ation is selected for branching and its bound is bisected, forming

two child nodes. For ACOPF the interpretation is that spatial
branching is performed on either a node's voltage magnitude
or a voltage phase angle difference between two nodes. In this
paper we have used the MVWB branching strategy, which se-
lects nodes based on minimizing a worst-case estimate of rank
violation in the relaxation's decision matrix. Bound tightening
is applied at every live node in order to tighten the current lower
bound and subsequent child node lower bounds, if any. The
solver terminates when any one of the following criterion are
met: a search tree limit of 10000 nodes explored; a time limit of
1.5 hours; or a user-specified optimality gap criterion is reached
(this differs by case and is specified in Section V). Furthermore,
all nodes beyond a search tree depth of 100 are pruned. Upon
termination, the solver returns the lowest-cost feasible solution
found as well as a lower bound on the optimum cost derived
from the branch-and-cut procedure.

C. Instances
In addition to the challenging instances produced in

Section III, we have included test instances with small duality
gap from Gopalakrishnan et al. [21]. These instances are called
- , with the number indicating the number of buses in

the problem. Additionally, we have included all cases from
Molzahn and Hiskens [20] with duality gap greater than 0.1%.
These are named , and , using their
naming convention. Since the IEEE test cases do not include
phase angle difference limits, we have applied a 30 degree
bound for all connected bus pairs. For the challenging problems
we set a global optimality tolerance of 1%, and for - we
use a tolerance of 0.1%. The solver had trouble converging on
case , so we set a higher optimality tolerance of 3%.

D. Results
We summarize our results in Table I. The columns are defined

as follows. Case is the case name. dgap is a lower bound on the
duality gap with respect to the standard relaxation; it is estab-
lished by the best known lower bound calculated by the solver.
Nodes are the number of search tree nodes explored before ter-
mination. Depth is the maximum search tree depth. Time is the
total time spent in the solver. rgap is the root gap, calculated
as , where is the best known upper bound
and is the root node lower bound. egap is the end gap, calcu-
lated as , where is the global lower bound
established by the solver at termination. cgap is the closed gap,
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TABLE II
BREAKDOWN OF TIME SPENT (SECONDS)

i.e., . Note that dgap=egap-rgap. Column av-
erages are provided in the last row.
For cases with small root gap, - and , bound

tightening has a modest effect, and the solver terminates quickly
regardless. For the more difficult problems bound tightening
presents clear advantages in both time and search tree size.
Without bound tightening, the solver reached the time limit
on cases and before reaching the optimality
criterion. In case bound tightening reduces the root gap
by 16%, and for other cases it does not have substantial effect
at the root node.
Table II provides a detailed breakdown of times. indi-

cates the total time spent in the solver. is the time spent
solving lower bound problems, is the time spent upper
bound problems. The overhead is calculated as

. is the time spent per search tree node,
and is the overhead time per node. There are small but
significant increases in overhead due to the bound tightening
procedures. The per-node overhead increase is larger on the
more difficult cases. This is because the bound tightening proce-
dure is able to prune a high percentage of nodes due to infeasi-
bility, and thus makes up a larger percentage of total time spent.
With the exception of phase angle tightening the procedures
presented in this paper involve closed-form solutions and in-
volves only simple arithmetic operations. The angle tightening
involves propagation across cycles on chordal graphs (see [24]),
which has linear time worst case complexity (see [30]). Thus it
may be possible to further reduce per-node time impacts with
more efficient coding practices than used in our prototype.

VI. CONCLUSION
We constructed new instances of ACOPF with high duality

gap, which require methods beyond a one-stage SDP relaxation
for global optimization. We presented closed-form bound-tight-
ening procedures to reduce the domain of the problem by re-
moving infeasible regions. Computational experiments using a
spatial branch-and-cut solver indicate that the bound-tightening
techniques are particularly effective on more difficult instances.
Future work could consider hybrid bound reduction tech-

niques. For instance, bound tightening using full relaxations
could be judiciously applied to problematic buses, and our
closed-form methods could then be used to propagate bound
changes on neighboring buses. Moreover, further investigation
is needed to see if propagating angle bound changes on larger

cycles may be useful. It may also be worthwhile to consider
bound tightening on other problems involving AC power flow
equations, such as optimal capacitor location (see [31]).

ACKNOWLEDGMENT

The authors would like to thank Dr. Richard P. O'Neill of the
Federal Energy Regulatory Commission for the initial impetus
to study conic relaxations of ACOPF, and for helpful comments
in early drafts of the paper.

REFERENCES
[1] T. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC and DC

power flow models for LMP calculations,” in Proc. IEEE 37th Annu.
Hawaii Int. Conf. System Sciences, 2004, 9 pp.

[2] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” IEEE
Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

[3] F. Li and R. Bo, “DCOPF-based LMP simulation: Algorithm, compar-
ison with ACOPF, and sensitivity,” IEEE Trans. Power Syst., vol. 22,
no. 4, pp. 1475–1485, Nov. 2007.

[4] A. Ott, “Evolution of computing requirements in the PJM market:
Past and future,” in Proc. 2010 IEEE Power and Energy Soc. General
Meeting, 2010, pp. 1–4, IEEE.

[5] D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney, “Optimal
power flow by Newton approach,” IEEE Trans. Power App. Syst., vol.
PAS-103, no. 10, pp. 2864–2880, 1984.

[6] O. Alsac, J. Bright, M. Prais, and B. Stott, “Further developments in
lp-based optimal power flow,” IEEE Trans. Power Syst., vol. 5, no. 3,
pp. 697–711, Aug. 1990.

[7] I. A. Hiskens and R. J. Davy, “Exploring the power flow solution space
boundary,” IEEE Trans. Power Syst., vol. 16, no. 3, pp. 389–395, Aug.
2001.

[8] A. Verma, “Power grid security analysis: An optimization approach,”
Ph.D. dissertation, Columbia Univ., New York, NY, USA, 2009.

[9] J. Lavaei and S. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb.
2012.

[10] K. Lehmann, A. Grastien, and P. Van Hentenryck, “Ac-feasibility on
tree networks is np-hard,” IEEE Trans. Power Syst., to be published.

[11] D. T. Phan, “Lagrangian duality-based branch and bound algorithms
for optimal power flow,” Oper. Res., vol. 60, no. 2, pp. 275–285, 2012.

[12] X. Bai, H.Wei, K. Fujisawa, and Y.Wang, “Semidefinite programming
for optimal power flow problems,” Int. J. Elect. Power Energy Syst.,
vol. 30, no. 6–7, pp. 383–392, 2008.

[13] B. Zhang and D. Tse, “Geometry of feasible injection region of power
networks,” in Proc. 2011 49th Annu. IEEE Allerton Conf. Communi-
cation, Control, and Computing (Allerton), 2011, pp. 1508–1515.

[14] S. Sojoudi and J. Lavaei, “Network topologies guaranteeing zero du-
ality gap for optimal power flow problem,” IEEE Trans. Power Syst.,
submitted for publication.

[15] B. Lesieutre, D. Molzahn, A. Borden, and C. DeMarco, “Examining
the limits of the application of semidefinite programming to power flow
problems,” in Proc. 2011 49th Annu. IEEE Allerton Conf. Communi-
cation, Control, and Computing (Allerton), 2011, pp. 1492–1499.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON POWER SYSTEMS

[16] S. Bose, D. Gayme,K. Chandy, and S. Low, “Quadratically constrained
quadratic programs on acyclic graphs with application to power flow,”
IEEE Trans. Control Netw. Syst., to be published.

[17] B. Kocuk, S. S. Dey, and X. A. Sun, “Inexactness of SDP relaxation
for optimal power flow over radial networks and valid inequalities for
global optimization,” IEEE Trans. Power Syst., to be published.

[18] W. A. Bukhsh et al., “Local solutions of the optimal power flow
problem,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4780–4788,
Nov. 2013.

[19] C. Josz, J. Maeght, P. Panciatici, and J. C. Gilbert, “Application of the
moment-sos approach to global optimization of the opf problem,” IEEE
Trans. Power Syst., vol. 30, no. 1, pp. 463–470, Jan. 2015.

[20] D. K. Molzahn and I. A. Hiskens, “Sparsity-exploiting moment-based
relaxations of the optimal power flow problem,” IEEE Trans. Control
Netw. Syst., to be published.

[21] A. Gopalakrishnan, A. U. Raghunathan, D. Nikovski, and L. T. Biegler,
“Global optimization of optimal power flow using a branch & bound
algorithm,” in Proc. 2012 50th Annu. IEEE Allerton Conf. Communi-
cation, Control, and Computing (Allerton), 2012, pp. 609–616.

[22] C. Coffrin and P. Van Hentenryck, “A linear-programming approxi-
mation of ac power flows,” INFORMS J. Comput., vol. 26, no. 4, pp.
718–734, 2014.

[23] D. Bienstock and G. Munoz, “On linear relaxations of opf problems,”
arXiv preprint arXiv:1411.1120, 2014.

[24] C. Chen, A. Atamtürk, and S. S. Oren, A Spatial Branch-and-Cut
Algorithm for Nonconvex QCQP With Bounded Complex Variables,
IEOR Dept., Univ. California, Berkeley, CA, USA, Tech. Rep.
BCOL.15.04, 2015 [Online]. Available: http://ieor.berkeley.edu/atam-
turk/pubs/sbc.pdf

[25] S. Sojoudi, R. Madani, and J. Lavaei, “Low-rank solution of convex
relaxation for optimal power flow problem,” in Proc. 2013 IEEE
Int. Conf. Smart Grid Communications (SmartGridComm), 2013, pp.
636–641.

[26] “M. U. Guide,” The Mathworks, Inc.. Natick, MA, USA, vol. 5,
1998.

[27] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
matlab,” in Proc. 2004 IEEE Int. Symp. Computer Aided Control
Systems Design, 2004, pp. 284–289.

[28] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[29] E. D. Andersen and K. D. Andersen, “The mosek interior point opti-
mizer for linear programming: An implementation of the homogeneous
algorithm,” High Perform. Optimiz., vol. 33, pp. 197–232, 2000.

[30] J. R. Blair and B. Peyton, “An introduction to chordal graphs and clique
trees,” in Graph Theory and Sparse Matrix Computation. New York,
NY, USA: Springer, 1993, pp. 1–29.

[31] R. Jabr, “Optimal placement of capacitors in a radial network using
conic and mixed integer linear programming,” Elect. Power Syst. Res.,
vol. 78, no. 6, pp. 941–948, 2008.

Chen Chen (S’13) received the B.A.Sc. degree in Industrial (Systems) Engi-
neering from the University of Toronto, and the Ph.D. degree in Industrial En-
gineering and Operations Research from the University of California, Berkeley
in 2015.
He is a postdoctoral research scientist in the IEOR department of Columbia

University. He has interned at the Federal Energy Regulatory Commission and
the Ontario Power Authority.

Alper Atamtürk received the B.A. and M.S. degrees in Industrial Engineering
from Bilkent University and the Ph.D. degree in Industrial Engineering from
the Georgia Institute of Technology in 1998.
He is a Professor of IEOR at the University of California, Berkeley and is the

director of the Berkeley Computational Optimization Lab.

Shmuel S. Oren (F’02) received the B.Sc. and M.Sc. degrees in mechanical en-
gineering and in materials engineering from the Technion Haifa, Israel, and the
MS. and Ph.D. degrees in engineering economic systems from Stanford Univer-
sity, Stanford, CA, in 1972.
He is a Professor of IEOR at the University of California, Berkeley and

the Berkeley site director of the Power System Engineering Research Center
(PSERC). He has published numerous articles on aspects of electricity market
design and has been a consultant to various private and government organiza-
tions.
Dr. Oren is a Fellow of INFORMS.


